Pharmacogenetics in the Treatment of Cardiovascular Diseases and Its Current Progress Regarding Implementation in the Clinical Routine
Abstract
:1. Introduction
2. The Most Relevant Evidence in Pharmacogenetics of Drugs Used in Cardiology
2.1. Clopidogrel
2.1.1. Large-Scale Studies in High-Risk Patients
Genetic Post-Hoc Substudies of the TRITON 38 Trial
Genetics Post-Hoc Substudy of PLATO
2.1.2. Meta-Analyses of Large-Scale Studies
2.1.3. Non-Randomized Clinical Trials
2.1.4. Clinical Trials
2.1.5. Meta-Analyses
2.1.6. Guidelines
2.1.7. Cost-Effectiveness Studies
2.2. Warfarin
2.2.1. Genotype-Guided Algorithms
2.2.2. Clinical Trials
2.2.3. Meta-Analyses
2.2.4. Guidelines
2.2.5. Cost-Effectiveness Studies
2.3. Acenocumarol
2.3.1. Pharmacogenetics Algorithms
2.3.2. Meta-Analyses
2.3.3. Guidelines
2.4. Simvastatin
2.4.1. Observational Studies
2.4.2. Clinical Trials
2.4.3. Guidelines
3. Discussion
Funding
Conflicts of Interest
References
- Mallal, S.; Phillips, E.; Carosi, G.; Molina, J.M.; Workman, C.; Tomazic, J.; Jagel-Guedes, E.; Rugina, S.; Kozyrev, O.; Cid, J.F.; et al. Hla-b*5701 screening for hypersensitivity to abacavir. N. Engl. J. Med. 2008, 358, 568–579. [Google Scholar] [CrossRef]
- Verhoef, T.I.; Ragia, G.; de Boer, A.; Barallon, R.; Kolovou, G.; Kolovou, V.; Konstantinides, S.; Le Cessie, S.; Maltezos, E.; van der Meer, F.J.; et al. A randomized trial of genotype-guided dosing of acenocoumarol and phenprocoumon. N. Engl. J. Med. 2013, 369, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Pirmohamed, M.; Burnside, G.; Eriksson, N.; Jorgensen, A.L.; Toh, C.H.; Nicholson, T.; Kesteven, P.; Christersson, C.; Wahlstrom, B.; Stafberg, C.; et al. A randomized trial of genotype-guided dosing of warfarin. N. Engl. J. Med. 2013, 369, 2294–2303. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.H. Pharmacogenomic testing and response to warfarin. Lancet 2015, 385, 2231–2232. [Google Scholar] [CrossRef]
- Coenen, M.J.; de Jong, D.J.; van Marrewijk, C.J.; Derijks, L.J.; Vermeulen, S.H.; Wong, D.R.; Klungel, O.H.; Verbeek, A.L.; Hooymans, P.M.; Peters, W.H.; et al. Identification of patients with variants in tpmt and dose reduction reduces hematologic events during thiopurine treatment of inflammatory bowel disease. Gastroenterology 2015, 149, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.C.D.; Swen, J.J.; Guchelaar, H.J. Implementation of pharmacogenomics in everyday clinical settings. Adv. Pharmacol. 2018, 83, 219–246. [Google Scholar]
- Luzum, J.A.; Cheung, J.C. Does cardiology hold pharmacogenetics to an inconsistent standard? A comparison of evidence among recommendations. Pharmacogenomics 2018, 19, 1203–1216. [Google Scholar] [CrossRef]
- Van der Wouden, C.H.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; Davila-Fajardo, C.L.; Deneer, V.H.; Dolzan, V.; Ingelman-Sundberg, M.; Jonsson, S.; Karlsson, M.O.; et al. Implementing pharmacogenomics in europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin. Pharmacol. Ther. 2017, 101, 341–358. [Google Scholar] [CrossRef]
- Van der Wouden, C.H.; Cambon-Thomsen, A.; Cecchin, E.; Cheung, K.C.; Davila-Fajardo, C.L.; Deneer, V.H.; Dolzan, V.; Ingelman-Sundberg, M.; Jonsson, S.; Karlsson, M.O.; et al. Corrigendum: Implementing pharmacogenomics in europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clin. Pharmacol. Ther. 2017, 102, 152. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.C.D.; Caudle, K.E.; Swen, J.J.; Gammal, R.S.; Whirl-Carrillo, M.; Klein, T.E.; Relling, M.V.; Guchelaar, H.J. Comparison of the guidelines of the clinical pharmacogenetics implementation consortium and the dutch pharmacogenetics working group. Clin. Pharmacol. Ther. 2018, 103, 599–618. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, F.; Caneva, L.; Papaluca, M. European medicines agency initiatives and perspectives on pharmacogenomics. Br. J. Clin. Pharmacol. 2014, 77, 612–617. [Google Scholar] [CrossRef]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef]
- King, S.B., 3rd; Smith, S.C., Jr.; Hirshfeld, J.W., Jr.; Jacobs, A.K.; Morrison, D.A.; Williams, D.O.; Feldman, T.E.; Kern, M.J.; O’Neill, W.W.; Schaff, H.V.; et al. 2007 focused update of the acc/aha/scai 2005 guideline update for percutaneous coronary intervention: A report of the american college of cardiology/american heart association task force on practice guidelines. J. Am. Coll. Cardiol. 2008, 51, 172–209. [Google Scholar] [CrossRef]
- Kushner, F.G.; Hand, M.; Smith, S.C., Jr.; King, S.B., 3rd; Anderson, J.L.; Antman, E.M.; Bailey, S.R.; Bates, E.R.; Blankenship, J.C.; Casey, D.E., Jr.; et al. 2009 focused updates: ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction (updating the 2004 guideline and 2007 focused update) and ACC/AHA/SCAI guidelines on percutaneous coronary intervention (updating the 2005 guideline and 2007 focused update): A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2009, 2205–2241. [Google Scholar]
