Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon
Abstract
:1. Introduction
2. Methods
2.1. Study Sites
2.2. Collection of Mosquito Larvae, Rearing, and Processing
2.3. Insecticide Bioassay
2.4. Mosquito Processing
2.4.1. Total RNA and DNA Extraction from Mosquito Pools
2.4.2. Genotyping of Mosquito Samples and Multiplex RT-qPCR for Gene Expression Analysis
2.4.3. Extraction and Quantification of Cuticle Hydrocarbon Lipids
2.5. Statistical Analysis
3. Results
3.1. Bioassays Results
3.2. Species ID and Molecular Forms
3.3. Screening of Target Site Mutations (kdr L1014F/S, kdr N1575Y, iAChe G119S)
3.4. Expression Analysis of Genes Implicated in Insecticide Resistance
3.5. Analysis of Cuticular Hydrocarbon Lipids as a Marker of Pyrethroid Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- WHO. World Malaria Report 2018; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Minsanté. Enquete Post Camapgne Sur L’utilisation Des Moustiquaires Imprégnées à Longue Durée D’action 2016/2017; Minsante Press: Yaoundé, Cameroon, 2017; p. 120. [Google Scholar]
- Ntonga Akono, P.; Tonga, C.; Mbida Mbida, J.; Ngo Hondt, O.; Awono-Ambene, H.; Ndo, C. Anopheles gambiae, vecteur majeur du paludisme à Logbessou, zone péri-urbaine de Douala (Cameroun). Bull. Soc. Pathol. Exot. 2015, 108, 360–368. [Google Scholar] [CrossRef]
- Simard, F.; Ayala, D.; Kamdem, G.; Pombi, M.; Etouna, J.; Ose, K. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation. BMC Ecol. 2009, 9, 17. [Google Scholar] [CrossRef]
- Wondji, C.; Frederic, S.; Petrarca, V.; Etang, J.; Santolamazza, F.; Della, T.A. Species and populations of the Anopheles gambiae Complex in Cameroon with special emphasis on chromosomal and molecular forms of Anopheles gambiae s.s. J. Med. Entomol. 2005, 42, 998–1005. [Google Scholar] [CrossRef]
- Awono-Ambene, P.; Antonio-Nkondjio, C.; Toto, J.; Ndo, C.; Etang, J.; Fontenille, D.; Simard, F. Epidemological importance of the Anopheles nili group of malaria vectors in equatorial villages of Cameroon, Central Africa. Sci. Med. Afr. 2009, 1, 13–20. [Google Scholar]
- Doumbe-Belisse, P.; Ngadjeu, C.S.; Sonhafouo-Chiana, N.; Talipouo, A.; Djamouko-Djonkam, L.; Kopya, E.; Bamou, R.; Toto, J.C.; Mounchili, S.; Tabue, R. High malaria transmission sustained by Anopheles gambiae sl occurring both indoors and outdoors in the city of Yaoundé, Cameroon. Wellcome Open Res. 2018, 3, 164. [Google Scholar] [CrossRef]
- Bamou, R.; Mbakop, L.R.; Kopya, E.; Ndo, C.; Awono-Ambene, P.; Tchuinkam, T.; Rono, M.K.; Mwangangi, J.; Antonio-Nkondjio, C. Changes in malaria vector bionomics and transmission patterns in the equatorial forest region of Cameroon between 2000 and 2017. Parasites Vectors 2018, 11, 464. [Google Scholar] [CrossRef]
- Ndo, C.; Kopya, E.; Donbou, M.A.; Njiokou, F.; Awono-Ambene, P.; Wondji, C. Elevated Plasmodium infection rates and high pyrethroid resistance in major malaria vectors in a forested area of Cameroon highlight challenges of malaria control. Parasites Vectors 2018, 11, 157. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Simard, F. Highlights on Anopheles nili and Anopheles moucheti, Malaria Vectors in Africa. In Anopheles Mosquitoes: New Insights into Malaria Vectors; Manguin, S., Ed.; InTech: Rijeka (HR), Croatia, 2013. [Google Scholar]