- Snoep, J.D.; Hovens, M.M.; Eikenboom, J.C.; van der Bom, J.G.; Jukema, J.W.; Huisman, M.V. Clopidogrel nonresponsiveness in patients undergoing percutaneous coronary intervention with stenting: A systematic review and meta-analysis. Am. Heart J. 2007, 154, 221–231. [Google Scholar] [CrossRef]
- Giusti, B.; Gori, A.M.; Marcucci, R.; Saracini, C.; Vestrini, A.; Abbate, R. Determinants to optimize response to clopidogrel in acute coronary syndrome. Pharmgenomics Pers. Med. 2010, 3, 33–50. [Google Scholar] [CrossRef]
- Mega, J.L.; Close, S.L.; Wiviott, S.D.; Shen, L.; Walker, J.R.; Simon, T.; Antman, E.M.; Braunwald, E.; Sabatine, M.S. Genetic variants in abcb1 and CYP2C19 and cardiovascular outcomes after treatment with clopidogrel and prasugrel in the triton-timi 38 trial: A pharmacogenetic analysis. Lancet 2010, 376, 1312–1319. [Google Scholar] [CrossRef]
- Fuster, V.; Sweeny, J.M. Clopidogrel and the reduced-function CYP2C19 genetic variant: A limited piece of the overall therapeutic puzzle. JAMA 2010, 304, 1839–1840. [Google Scholar] [CrossRef]
- Giusti, B.; Gori, A.M.; Marcucci, R.; Abbate, R. Current status of clopidogrel pharmacogenomics. Pharmacogenomics 2012, 13, 1671–1674. [Google Scholar] [CrossRef]
- Wang, X.Q.; Shen, C.L.; Wang, B.N.; Huang, X.H.; Hu, Z. Genetic polymorphisms of CYP2C19*2 and abcb1 c3435t affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome. Gene 2015, 558, 200–207. [Google Scholar] [CrossRef]
- Su, J.; Xu, J.; Li, X.; Zhang, H.; Hu, J.; Fang, R.; Chen, X. Abcb1 c3435t polymorphism and response to clopidogrel treatment in coronary artery disease (cad) patients: A meta-analysis. PLoS ONE 2012, 7, e46366. [Google Scholar] [CrossRef]
- Mega, J.L.; Close, S.L.; Wiviott, S.D.; Shen, L.; Hockett, R.D.; Brandt, J.T.; Walker, J.R.; Antman, E.M.; Macias, W.; Braunwald, E.; et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 2009, 360, 354–362. [Google Scholar] [CrossRef]
- Sibbing, D.; Koch, W.; Gebhard, D.; Schuster, T.; Braun, S.; Stegherr, J.; Morath, T.; Schomig, A.; von Beckerath, N.; Kastrati, A. Cytochrome 2c19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 2010, 121, 512–518. [Google Scholar] [CrossRef]
- Sibbing, D.; Gebhard, D.; Koch, W.; Braun, S.; Stegherr, J.; Morath, T.; Von Beckerath, N.; Mehilli, J.; Schomig, A.; Schuster, T.; et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy. J. Thromb. Haemost. 2010, 8, 1685–1693. [Google Scholar] [CrossRef]
- Frere, C.; Cuisset, T.; Gaborit, B.; Alessi, M.C.; Hulot, J.S. The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-st acute coronary syndrome. J. Thromb. Haemost. 2009, 7, 1409–1411. [Google Scholar] [CrossRef]
- Tiroch, K.A.; Sibbing, D.; Koch, W.; Roosen-Runge, T.; Mehilli, J.; Schomig, A.; Kastrati, A. Protective effect of the CYP2C19 *17 polymorphism with increased activation of clopidogrel on cardiovascular events. Am. Heart J. 2010, 160, 506–512. [Google Scholar] [CrossRef]
- Harmsze, A.M.; van Werkum, J.W.; Hackeng, C.M.; Ruven, H.J.; Kelder, J.C.; Bouman, H.J.; Breet, N.J.; Ten Berg, J.M.; Klungel, O.H.; de Boer, A.; et al. The influence of CYP2C19*2 and *17 on on-treatment platelet reactivity and bleeding events in patients undergoing elective coronary stenting. Pharmacogenet. Genomics 2012, 22, 169–175. [Google Scholar] [CrossRef]
- US Department of Health and Human Services. FDA Drug Safety Communication: Reduced Effectiveness of Plavix (Clopidogrel) in Patients Who Are Poor Metabolizers of the Drug; US Food and Drug Administration: Silver Spring, MD, USA, 2010.
- Collet, J.P.; Hulot, J.S.; Pena, A.; Villard, E.; Esteve, J.B.; Silvain, J.; Payot, L.; Brugier, D.; Cayla, G.; Beygui, F.; et al. Cytochrome p450 2c19 polymorphism in young patients treated with clopidogrel after myocardial infarction: A cohort study. Lancet 2009, 373, 309–317. [Google Scholar] [CrossRef]
- Simon, T.; Verstuyft, C.; Mary-Krause, M.; Quteineh, L.; Drouet, E.; Meneveau, N.; Steg, P.G.; Ferrieres, J.; Danchin, N.; Becquemont, L.; et al. Genetic determinants of response to clopidogrel and cardiovascular events. N. Engl. J. Med. 2009, 360, 363–375. [Google Scholar] [CrossRef]
- Sorich, M.J.; Vitry, A.; Ward, M.B.; Horowitz, J.D.; McKinnon, R.A. Prasugrel vs. Clopidogrel for cytochrome p450 2c19-genotyped subgroups: Integration of the triton-timi 38 trial data. J. Thromb. Haemost. 2010, 8, 1678–1684. [Google Scholar] [CrossRef]
- Shuldiner, A.R.; O’Connell, J.R.; Bliden, K.P.; Gandhi, A.; Ryan, K.; Horenstein, R.B.; Damcott, C.M.; Pakyz, R.; Tantry, U.S.; Gibson, Q.; et al. Association of cytochrome p450 2c19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA 2009, 302, 849–857. [Google Scholar] [CrossRef]
- Wallentin, L.; James, S.; Storey, R.F.; Armstrong, M.; Barratt, B.J.; Horrow, J.; Husted, S.; Katus, H.; Steg, P.G.; Shah, S.H.; et al. Effect of CYP2C19 and abcb1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes: A genetic substudy of the plato trial. Lancet 2010, 376, 1320–1328. [Google Scholar] [CrossRef]