- Antonio-Nkondjio, C.; Sonhafouo-Chiana, N.; Ngadjeu, C.S.; Doumbe-Belisse, P.; Talipouo, A.; Djamouko-Djonkam, L. Review of the evolution of insecticide resistance in main malaria vectors in Cameroon from 1990 to 2017. Parasit Vectors 2017, 10, 472. [Google Scholar] [CrossRef]
- Ranson, H.; N’Guessan, R.; Lines, J.; Moiroux, N.; Nkuni, Z. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends Parasitol. 2011, 27, 91–98. [Google Scholar] [CrossRef]
- Wondji, C.; Coleman, M.; Kleinschmidt, I.; Mzilahowa, T.; Irving, H.; Ndula, M.; Rehman, A.; Morgan, J.; Barnes, K.; Hemingway, J. Impact of pyrethroid resistance on operational malaria control in Malawi. Proc. Natl. Acad. Sci. USA 2012, 109, 19063–19070. [Google Scholar] [CrossRef] [Green Version]
- Menze, B.D.; Wondji, M.J.; Tchapga, W.; Tchoupo, M.; Riveron, J.M.; Wondji, C.S. Bionomics and insecticides resistance profiling of malaria vectors at a selected site for experimental hut trials in central Cameroon. Malar. J. 2018, 17, 317. [Google Scholar] [CrossRef]
- The Technical Basis for Coordinated Action Against Insecticide Resistance: Preserving the Effectiveness of Modern Malaria Vector Control; WHO Press: Geneva, Switzerland, 2011.
- Nwane, P.; Etang, J.; Chouaibou, M.; Toto, J.; Kerah-Hinzoumbe, C.; Mimpfoundi, R. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. Populations from urban and agro-industrial settings in southern Cameroon. BMC Infect. Dis. 2009, 9, 163. [Google Scholar] [CrossRef]
- Chouaibou, M.; Etang, J.; Brevault, T.; Nwane, P.; Hinzoumbe, C.; Mimpfoundi, R. Dynamics of insecticide resistance in the malaria vector Anopheles gambiae s.l. from an area of extensive cotton cultivation in northern Cameroon. Trop. Med. Int. Health 2008, 13, 476–486. [Google Scholar] [CrossRef]
- Bigoga, J.; Ndangoh, D.; Awono-Ambene, P.; Patchoke, S.; Fondjo, E.; Leke, R. Pyrethroid resistance in Anopheles gambiae from the rubber cultivated area of Niete, South Region of Cameroon. Acta Trop. 2012, 124, 210–214. [Google Scholar] [CrossRef]
- Pouokam, G.B.; Lemnyuy Album, W.; Ndikontar, A.S.; Sidatt, M.E.H. A Pilot Study in Cameroon to Understand Safe Uses of Pesticides in Agriculture, Risk Factors for Farmers’ Exposure and Management of Accidental Cases. Toxics 2017, 5, 30. [Google Scholar] [CrossRef]
- Lynd, A.; Weetman, D.; Barbosa, S.; Egyir Yawson, A.; Mitchell, S.; Pinto, J.; Hastings, I.; Donnelly, M.J. Field, genetic, and modeling approaches show strong positive selection acting upon an insecticide resistance mutation in Anopheles gambiae s.s. Mol. Biol. Evol. 2010, 27, 1117–1125. [Google Scholar] [CrossRef]
- Nwane, P.; Etang, J.; Chouaibou, M.; Toto, J.; Koffi, A.; Mimpfoundi, R. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa. Parasit Vectors 2013, 6, 41. [Google Scholar] [CrossRef]
- Nwane, P.; Etang, J.; Chouaibou, M.; Toto, J.; Mimpfoundi, R.; Simard, F. Kdr-based insecticide resistance in Anopheles gambiae s.s. populations in Cameroon: Spread of the L1014F and L1014S mutations. BMC Res. Notes 2011, 4, 463. [Google Scholar] [CrossRef]