- Pare, G.; Mehta, S.R.; Yusuf, S.; Anand, S.S.; Connolly, S.J.; Hirsh, J.; Simonsen, K.; Bhatt, D.L.; Fox, K.A.; Eikelboom, J.W. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N. Engl. J. Med. 2010, 363, 1704–1714. [Google Scholar] [CrossRef]
- Sanchez-Ramos, J.; Davila-Fajardo, C.L.; Toledo Frias, P.; Diaz Villamarin, X.; Martinez-Gonzalez, L.J.; Martinez Huertas, S.; Burillo Gomez, F.; Caballero Borrego, J.; Bautista Paves, A.; Marin Guzman, M.C.; et al. Results of genotype-guided antiplatelet therapy in patients who undergone percutaneous coronary intervention with stent. Int. J. Cardiol. 2016, 225, 289–295. [Google Scholar] [CrossRef]
- Shen, D.L.; Wang, B.; Bai, J.; Han, Q.; Liu, C.; Huang, X.H.; Zhang, J.Y. Clinical value of CYP2C19 genetic testing for guiding the antiplatelet therapy in a chinese population. J. Cardiovasc. Pharmacol. 2016, 67, 232–236. [Google Scholar] [CrossRef]
- Roberts, J.D.; Wells, G.A.; Le May, M.R.; Labinaz, M.; Glover, C.; Froeschl, M.; Dick, A.; Marquis, J.F.; O’Brien, E.; Goncalves, S.; et al. Point-of-care genetic testing for personalisation of antiplatelet treatment (rapid gene): A prospective, randomised, proof-of-concept trial. Lancet 2012, 379, 1705–1711. [Google Scholar] [CrossRef]
- So, D.Y.; Wells, G.A.; McPherson, R.; Labinaz, M.; Le May, M.R.; Glover, C.; Dick, A.J.; Froeschl, M.; Marquis, J.F.; Gollob, M.H.; et al. A prospective randomized evaluation of a pharmacogenomic approach to antiplatelet therapy among patients with st-elevation myocardial infarction: The rapid stemi study. Pharmacogenomics J. 2016, 16, 71–78. [Google Scholar] [CrossRef]
- Xie, X.; Ma, Y.T.; Yang, Y.N.; Li, X.M.; Zheng, Y.Y.; Ma, X.; Fu, Z.Y.; Ba, B.; Li, Y.; Yu, Z.X.; et al. Personalized antiplatelet therapy according to CYP2C19 genotype after percutaneous coronary intervention: A randomized control trial. Int. J. Cardiol. 2013, 168, 3736–3740. [Google Scholar] [CrossRef]
- Notarangelo, F.M.; Maglietta, G.; Bevilacqua, P.; Cereda, M.; Merlini, P.A.; Villani, G.Q.; Moruzzi, P.; Patrizi, G.; Malagoli Tagliazucchi, G.; Crocamo, A.; et al. Pharmacogenomic approach to selecting antiplatelet therapy in patients with acute coronary syndromes: The pharmclo trial. J. Am. Coll. Cardiol. 2018, 71, 1869–1877. [Google Scholar] [CrossRef]
- Bergmeijer, T.O.; Janssen, P.W.; Schipper, J.C.; Qaderdan, K.; Ishak, M.; Ruitenbeek, R.S.; Asselbergs, F.W.; van‘t Hof, A.W.; Dewilde, W.J.; Spano, F.; et al. CYP2C19 genotype-guided antiplatelet therapy in st-segment elevation myocardial infarction patients-rationale and design of the patient outcome after primary pci (popular) genetics study. Am. Heart J. 2014, 168, 16-22.e1. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef]
- Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [Google Scholar] [CrossRef]
- Osnabrugge, R.L.; Head, S.J.; Zijlstra, F.; ten Berg, J.M.; Hunink, M.G.; Kappetein, A.P.; Janssens, A.C. A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel users. Genet. Med. 2015, 17, 3–11. [Google Scholar] [CrossRef]
- Davila-Fajardo, C.L.; Sanchez-Ramos, J.; Villamarin, X.D.; Martinez-Gonzalez, L.J.; Frias, P.T.; Huertas, S.M.; Gomez, F.B.; Borrego, J.C.; Paves, A.B.; Guzman, M.C.; et al. The study protocol for a non-randomized controlled clinical trial using a genotype-guided strategy in a dataset of patients who undergone percutaneous coronary intervention with stent. Data Brief. 2017, 10, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Kheiri, B.; Osman, M.; Abdalla, A.; Haykal, T.; Pandrangi, P.V.; Chahine, A.; Ahmed, S.; Osman, K.; Bachuwa, G.; Hassan, M.; et al. CYP2C19 pharmacogenetics versus standard of care dosing for selecting antiplatelet therapy in patients with coronary artery disease: A meta-analysis of randomized clinical trials. Catheter. Cardiovasc. Interv. 2018. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.C.; Kwok, J.; Wong, A.; Yung, A.; Shea, C.; Kong, S.L.; Tang, W.H.; Siu, D.; Chan, R.; Lee, S. Genotyping-guided approach versus the conventional approach in selection of oral p2y12 receptor blockers in chinese patients suffering from acute coronary syndrome. J. Int. Med. Res. 2017, 45, 134–146. [Google Scholar] [CrossRef] [PubMed]
- American College of Cardiology Annual Scientific Session. Assessment of Prospective CYP2C19 Genotype Guided Dosing of Anti-Platelet Therapy in Percutaneous Coronary Intervention (Adapt); American College of Cardiology Annual Scientific Session (ACC 2018): Orlando, FL, USA, 2018. [Google Scholar]
- Tomaniak, M.; Koltowski, L.; Kochman, J.; Huczek, Z.; Rdzanek, A.; Pietrasik, A.; Gasecka, A.; Gajda, S.; Opolski, G.; Filipiak, K.J. Can prasugrel decrease the extent of periprocedural myocardial injury during elective percutaneous coronary intervention? Pol. Arch. Intern. Med. 2017, 127, 730–740. [Google Scholar]
- Scott, S.A.; Sangkuhl, K.; Gardner, E.E.; Stein, C.M.; Hulot, J.S.; Johnson, J.A.; Roden, D.M.; Klein, T.E.; Shuldiner, A.R.; Clinical Pharmacogenetics Implementation Consortium. Clinical pharmacogenetics implementation consortium guidelines for cytochrome p450-2c19 (CYP2C19) genotype and clopidogrel therapy. Clin. Pharmacol. Ther. 2011, 90, 328–332. [Google Scholar] [CrossRef]
- Scott, S.A.; Sangkuhl, K.; Stein, C.M.; Hulot, J.S.; Mega, J.L.; Roden, D.M.; Klein, T.E.; Sabatine, M.S.; Johnson, J.A.; Shuldiner, A.R.; et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clin. Pharmacol. Ther. 2013, 94, 317–323. [Google Scholar] [CrossRef]
- Swen, J.J.; Wilting, I.; de Goede, A.L.; Grandia, L.; Mulder, H.; Touw, D.J.; de Boer, A.; Conemans, J.M.; Egberts, T.C.; Klungel, O.H.; et al. Pharmacogenetics: From bench to byte. Clin. Pharmacol. Ther. 2008, 83, 781–787. [Google Scholar] [CrossRef]
- Swen, J.J.; Nijenhuis, M.; de Boer, A.; Grandia, L.; Maitland-van der Zee, A.H.; Mulder, H.; Rongen, G.A.; van Schaik, R.H.; Schalekamp, T.; Touw, D.J.; et al. Pharmacogenetics: From bench to byte—An update of guidelines. Clin. Pharmacol. Ther. 2011, 89, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Pare, G.; Eikelboom, J.W.; Simonsen, K.L.; Emison, E.S.; Fox, K.A.; Steg, P.G.; Montalescot, G.; Bhakta, N.; Hacke, W.; et al. The relationship between CYP2C19 polymorphisms and ischaemic and bleeding outcomes in stable outpatients: The charisma genetics study. Eur. Heart J. 2012, 33, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Levine, G.N.; Bates, E.R.; Bittl, J.A.; Brindis, R.G.; Fihn, S.D.; Fleisher, L.A.; Granger, C.B.; Lange, R.A.; Mack, M.J.; Mauri, L.; et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: A report of the american college of cardiology/american heart association task force on clinical practice guidelines. J. Am. Coll. Cardiol. 2016, 68, 1082–1115. [Google Scholar] [CrossRef]
- Weitzel, K.W.; Elsey, A.R.; Langaee, T.Y.; Burkley, B.; Nessl, D.R.; Obeng, A.O.; Staley, B.J.; Dong, H.J.; Allan, R.W.; Liu, J.F.; et al. Clinical pharmacogenetics implementation: Approaches, successes, and challenges. Am. J. Med. Genet. C Semin. Med. Genet. 2014, 166C, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Pulley, J.M.; Denny, J.C.; Peterson, J.F.; Bernard, G.R.; Vnencak-Jones, C.L.; Ramirez, A.H.; Delaney, J.T.; Bowton, E.; Brothers, K.; Johnson, K.; et al. Operational implementation of prospective genotyping for personalized medicine: The design of the vanderbilt predict project. Clin. Pharmacol. Ther. 2012, 92, 87–95. [Google Scholar] [CrossRef]
- Cavallari, L.H.; Franchi, F.; Rollini, F.; Been, L.; Rivas, A.; Agarwal, M.; Smith, D.M.; Newsom, K.; Gong, Y.; Elsey, A.R.; et al. Clinical implementation of rapid CYP2C19 genotyping to guide antiplatelet therapy after percutaneous coronary intervention. J. Transl. Med. 2018, 16, 92. [Google Scholar] [CrossRef]
- Lee, C.R.; Sriramoju, V.B.; Cervantes, A.; Howell, L.A.; Varunok, N.; Madan, S.; Hamrick, K.; Polasek, M.J.; Lee, J.A.; Clarke, M.; et al. Clinical outcomes and sustainability of using CYP2C19 genotype-guided antiplatelet therapy after percutaneous coronary intervention. Circ. Genom. Precis. Med. 2018, 11, e002069. [Google Scholar] [CrossRef]
- Fragoulakis, V.; Bartsakoulia, M.; Diaz-Villamarin, X.; Chalikiopoulou, K.; Kehagia, K.; Ramos, J.G.S.; Martinez-Gonzalez, L.J.; Gkotsi, M.; Katrali, E.; Skoufas, E.; et al. Cost-effectiveness analysis of pharmacogenomics-guided clopidogrel treatment in spanish patients undergoing percutaneous coronary intervention. Pharmacogenomics J. 2019. [Google Scholar] [CrossRef]
- Reese, E.S.; Daniel Mullins, C.; Beitelshees, A.L.; Onukwugha, E. Cost-effectiveness of cytochrome p450 2c19 genotype screening for selection of antiplatelet therapy with clopidogrel or prasugrel. Pharmacotherapy 2012, 32, 323–332. [Google Scholar] [CrossRef]
- Kazi, D.S.; Garber, A.M.; Shah, R.U.; Dudley, R.A.; Mell, M.W.; Rhee, C.; Moshkevich, S.; Boothroyd, D.B.; Owens, D.K.; Hlatky, M.A. Cost-effectiveness of genotype-guided and dual antiplatelet therapies in acute coronary syndrome. Ann. Intern. Med. 2014, 160, 221–232. [Google Scholar] [CrossRef]
- Jiang, M.; You, J.H. Cost-effectiveness analysis of personalized antiplatelet therapy in patients with acute coronary syndrome. Pharmacogenomics 2016, 17, 701–713. [Google Scholar] [CrossRef]
- Johnson, S.G.; Gruntowicz, D.; Chua, T.; Morlock, R.J. Financial analysis of CYP2C19 genotyping in patients receiving dual antiplatelet therapy following acute coronary syndrome and percutaneous coronary intervention. J. Manag. Care Spec. Pharm. 2015, 21, 552–557. [Google Scholar] [CrossRef]
- Plumpton, C.O.; Roberts, D.; Pirmohamed, M.; Hughes, D.A. A systematic review of economic evaluations of pharmacogenetic testing for prevention of adverse drug reactions. Pharmacoeconomics 2016, 34, 771–793. [Google Scholar] [CrossRef]