- Mandeng, S.E.; Awono-Ambene, H.P.; Bigoga, J.D.; Ekoko, W.E.; Binyang, J.; Piameu, M.; Mbakop, L.R.; Fesuh, B.N.; Mvondo, N.; Tabue, R.; et al. Spatial and temporal development of deltamethrin resistance in malaria vectors of the Anopheles gambiae complex from North Cameroon. PLoS ONE 2019, 14, e0212024. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Fossog, B.; Ndo, C.; Djantio, B.; Togouet, S.; Awono-Ambene, P. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaounde (Cameroon): Influence of urban agriculture and pollution. Malar. J. 2011, 10, 154. [Google Scholar] [CrossRef]
- Etang, J.; Vicente, J.; Nwane, P.; Chouaibou, M.; Morlais, I.; Do Rosario, V. Polymorphism of intron-1 in the voltage-gated sodium channel gene of Anopheles gambiae ss populations from Cameroon with emphasis on insecticide knockdown resistance mutations. Mol. Ecol. 2009, 18, 3076–3086. [Google Scholar] [CrossRef]
- Etang, J.; Manga, L.; Toto, J.; Guillet, P.; Fondjo, E.; Chandre, F. Spectrum of metabolic-based resistance to DDT and pyrethroids in Anopheles gambiae s.l populations from Cameroon. J. Vect. Ecol. 2007, 32, 123–133. [Google Scholar] [CrossRef]
- Djogbenou, L.; Weill, M.; Hougard, J.M.; Raymond, M.; Akogbeto, M.; Chandre, F. Characterization of insensitive acetylcholinesterase (ace-1R) in Anopheles gambiae (Diptera: Culicidae): Resistance levels and dominance. J. Med. Entomol. 2007, 44, 805–810. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Poupardin, R.; Tene, B.F.; Kopya, E.; Costantini, C.; Awono-Ambene, P. Investigation of mechanisms of bendiocarb resistance in Anopheles gambiae populations from the city of Yaoundé, Cameroon. Malar. J. 2016, 15, 424. [Google Scholar] [CrossRef]
- Jones, C.; Liyanapathirana, M.; Agossa, F.; Weetman, D.; Ranson, H.; Donnelly, M.; Wilding, C. Footprints of positive selection associated with a mutation (N1575Y) in the voltage-gated sodium channel of Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2012, 109, 6614–6619. [Google Scholar] [CrossRef]
- Antonio-Nkondjio, C.; Tene Fossog, B.; Kopya, E.; Poumachu, Y.; Menze Djantio, B.; Ndo, C. Rapid evolution of pyrethroid resistance prevalence in Anopheles gambiae populations from the cities of Douala and Yaounde (Cameroon). Malar. J. 2015, 14, 155. [Google Scholar] [CrossRef]
- Tene Fossog, B.; Poupardin, R.; Costantini, C.; Awono-Ambene, H.; Wondji, C.; Ranson, H. Resistance to DDT in an urban setting: Common mechanisms implicated in both M and S forms of Anopheles gambiae in the city of Yaoundé Cameroon. PLoS ONE 2013, 8, e61408. [Google Scholar] [CrossRef]
- Muller, P.; Chouaibou, M.; Pignatelli, P.; Etang, J.; Walker, E.; Donnelly, M. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in northern Cameroon. Mol. Ecol. 2007, 17, 1145–1155. [Google Scholar] [CrossRef]
- Balabanidou, V.; Kampouraki, A.; MacLean, M.; Blomquist, G.J.; Tittiger, C.; Juárez, M.P.; Mijailovsky, S.J.; Chalepakis, G.; Anthousi, A.; Lynd, A.; et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 2016, 113, 9268–9273. [Google Scholar] [CrossRef]
- WHO. Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes; WHO: Geneva, Switzerland, 2013. [Google Scholar] [CrossRef]