- Carlquist, J.F.; Horne, B.D.; Muhlestein, J.B.; Lappe, D.L.; Whiting, B.M.; Kolek, M.J.; Clarke, J.L.; James, B.C.; Anderson, J.L. Genotypes of the cytochrome p450 isoform, cyp2c9, and the vitamin k epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: A prospective study. J. Thromb. Thrombolysis 2006, 22, 191–197. [Google Scholar] [CrossRef]
- Johnson, J.A.; Gong, L.; Whirl-Carrillo, M.; Gage, B.F.; Scott, S.A.; Stein, C.M.; Anderson, J.L.; Kimmel, S.E.; Lee, M.T.; Pirmohamed, M.; et al. Clinical pharmacogenetics implementation consortium guidelines for cyp2c9 and vkorc1 genotypes and warfarin dosing. Clin. Pharmacol. Ther. 2011, 90, 625–629. [Google Scholar] [CrossRef]
- Stehle, S.; Kirchheiner, J.; Lazar, A.; Fuhr, U. Pharmacogenetics of oral anticoagulants: A basis for dose individualization. Clin. Pharmacokinet. 2008, 47, 565–594. [Google Scholar] [CrossRef]
- Kamali, F.; Wynne, H. Pharmacogenetics of warfarin. Annu. Rev. Med. 2010, 61, 63–75. [Google Scholar] [CrossRef]
- Gage, B.F.; Eby, C.; Johnson, J.A.; Deych, E.; Rieder, M.J.; Ridker, P.M.; Milligan, P.E.; Grice, G.; Lenzini, P.; Rettie, A.E.; et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin. Pharmacol. Ther. 2008, 84, 326–331. [Google Scholar] [CrossRef]
- Wadelius, M.; Pirmohamed, M. Pharmacogenetics of warfarin: Current status and future challenges. Pharm. J. 2007, 7, 99–111. [Google Scholar] [CrossRef]
- Gage, B.F.; Eby, C.; Milligan, P.E.; Banet, G.A.; Duncan, J.R.; McLeod, H.L. Use of pharmacogenetics and clinical factors to predict the maintenance dose of warfarin. Thromb. Haemost. 2004, 91, 87–94. [Google Scholar]
- Coumadin- (Warfarin Sodium) Tablet [Package Insert]; Bristol-Myers Squibb Pharma Company: Princeton, NJ, USA, 2015.
- International Warfarin Pharmacogenetics Consortium; Klein, T.E.; Altman, R.B.; Eriksson, N.; Gage, B.F.; Kimmel, S.E.; Lee, M.T.; Limdi, N.A.; Page, D.; Roden, D.M.; et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 2009, 360, 753–764. [Google Scholar]
- Santos, P.C.; Marcatto, L.R.; Duarte, N.E.; Gadi Soares, R.A.; Cassaro Strunz, C.M.; Scanavacca, M.; Krieger, J.E.; Pereira, A.C. Development of a pharmacogenetic-based warfarin dosing algorithm and its performance in brazilian patients: Highlighting the importance of population-specific calibration. Pharmacogenomics 2015, 16, 865–876. [Google Scholar] [CrossRef]
- Wei, M.; Ye, F.; Xie, D.; Zhu, Y.; Zhu, J.; Tao, Y.; Yu, F. A new algorithm to predict warfarin dose from polymorphisms of cyp4f2, cyp2c9 and vkorc1 and clinical variables: Derivation in han chinese patients with non valvular atrial fibrillation. Thromb. Haemost. 2012, 107, 1083–1091. [Google Scholar] [CrossRef]
- Finkelman, B.S.; Gage, B.F.; Johnson, J.A.; Brensinger, C.M.; Kimmel, S.E. Genetic warfarin dosing: Tables versus algorithms. J. Am. Coll. Cardiol. 2011, 57, 612–618. [Google Scholar] [CrossRef]
- Kimmel, S.E.; French, B.; Kasner, S.E.; Johnson, J.A.; Anderson, J.L.; Gage, B.F.; Rosenberg, Y.D.; Eby, C.S.; Madigan, R.A.; McBane, R.B.; et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N. Engl. J. Med. 2013, 369, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Kimmel, S.E.; French, B.; Geller, N.L.; Investigators, C. Genotype-guided dosing of vitamin k antagonists. N. Engl. J. Med. 2014, 370, 1763–1764. [Google Scholar]
- Shaw, K.; Amstutz, U.; Kim, R.B.; Lesko, L.J.; Turgeon, J.; Michaud, V.; Hwang, S.; Ito, S.; Ross, C.; Carleton, B.C.; et al. Clinical practice recommendations on genetic testing of cyp2c9 and vkorc1 variants in warfarin therapy. Ther. Drug Monit. 2015, 37, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.X.; Ge, J.W.; Xian, Y.Q.; Huang, S.Y.; Li, Y.S. Clinical application of a new warfarin-dosing regimen based on the cyp2c9 and vkorc1 genotypes in atrial fibrillation patients. Biomed. Rep. 2016, 4, 453–458. [Google Scholar] [CrossRef]
- Gage, B.F.; Bass, A.R.; Lin, H.; Woller, S.C.; Stevens, S.M.; Al-Hammadi, N.; Li, J.; Rodriguez, T., Jr.; Miller, J.P.; McMillin, G.A.; et al. Effect of genotype-guided warfarin dosing on clinical events and anticoagulation control among patients undergoing hip or knee arthroplasty: The gift randomized clinical trial. JAMA 2017, 318, 1115–1124. [Google Scholar] [CrossRef] [PubMed]
- Goulding, R.; Dawes, D.; Price, M.; Wilkie, S.; Dawes, M. Genotype-guided drug prescribing: A systematic review and meta-analysis of randomized control trials. Br. J. Clin. Pharmacol. 2015, 80, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Feng, S.; Ling, P.; Zhang, G. Meta-analysis of randomized controlled trials reveals an improved clinical outcome of using genotype plus clinical algorithm for warfarin dosing. J. Thromb. Thrombolysis 2015, 39, 228–234. [Google Scholar] [CrossRef]
- Tang, Q.; Zou, H.; Guo, C.; Liu, Z. Outcomes of pharmacogenetics-guided dosing of warfarin: A systematic review and meta-analysis. Int. J. Cardiol. 2014, 175, 587–591. [Google Scholar] [CrossRef]
- Belley-Cote, E.P.; Hanif, H.; D’Aragon, F.; Eikelboom, J.W.; Anderson, J.L.; Borgman, M.; Jonas, D.E.; Kimmel, S.E.; Manolopoulos, V.G.; Baranova, E.; et al. Genotype-guided versus standard vitamin k antagonist dosing algorithms in patients initiating anticoagulation. A systematic review and meta-analysis. Thromb. Haemost. 2015, 114, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Wang, X.; Xu, Q.; Zhang, Y.; Yin, T. Clinical benefits of pharmacogenetic algorithm-based warfarin dosing: Meta-analysis of randomized controlled trials. Thromb. Res. 2015, 135, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Dahal, K.; Sharma, S.P.; Fung, E.; Lee, J.; Moore, J.H.; Unterborn, J.N.; Williams, S.M. Meta-analysis of randomized controlled trials of genotype-guided vs standard dosing of warfarin. Chest 2015, 148, 701–710. [Google Scholar] [CrossRef]
- Shi, C.; Yan, W.; Wang, G.; Wang, F.; Li, Q.; Lin, N. Pharmacogenetics-based versus conventional dosing of warfarin: A meta-analysis of randomized controlled trials. PLoS ONE 2015, 10, e0144511. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical pharmacogenetics implementation consortium (cpic) guideline for pharmacogenetics-guided warfarin dosing: 2017 update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Borgiani, P.; Ciccacci, C.; Forte, V.; Sirianni, E.; Novelli, L.; Bramanti, P.; Novelli, G. Cyp4f2 genetic variant (rs2108622) significantly contributes to warfarin dosing variability in the italian population. Pharmacogenomics 2009, 10, 261–266. [Google Scholar] [CrossRef]
- Eckman, M.H.; Rosand, J.; Greenberg, S.M.; Gage, B.F. Cost-effectiveness of using pharmacogenetic information in warfarin dosing for patients with nonvalvular atrial fibrillation. Ann. Intern. Med. 2009, 150, 73–83. [Google Scholar] [CrossRef]
- Leey, J.A.; McCabe, S.; Koch, J.A.; Miles, T.P. Cost-effectiveness of genotype-guided warfarin therapy for anticoagulation in elderly patients with atrial fibrillation. Am. J. Geriatr. Pharmacother. 2009, 7, 197–203. [Google Scholar] [CrossRef]
- Pink, J.; Pirmohamed, M.; Lane, S.; Hughes, D.A. Cost-effectiveness of pharmacogenetics-guided warfarin therapy vs. Alternative anticoagulation in atrial fibrillation. Clin. Pharmacol. Ther. 2014, 95, 199–207. [Google Scholar] [CrossRef]
- Trailokya, A.; Hiremath, J.S.; Sawhney, J.; Mishra, Y.K.; Kanhere, V.; Srinivasa, R.; Tiwaskar, M. Acenocoumarol: A review of anticoagulant efficacy and safety. J. Assoc. Physicians India 2016, 64, 88–93. [Google Scholar]
- Verde, Z.; Ruiz, J.R.; Santiago, C.; Valle, B.; Bandres, F.; Calvo, E.; Lucia, A.; Gomez Gallego, F. A novel, single algorithm approach to predict acenocoumarol dose based on cyp2c9 and vkorc1 allele variants. PLoS ONE 2010, 5, e11210. [Google Scholar] [CrossRef]
- Rathore, S.S.; Agarwal, S.K.; Pande, S.; Singh, S.K.; Mittal, T.; Mittal, B. Therapeutic dosing of acenocoumarol: Proposal of a population specific pharmacogenetic dosing algorithm and its validation in north indians. PLoS ONE 2012, 7, e37844. [Google Scholar] [CrossRef]
- Krishna Kumar, D.; Shewade, D.G.; Loriot, M.A.; Beaune, P.; Sai Chandran, B.V.; Balachander, J.; Adithan, C. An acenocoumarol dosing algorithm exploiting clinical and genetic factors in south indian (dravidian) population. Eur. J. Clin. Pharmacol. 2015, 71, 173–181. [Google Scholar] [CrossRef]
- Van Schie, R.M.; Wessels, J.A.; le Cessie, S.; de Boer, A.; Schalekamp, T.; van der Meer, F.J.; Verhoef, T.I.; van Meegen, E.; Rosendaal, F.R.; Maitland-van der Zee, A.H.; et al. Loading and maintenance dose algorithms for phenprocoumon and acenocoumarol using patient characteristics and pharmacogenetic data. Eur. Heart J. 2011, 32, 1909–1917. [Google Scholar] [CrossRef]
- Borobia, A.M.; Lubomirov, R.; Ramirez, E.; Lorenzo, A.; Campos, A.; Munoz-Romo, R.; Fernandez-Capitan, C.; Frias, J.; Carcas, A.J. An acenocoumarol dosing algorithm using clinical and pharmacogenetic data in spanish patients with thromboembolic disease. PLoS ONE 2012, 7, e41360. [Google Scholar] [CrossRef]
- Cerezo-Manchado, J.J.; Rosafalco, M.; Anton, A.I.; Perez-Andreu, V.; Garcia-Barbera, N.; Martinez, A.B.; Corral, J.; Vicente, V.; Gonzalez-Conejero, R.; Roldan, V. Creating a genotype-based dosing algorithm for acenocoumarol steady dose. Thromb. Haemost. 2013, 109, 146–153. [Google Scholar] [CrossRef]
- Tong, H.Y.; Davila-Fajardo, C.L.; Borobia, A.M.; Martinez-Gonzalez, L.J.; Lubomirov, R.; Perea Leon, L.M.; Blanco Banares, M.J.; Diaz-Villamarin, X.; Fernandez-Capitan, C.; Cabeza Barrera, J.; et al. A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a mixed spanish population. PLoS ONE 2016, 11, e0150456. [Google Scholar] [CrossRef]