- Bass, C.; Nikou, D.; Vontas, J.; Donnelly, M.J.; Williamson, M.S.; Field, L.M. The Vector Population Monitoring Tool (VPMT): High-Throughput DNA-Based Diagnostics for the Monitoring of Mosquito Vector Populations. Malar. Res. Treat. 2010, 2010, 190434. [Google Scholar] [CrossRef]
- Santolamazza, F.; Mancini, E.; Simard, F.; Qi, Y.; Tu, Z. Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar. J. 2008, 7, 163. [Google Scholar] [CrossRef]
- Mavridis, K.; Wipf, N.; Müller, P.; Traoré, M.M.; Muller, G.; Vontas, J. Detection and Monitoring of Insecticide Resistance Mutations in Anopheles gambiae: Individual vs Pooled Specimens. Genes 2018, 9, 479. [Google Scholar] [CrossRef]
- Muller, P.; Warr, E.; Stevenson, B.J.; Pignatelli, P.M.; Morgan, J.C.; Steven, A.; Yawson, A.E.; Mitchell, S.N.; Ranson, H.; Hemingway, J.; et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genet. 2008, 4, e1000286. [Google Scholar] [CrossRef]
- Mitchell, S.N.; Stevenson, B.J.; Muller, P.; Wilding, C.S.; Egyir-Yawson, A.; Field, S.G.; Hemingway, J.; Paine, M.J.; Ranson, H.; Donnelly, M.J. Identification and validation of a gene causing cross-resistance between insecticide classes in Anopheles gambiae from Ghana. Proc. Natl. Acad. Sci. USA 2012, 109, 6147–6152. [Google Scholar] [CrossRef]
- Vontas, J.; Grigoraki, L.; Morgan, J.; Tsakireli, D.; Fuseini, G.; Segura, L.; Niemczura de Carvalho, J.; Nguema, R.; Weetman, D.; Slotman, M.A.; et al. Rapid selection of a pyrethroid metabolic enzyme CYP9K1 by operational malaria control activities. Proc. Natl. Acad. Sci. USA 2018, 115, 4619–4624. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.S.; Riveron, J.M.; Stott, R.; Irving, H.; Wondji, C.S. The cytochrome P450 CYP6P4 is responsible for the high pyrethroid resistance in knockdown resistance-free Anopheles arabiensis. Insect. Biochem. Mol. Biol. 2016, 68, 23–32. [Google Scholar] [CrossRef]
- Chiu, T.L.; Wen, Z.; Rupasinghe, S.G.; Schuler, M.A. Comparative molecular modeling of Anopheles gambiae CYP6Z1, a mosquito P450 capable of metabolizing DDT. Proc. Natl. Acad. Sci. USA 2008, 105, 8855–8860. [Google Scholar] [CrossRef]
- Ranson, H.; Jensen, B.; Wang, X.; Prapanthadara, L.; Hemingway, J.; Collins, F.H. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect. Mol. Biol. 2000, 9, 499–507. [Google Scholar] [CrossRef]
- Nardini, L.; Hunt, R.H.; Dahan-Moss, Y.L.; Christie, N.; Christian, R.N.; Coetzee, M.; Koekemoer, L.L. Malaria vectors in the Democratic Republic of the Congo: The mechanisms that confer insecticide resistance in Anopheles gambiae and Anopheles funestus. Malar. J. 2017, 16, 448. [Google Scholar] [CrossRef]
- Mavridis, K.; Wipf, N.; Medves, S.; Erquiaga, I.; Müller, P.; Vontas, J. Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector Anopheles gambiae. Parasites Vectors 2019, 12, 9. [Google Scholar] [CrossRef]
- Simma, E.A.; Dermauw, W.; Balabanidou, V.; Snoeck, S.; Bryon, A.; Clark, R.M.; Yewhalaw, D.; Vontas, J.; Duchateau, L.; Van Leeuwen, T. Genome-wide gene expression profiling reveals that cuticle alterations and P450 detoxification are associated with deltamethrin and DDT resistance in Anopheles arabiensis populations from Ethiopia. Pest Manag. Sci. 2019, 75, 1808–1818. [Google Scholar] [CrossRef]