- Baranova, E.V.; Verhoef, T.I.; Ragia, G.; le Cessie, S.; Asselbergs, F.W.; de Boer, A.; Manolopoulos, V.G.; Maitland-van der Zee, A.H.; EU-PACT group. Dosing algorithms for vitamin k antagonists across vkorc1 and cyp2c9 genotypes. J. Thromb. Haemost. 2017, 15, 465–472. [Google Scholar] [CrossRef]
- Danese, E.; Raimondi, S.; Montagnana, M.; Tagetti, A.; Langaee, T.; Borgiani, P.; Ciccacci, C.; Carcas, A.J.; Borobia, A.M.; Tong, H.Y.; et al. The effect of CYP4F2, VKORC1 and CYP2C9 in influencing coumarin dose. A single patient data meta-analysis in more than 15,000 individuals. Clin. Pharmacol. Ther. 2018. [Google Scholar] [CrossRef]
- Wilke, R.A.; Lin, D.W.; Roden, D.M.; Watkins, P.B.; Flockhart, D.; Zineh, I.; Giacomini, K.M.; Krauss, R.M. Identifying genetic risk factors for serious adverse drug reactions: Current progress and challenges. Nat. Rev. Drug Discov. 2007, 6, 904–916. [Google Scholar] [CrossRef]
- Group, S.S.C.; Bowman, L.; Armitage, J.; Bulbulia, R.; Parish, S.; Collins, R. Study of the effectiveness of additional reductions in cholesterol and homocysteine (search): Characteristics of a randomized trial among 12064 myocardial infarction survivors. Am. Heart J. 2007, 154, 815–823, 823.e1–823.e6. [Google Scholar]
- Ramsey, L.B.; Johnson, S.G.; Caudle, K.E.; Haidar, C.E.; Voora, D.; Wilke, R.A.; Maxwell, W.D.; McLeod, H.L.; Krauss, R.M.; Roden, D.M.; et al. The clinical pharmacogenetics implementation consortium guideline for slco1b1 and simvastatin-induced myopathy: 2014 update. Clin. Pharmacol. Ther. 2014, 96, 423–428. [Google Scholar] [CrossRef]
- Tsamandouras, N.; Dickinson, G.; Guo, Y.; Hall, S.; Rostami-Hodjegan, A.; Galetin, A.; Aarons, L. Development and application of a mechanistic pharmacokinetic model for simvastatin and its active metabolite simvastatin acid using an integrated population pbpk approach. Pharm. Res. 2015, 32, 1864–1883. [Google Scholar] [CrossRef]
- Pasanen, M.K.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M. Slco1b1 polymorphism markedly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 2006, 16, 873–879. [Google Scholar] [CrossRef]
- Group, S.C.; Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. Slco1b1 variants and statin-induced myopathy—A genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar]
- Voora, D.; Shah, S.H.; Spasojevic, I.; Ali, S.; Reed, C.R.; Salisbury, B.A.; Ginsburg, G.S. The slco1b1*5 genetic variant is associated with statin-induced side effects. J. Am. Coll. Cardiol. 2009, 54, 1609–1616. [Google Scholar] [CrossRef]
- Brunham, L.R.; Lansberg, P.J.; Zhang, L.; Miao, F.; Carter, C.; Hovingh, G.K.; Visscher, H.; Jukema, J.W.; Stalenhoef, A.F.; Ross, C.J.; et al. Differential effect of the rs4149056 variant in slco1b1 on myopathy associated with simvastatin and atorvastatin. Pharmacogenomics J. 2012, 12, 233–237. [Google Scholar] [CrossRef]
- EMA: Guideline on the Use of Pharmacogenetic Methodologies in the Pharmacokinetic Evaluation of Medical Products. Available online: https://www.ema.europa.eu/en/use-pharmacogenetic-methodologies-pharmacokinetic-evaluation-medicinal-products (accessed on 2 February 2012).
- Bergmeijer, T.O.; ten Berg, J.M. Value of CYP2C19 *2 and *17 genotyping in clinical practice. Promising but not ready yet. Rev. Esp. Cardiol. (Engl. Ed.) 2012, 65, 205–207. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Koller, E.A.; Roche, J.C.; Rollins, J.A. Genotype-guided dosing of vitamin k antagonists. N. Engl. J. Med. 2014, 370, 1761. [Google Scholar]
- Kirchheiner, J.; Ufer, M.; Walter, E.C.; Kammerer, B.; Kahlich, R.; Meisel, C.; Schwab, M.; Gleiter, C.H.; Rane, A.; Roots, I.; et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of r- and s-phenprocoumon in healthy volunteers. Pharmacogenetics 2004, 14, 19–26. [Google Scholar] [CrossRef]
Drugs | Genes | PGx Guidelines | Level of Evidence |
---|---|---|---|
Clopidogrel | CYP2C19 | CPIC, DPWG | 1A |
Warfarin | CYP2C9, VKORC1 | CPIC, CPNDS | 1A |
Acenocoumarol | CYP2C9, VKORC1, CYP4F2 | DPWG | 1B |
Simvastatin | SLCO1B1 | CPIC | 1A |
Ref | Year | Ethnic | Population Studied | n | PCI-Stent (%) | Follow up | Endpoint | Polymorphisms | Outcomes (LOF vs. no LOF) |
---|---|---|---|---|---|---|---|---|---|
High-risk patients (PCI-stent) | |||||||||
Collet [29] | 2009 | Europeans | ACS | 259 | 86 | >4 years | MACE (CV death, ACS, urgent PCI) | CYP2C19*2 | HR 5.38 (2.32-12.47) p ≤ 0.0001 |
ST definite | CYP2C19*2 | HR 6.04 (1.75-20.80) p = 0.004 | |||||||
Mega [22] | 2009 | 84% Europeans | ACS stent (TRITON) | 1477 | 100 | 15 months | MACE (CV death, ACS, stroke) | CYP2C19*2 | HR 1.53 (1.07-2.19) p = 0.01 |
ST definite | CYP2C19*2 | HR 3.09 (1.19-8.0) p = 0.02 | |||||||
Mega [17] | 2010 | 84% Europeans | ACS stent (TRITON) | 2905 | 100 | 15 months | MACE (CV death, ACS, stroke) | CYP2C19*2 and ABCB1 | ABCB1 TT vs. CT/CC: HR 1.72 (1.22-2.44) p = 0.002 CYP2C19*2 + ABCB1 HR 1.97 (1.38-2.82) p = 0.0002 |