- Tene Fossog, B.; Ayala, D.; Acevedo, P.; Kengne, P.; Ngomo Abeso Mebuy, I.; Makanga, B. Habitat segregation and ecological character displacement in cryptic African malaria mosquitoes. Evol. Appl. 2015, 8, 326–345. [Google Scholar] [CrossRef] [Green Version]
- Tene Fossog, B.; Antonio-Nkondjio, C.; Kengne, P.; Njiokou, F.; Besansky, N.; Costantini, C. Physiological correlates of ecological divergence along an urbanization gradient: Differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae. BMC Ecol. 2013, 13, 1. [Google Scholar] [CrossRef]
- Djogbénou, L.S.; Assogba, B.; Essandoh, J.; Constant, E.A.V.; Makoutodé, M.; Akogbéto, M.; Donnelly, M.J.; Weetman, D. Estimation of allele-specific Ace-1 duplication in insecticide-resistant Anopheles mosquitoes from West Africa. Malar. J. 2015, 14, 507. [Google Scholar] [CrossRef]
- Djogbenou, L.; Chandre, F.; Berthomieu, A.; Dabire, R.; Koffi, A.; Alout, H. Evidence of introgression of the ace-1(R) mutation and of the ace-1 duplication in West African Anopheles gambiae s.s. PLoS ONE 2008, 3, e2172. [Google Scholar] [CrossRef]
- Djogbénou, L.; Akogbéto, M.; Chandre, F. Presence of insensitive acetylcholinesterase in wild populations of Culex pipiens quinquefasciatus from Benin. Acta Trop. 2008, 107, 272–274. [Google Scholar] [CrossRef]
- Badolo, A.; Bando, H.; Traoré, A.; Ko-Ketsu, M.; Guelbeogo, W.M.; Kanuka, H.; Ranson, H.; Sagnon, N.F.; Fukumoto, S. Detection of G119S ace-1 (R) mutation in field-collected Anopheles gambiae mosquitoes using allele-specific loop-mediated isothermal amplification (AS-LAMP) method. Malar. J. 2015, 14, 477. [Google Scholar] [CrossRef]
- Dabiré, R.K.; Namountougou, M.; Diabaté, A.; Soma, D.D.; Bado, J.; Toé, H.K. Distribution and frequency of kdr mutations within Anopheles gambiae s.l. populations and first report of the Ace1 G119S mutation in Anopheles arabiensis from Burkina Faso (West Africa). PLoS ONE 2014, 9, e101484. [Google Scholar] [CrossRef]
- Essandoh, J.; Yawson, A.; Weetman, D. Acetylcholinesterase (Ace-1) target site mutation 119S is strongly diagnostic of carbamate and organophosphate resistance in Anopheles gambiae s.s. and Anopheles coluzzii across southern Ghana. Malar. J. 2013, 12, 404. [Google Scholar] [CrossRef]
- Alou, L.; Koffi, A.; Adja, M.; Tia, E.; Kouassi, P.; Kone, M.; Chandre, F. Distribution of ace-1(R) and resistance to carbamates and organophosphates in Anopheles gambiae s.s. populations from Cote d’Ivoire. Malar. J. 2010, 9, 167. [Google Scholar] [CrossRef]
- Salako, A.S.; Ahogni, I.; Aïkpon, R.; Sidick, A.; Dagnon, F.; Sovi, A.; Sominahouin, A.A.; Agossa, F.; Iyikirenga, L.; Akogbeto, M.C. Insecticide resistance status, frequency of L1014F Kdr and G119S Ace-1 mutations, and expression of detoxification enzymes in Anopheles gambiae (s.l.) in two regions of northern Benin in preparation for indoor residual spraying. Parasites Vectors 2018, 11, 618. [Google Scholar] [CrossRef]
- Hemingway, J.; Vontas, J.; Poupardin, R.; Raman, J.; Lines, J.; Schwabe, C. Country-level operational implementation of the global plan for insecticide resistance management. Proc. Natl. Acad. Sci. USA 2013, 110, 9397–9402. [Google Scholar] [CrossRef]
- Weetman, D.; Mitchell, S.; Wilding, C.; Birks, D.; Yawson, A.; Essandoh, J. Contemporary evolution of resistance at the major insecticide target site Ace-1 by mutation and copy number variation in the malaria mosquito Anopheles gambiae. Mol. Ecol. 2015, 24, 2656–2672. [Google Scholar] [CrossRef]
- Assogba, B.S.; Djogbénou, L.S.; Saizonou, J.; Milesi, P.; Djossou, L.; Djegbe, I. Phenotypic effects of concomitant insensitive acetylcholinesterase (ace-1(R)) and knockdown resistance (kdr (R)) in Anopheles gambiae: A hindrance for insecticide resistance management for malaria vector control. Parasit Vectors 2014, 7, 548. [Google Scholar]
- Edi, C.V.; Djogbenou, L.; Jenkins, A.M.; Regna, K.; Muskavitch, M.A.; Poupardin, R. CYP6 P450 enzymes and ACE-1 duplication produce extreme and multiple insecticide resistance in the malaria mosquito Anopheles gambiae. PLoS Genet. 2014, 10, e1004236. [Google Scholar] [CrossRef]
- Alout, H.; Djogbenou, L.; Berticat, C.; Chandre, F.; Weill, M. Comparison of Anopheles gambiae and Culex pipiens acetycholinesterase 1 biochemical properties. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 150, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Chouaïbou, M.S.; Fodjo, B.K.; Fokou, G.; Allassane, O.F.; Koudou, B.G.; David, J.-P.; Antonio-Nkondjio, C.; Ranson, H.; Bonfoh, B. Influence of the agrochemicals used for rice and vegetable cultivation on insecticide resistance in malaria vectors in southern Côte d’Ivoire. Malar. J. 2016, 15, 426. [Google Scholar] [CrossRef]
- Edi, C.V.; Koudou, B.; Jones, C.; Weetman, D.; Ranson, H. Multiple insecticide resistance in Anopheles gambiae mosquitoes, southern Côte d’Ivoire. Emerg. Infect. Dis. 2012, 18, 1508–1510. [Google Scholar] [CrossRef]
Pyrethroid | Carbamate | ||||
---|---|---|---|---|---|
Site Characteristics | Populations | N | Deltamethrin | Permethrin | Bendiocarb |
Susceptible strain | Kisumu lab strain | 100 | 100 | 100 | 100 |
Ngoussolab strain | 100 | 100 | 98 | 100 | |
Urban site without agricultural activities | Bastos | 100 | 5.00 | 3.00 | 86.00 |
Urban site with agricultural activities | Nkolondom | 100 | 8.00 | 66.00 | |
Forest | Nyabessan | 100 | 4.00 | 4.00 | 74.00 |
Sangmelima | 100 | 5.00 | 6.00 | 82.00 | |
Mbandjock | 100 | 11.2 | 6.0 | 66.00 |
Populations/Strains | Species | % |
---|---|---|
Kisumu laboratory strain | An. gambiae | 100% |
Ngousso laboratory strain | An. coluzzii | 100% |
Bastos (Yaoundé) | An. coluzzii | 100% |
Nkolondom (Yaoundé) | An. gambiae | 100% |
Sangmelima | An. gambiae | 59.98% |
An. coluzzii | 40.02% | |
Mbandjock | An. gambiae | 65.36% |
An. coluzzii | 34.66% | |
Nyabessan | An. gambiae | 90.56% |
An. coluzzii | 9.44% |
Populations | Sample Size (Alleles) | Resistant Mutation Allelic Frequencies (Mean ± SE) | |||
---|---|---|---|---|---|
Pyrethroids | Carbamates/Organophosphates | ||||
% kdr L1014F | % kdr L1014S | % kdr N1575Y | % iAChe G119S | ||
Kisumu lab strain | 80 | 0 | 0 | 0 | 0 |
Ngusso lab strain | 80 | 0 | 0 | 0 | 0 |
Bastos | 80 | 81.33 ± 5.1 | 0 | 0 | 0 |
Nyabessan | 80 | 75.32 ± 1.6 | 23.05 ± 2.07 | 5.28 ± 3.1 | 14.22 ± 8.85 |
Sangmelima | 80 | 90.06 ± 4.62 | 1.38 ± 1.38 | 0 | 20.25 ± 7.06 |
Nkolodom | 80 | 95.82 ± 1.53 | 0 | 9.46 ± 3.2 | 21.78 ± 12.8 |
Mbandjock | 80 | 89.06 ± 4.05 | 1.71 ± 1.71 | 12.87 ± 3.2 | 35.5 ± 4.3 |