Simon [30] | 2009 | Europeans | ACS | 2208 | 68.7 | 12 months | MACE (death any cause, ACS, stroke) | CYP2C19 and ABCB1 | CYP2C19: HR 1.98 (1.10-3.58) ABCB1: HR 1.72 (1.20-2.47) |
Sorich [31] | 2010 | 84% Europeans | ACS stent (TRITON) | 13608 | 100 | 15 months | MACE (CV death, ACS, stroke) | CYP2C19 LOF | OR 1.63 (1.45-1.81) p < 0.0001 |
Shuldiner [32] | 2009 | Europeans | PCI | 227 | 100 | 12 months | MACE (CV death, ACS, stroke, PCI) | CYP2C19*2 | HR 2.42 (1.18-4.99) p = 0.02 |
Wallentin [33] | 2010 | Europeans | ACS | 10285 | 60 | 12 months | MACE (CV death, ACS, stroke) | CYP2C19 | HR at 30 days: p = 0.028 |
CYP2C19 and ABCB1 | HR 1.2 (1.0-1.4) p = 0.047** | ||||||||
Low-risk patients | |||||||||
Pare [34] | 2010 | Europeans-latin american | ACS stable | 5059 | 14.5 | 12 months | MACE (CV death, ACS, stroke) | CYP2C19*2 | p = 0.32 |
Ref | Year | Ethnic | Population Studied | n | PCI-Stent (%) | Follow up | Endpoint | Polymorphisms | Outcomes (Intervention Group vs. Control Group) |
---|---|---|---|---|---|---|---|---|---|
Non RCT | |||||||||
Sánchez-Ramos [35] | 2016 | Europeans | ACS-PCI-stent | 719 | 100 | 1 year | MACE (CV death, ACS, stroke) | CYP2C19*2, *3 and ABCB1 | HR 0.63 (0.41-0.97) p = 0.037 HR 0.61 (0.39-0.94) p = 0.02** |
ST definite | CYP2C19 *2, *3 and ABCB1 | HR 1.27 (0.08-20.2) p = 0.87 | |||||||
Urgent revascularization* | CYP2C19 *2, *3 and ABCB1 | HR 0.63 (0.31-1.28) p = 0.20 | |||||||
RCT | |||||||||
Shen [36] | 2016 | Asians | CAD-PCI | 628 | 100 | 1 month 6 months 12 months | MACE (composite of death from any cause, myocardial infarction, or target vessel revascularization) | CYP2C19*2 | 1.3% vs. 5.6%, p = 0.003 3.2% vs. 7.8%, p = 0.012 4.2% vs. 9.4%, p = 0.010 |
Roberts (Rapid Gene) [37] | 2012 | Europeans | ACS or stable angina/ stent | 187 | 100 | 7 days | high on-treatment platelet reactivity | CYP2C19*2 | 0% vs. 30% p = 0.0092 |
Roberts (RAPID STEMI study) [38] | 2016 | Europeans | STEMI- stent | 102 | 100 | 1 month | high on-treatment platelet reactivity | CYP2C19*2, *17 and ABCB1 TT | OR=0.15 p = 0.03 |
Xie [39] | 2013 | Asians | CAD-PCI | 600 | 100 | 180 days | MACE (death from any cause, MI, stroke, ischemia) | CYP2C19*2,*3 | 1.0% and 6.2%, p < 0.01 |
Notarangelo Pharmclo [40] | 2018 | Europeans | ACS | 888 | No data | 12 months | MACE (CV death, nonfatal IM, nonfatal stroke) | CYP2C19*2, *17 and ABCB1 | HR 0.58 (0.43-0.78) p < 0.001 |
Bergmeijer (Popular genetics) [41] | ongoing | Europeans | STEMI-stent | 2500 | 100 | 15 months | MACE (CV death, ACS, stroke) | CYP2C19*2, *3 | |
Tailor-PCI (NCT01742117) | ongoing | Europeans | ACS or CAD/ stent | 5000 | 100 | 12 months | MACE (non-fatal MI, non-fatal stroke, severe recurrent ischemia, CV death, and ST) | CYP2C19*2,*17 |
Ref | Year | Ethnic | Population Studied | n | Follow up | Endpoint | Polymorphisms | Homozygotes Action Required | Outcomes (Intervention Group vs. Control Group) | Availability Test | Dose in Non-Genotype Group |
---|---|---|---|---|---|---|---|---|---|---|---|
Pirmohamed (EU-PACT) [3] | 2015 | 2% non-European | AF (72.1%) VT (27.9%) | 455 | 12 weeks | %TTR | CYP2C9*2,*3 VKORC1 | VKORC1: 17% CYP2C9*2 and *3: 3.4% | 67.4% vs. 60.3%, p < 0.001 | 2h | Fixed-dose strategy |
Kimel (COAG) [79] | 2015 | 33% non-European | AF (23%) DVT or PE (56%) | 1015 | 4 weeks | %TTR | CYP2C9*2, *3 VKORC1 | VKORC1: 11% CYP2C9*2 and *3: 1% | 45.2% vs. 45% p = 0.91 | Not before the 1st dose for 55% of patients | Clinical dosing algorithm |
Gage (GIFT) [82] | 2017 | 91% European | Hip or knee arthroplasty | 1650 | 30 and 60 days | Composite (major bleeding, INR ≥ 4, VT, death) | CYP2C9*2,*3 CYP4F2 | NA | RR 0.73 (0.56-0.95) p = 0.02 | NA | NA |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dávila-Fajardo, C.L.; Díaz-Villamarín, X.; Antúnez-Rodríguez, A.; Fernández-Gómez, A.E.; García-Navas, P.; Martínez-González, L.J.; Dávila-Fajardo, J.A.; Cabeza Barrera, J. Pharmacogenetics in the Treatment of Cardiovascular Diseases and Its Current Progress Regarding Implementation in the Clinical Routine. Genes 2019, 10, 261. https://doi.org/10.3390/genes10040261
Dávila-Fajardo CL, Díaz-Villamarín X, Antúnez-Rodríguez A, Fernández-Gómez AE, García-Navas P, Martínez-González LJ, Dávila-Fajardo JA, Cabeza Barrera J. Pharmacogenetics in the Treatment of Cardiovascular Diseases and Its Current Progress Regarding Implementation in the Clinical Routine. Genes. 2019; 10(4):261. https://doi.org/10.3390/genes10040261
Chicago/Turabian StyleDávila-Fajardo, Cristina Lucía, Xando Díaz-Villamarín, Alba Antúnez-Rodríguez, Ana Estefanía Fernández-Gómez, Paloma García-Navas, Luis Javier Martínez-González, José Augusto Dávila-Fajardo, and José Cabeza Barrera. 2019. "Pharmacogenetics in the Treatment of Cardiovascular Diseases and Its Current Progress Regarding Implementation in the Clinical Routine" Genes 10, no. 4: 261. https://doi.org/10.3390/genes10040261