Population | Fold Changes (95% CI) | ||||||||
---|---|---|---|---|---|---|---|---|---|
CYP6P3 | CYP6M2 | CYP9K1 | CYP6P4 | CYP6Z1 | GSTE2 | CYP6P1 | CYP4G16 | ||
Bastos | vs KIS | 4.21 | 4.39 * | 7.30 * | 3.74 * | 3.36 * | 2.46 | 0.85 | 1.71 |
(2.63–6.96) | (2.93–6.10) | (4.03–19.5) | (2.56–5.09) | (2.36–4.93) | (1.99–3.12) | (0.71–0.97) | (1.20–3.76) | ||
vsNG | 1.18 | 2.70 * | 2.68 * | 2.95 * | 2.42 * | 0.71 | 0.45 | 1.18 | |
(0.80–1.78) | (1.73–3.75) | (1.76–5.71) | (1.93–4.17) | (1.64–3.42) | (0.56–0.87) | (0.36–0.56) | (0.92–1.55) | ||
Nyabessan | vs KIS | 0.94 | 1.07 | 2.55 | 0.49 | 2.01 | 0.74 | 0.90 | 2.04 |
(0.34–1.97) | (0.31–2.33) | (1.15–8.50) | (0.31–0.69) | (1.28–3.33) | (0.47–1.21) | (0.75–1.15) | (1.07–5.33) | ||
vsNG | 0.27 | 0.66 | 0.94 | 0.39 | 1.45 | 0.21 | 0.48 | 1.41 | |
(0.10–0.51) | (0.20–1.44) | (0.49–2.49) | (0.24–0.57) | (0.89–2.31) | (0.13–0.34) | (0.38–0.64) | (0.86–2.27) | ||
Sangmelima | vs KIS | 0.63 | 1.64 | 4.15 * | 1.26 | 1.79 | 1.37 | 1.24 | 3.11 * |
(0.24–1.24) | (0.85–4.40) | (2.22–10.7) | (0.61–3.03) | (1.14–2.92) | (1.07–1.80) | (1.01–1.42) | (2.31–6.49) | ||
vsNG | 0.18 | 1.01 | 1.52 * | 0.99 | 1.29 | 0.40 | 0.66 | 2.15 * | |
(0.07–0.32) | (0.50–2.71) | (1.03–2.26) | (0.46–2.48) | (0.80–2.03) | (0.30–0.50) | (0.51–0.82) | (1.76–2.66) | ||
Nkolodom | vs KIS | 1.71 | 5.27 * | 8.74 * | 3.17 * | 2.79 | 1.56 | 0.835 | 2.65 * |
(0.81–3.68) | (1.72–14.9) | (3.07–28.4) | (1.18–5.93) | (0.99–6.01) | (1.34–2.06) | (0.71–1.10) | (1.70–6.83) | ||
vs NG | 0.48 | 3.24 * | 3.21 * | 2.50 * | 2.01 | 0.451 | 0.411 | 1.83 * | |
(0.25–0.96) | (1.08–9.18) | (1.29–8.33) | (1.09–5.76) | (0.735–4.17) | (0.38–0.60) | (0.36–0.62) | (1.30–2.61) | ||
Mbandjock | vs KIS | 1.51 | 3.31 * | 6.26 * | 1.89 | 2.13 * | 0.98 | 1.01 | 1.85 |
(0.73–2.75) | (2.07–4.59) | (3.25–16.1) | (1.11–2.78) | (1.39–3.30) | (0.69–1.26) | (0.77–1.16) | (1.301–4.08) | ||
vs NG | 0.42 | 2.04 * | 2.30 * | 1.49 | 1.53 * | 0.29 | 0.53 | 1.28 | |
(0.22–0.71) | (1.22–2.92) | (1.37–4.71) | (0.84–2.32) | (1.01–2.32) | (0.19–0.35) | (0.39–0.67) | (0.99–1.67) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bamou, R.; Sonhafouo-Chiana, N.; Mavridis, K.; Tchuinkam, T.; Wondji, C.S.; Vontas, J.; Antonio-Nkondjio, C. Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes 2019, 10, 741. https://doi.org/10.3390/genes10100741
Bamou R, Sonhafouo-Chiana N, Mavridis K, Tchuinkam T, Wondji CS, Vontas J, Antonio-Nkondjio C. Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes. 2019; 10(10):741. https://doi.org/10.3390/genes10100741
Chicago/Turabian StyleBamou, Roland, Nadège Sonhafouo-Chiana, Konstantinos Mavridis, Timoléon Tchuinkam, Charles S. Wondji, John Vontas, and Christophe Antonio-Nkondjio. 2019. "Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon" Genes 10, no. 10: 741. https://doi.org/10.3390/genes10100741
APA StyleBamou, R., Sonhafouo-Chiana, N., Mavridis, K., Tchuinkam, T., Wondji, C. S., Vontas, J., & Antonio-Nkondjio, C. (2019). Status of Insecticide Resistance and Its Mechanisms in Anopheles gambiae and Anopheles coluzzii Populations from Forest Settings in South Cameroon. Genes, 10(10), 741. https://doi.org/10.3390/genes10100741