Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses
Abstract
:1. Introduction
2. Preclinical Studies Combining Treatments in Thyroid Cancer Cells
2.1. Targeting MAPK and PI3K Signaling Pathways in Thyroid Cancer Cells
2.1.1. MAPK and PI3K Inhibitors Used as Single Agents
2.1.2. MAPK and PI3K Inhibitors Used in Combination
Combination to MAPK/MEK Inhibitors
Combination to PI3K Inhibitor
Combination of MEK and PI3K Inhibitors
2.2. Targeting Angiogenesis in Thyroid Cancer
2.2.1. VEGF Inhibitor Used as a Single Agent
2.2.2. VEGF Inhibitor Used in Combination
2.3. Chemotherapies in Thyroid Cancer Cells
2.3.1. Chemotherapy Used as Single Agent
2.3.2. Chemotherapy Used in Combination
2.3.3. Chemotherapies and VEGF Inhibitors
3. Clinical Studies Combining Therapies in Thyroid Cancer Cells
3.1. Closed Clinical Studies
3.1.1. Combination with Chemotherapy
3.1.2. Combination with Targeted Therapies
3.2. Ongoing Clinical Studies
4. Targeting Gene Rearrangements in Thyroid Cancer
5. Conclusions
Funding
Conflicts of Interest
References
- Ferlay, J.; Steliarova-Foucher, E.; Lortet-Tieulent, J.; Rosso, S.; Coebergh, J.W.W.; Comber, H.; Forman, D.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. Eur. J. Cancer 2013, 49, 1374–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegriti, G.; Frasca, F.; Regalbuto, C.; Squatrito, S.; Vigneri, R. Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. J. Cancer Epidemiol. 2013, 2013, 965212. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitahara, C.M.; Sosa, J.A. The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 2016, 12, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Peterson, E.; De, P.; Nuttall, R. BMI, Diet and Female Reproductive Factors as Risks for Thyroid Cancer: A Systematic Review. PLoS ONE 2012, 7, e29177. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Maimaiti, Y.; Yu, P.; Xiong, Y.; Zeng, W.; Li, X.; Song, H.; Lu, C.; Xin, Y.; Zhou, J.; et al. Correlation between body mass index and clinicopathological features of papillary thyroid microcarcinoma. Int. J. Clin. Exp. Med. 2015, 8, 16472–16479. [Google Scholar]
- Zhao, Z.G.; Guo, X.G.; Ba, C.X.; Wang, W.; Yang, Y.Y.; Wang, J.; Cao, H.Y. Overweight, obesity and thyroid cancer risk: A meta-analysis of cohort studies. J. Int. Med. Res. 2012, 40, 2041–2050. [Google Scholar] [CrossRef] [Green Version]
- Maso, L.D.; Tavilla, A.; Pacini, F.; Serraino, D.; Van Dijk, B.; Chirlaque, M.; Capocaccia, R.; Larrañaga, N.; Colonna, M.; Agius, D.; et al. Survival of 86,690 patients with thyroid cancer: A population-based study in 29 European countries from EUROCARE-5. Eur. J. Cancer 2017, 77, 140–152. [Google Scholar] [CrossRef]
- Rahbari, R.; Zhang, L.; Kebebew, E. Thyroid cancer gender disparity. Futur. Oncol. 2010, 6, 1771–1779. [Google Scholar] [CrossRef] [Green Version]
- Rajoria, S.; Suriano, R.; Shanmugam, A.; Wilson, Y.L.; Schantz, S.P.; Geliebter, J.; Tiwari, R.K. Metastatic Phenotype Is Regulated by Estrogen in Thyroid Cells. Thyroid. 2010, 20, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas, M.E.; Zafereo, M.; Gunn, G.B.; Ferrarotto, R. Anaplastic Thyroid Carcinoma: Treatment in the Age of Molecular Targeted Therapy. J. Oncol. Pract. 2016, 12, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Zajkowska, K.; Kopczyński, J.; Góźdź, S.; Kowalska, A. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: A problematic entity. Endocr. Connect. 2020, 9, R47–R58. [Google Scholar] [CrossRef] [Green Version]
- Janovitz, T.; Barletta, J.A. Clinically Relevant Prognostic Parameters in Differentiated Thyroid Carcinoma. Endocr. Pathol. 2018, 29, 357–364. [Google Scholar] [CrossRef]
- Donato, S.; Santos, R.; Simoes, H.; Leite, V. Novel therapies against aggressive differentiated thyroid carcinomas. Int. J. Endocr. Oncol. 2018, 5, IJE05. [Google Scholar] [CrossRef] [Green Version]
- Cancer of the Thyroid—Cancer Stat Facts [Internet]. SEER. Available online: https://seer.cancer.gov/statfacts/html/thyro.html (accessed on 2 August 2019).
- Oluic, B.; Paunovic, I.; Loncar, Z.; Djukic, V.; Diklic, A.; Jovanovic, M.; Garabinovic, Z.; Slijepcevic, N.; Rovcanin, B.; Micic, D.; et al. Survival and prognostic factors for survival, cancer specific survival and disease free interval in 239 patients with Hurthle cell carcinoma: A single center experience. BMC Cancer 2017, 17, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Van Nostrand, D.; Cheng, L.; Liu, M.; Chen, L. Radioiodine refractory differentiated thyroid cancer. Crit. Rev. Oncol. 2018, 125, 111–120. [Google Scholar] [CrossRef]
- Fugazzola, L.; Elisei, R.; Fuhrer, D.; Jarzab, B.; Leboulleux, S.; Newbold, K.; Smit, J. 2019 European Thyroid Association Guidelines for the Treatment and Follow-Up of Advanced Radioiodine-Refractory Thyroid Cancer. Eur. Thyroid. J. 2019, 8, 227–245. [Google Scholar] [CrossRef]
- Schlumberger, M.; Chougnet, C.; Baudin, E.; Leboulleux, S. pour le réseau Tuthyref. [Refractory thyroid cancers]. Presse Med. Paris Fr. 1983. Déc. 2011, 40, 1189–1198. [Google Scholar]
- De La Fouchardiere, C. Targeted treatments of radio-iodine refractory differentiated thyroid cancer. Ann. d’Endocrinologie 2015, 76, 1S34–1S39. [Google Scholar] [CrossRef]
- Fu, H.; Cheng, L.; Sa, R.; Jin, Y.; Chen, L. Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbouring BRAF V600E by synergistically decreasing global trimethylation of H3K27. J. Cell. Mol. Med. 2020. [Google Scholar] [CrossRef] [Green Version]
- Pacini, F.; Castagna, M.G.; Cipri, C.; Schlumberger, M. Medullary thyroid carcinoma. Clin. Oncol. R. Coll. Radiol G B. 2010, 22, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Leboulleux, S.; Baudin, E.; Travagli, J.-P.; Schlumberger, M. Medullary thyroid carcinoma. Clin. Endocrinol. (Oxf). 2004, 61, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Hadoux, J.; Pacini, F.; Tuttle, R.M.; Schlumberger, M. Management of advanced medullary thyroid cancer. Lancet Diabetes Endocrinol. 2016, 4, 64–71. [Google Scholar] [CrossRef]
- Molinaro, E.; Romei, C.; Biagini, A.; Sabini, E.; Agate, L.; Mazzeo, S.; Materazzi, G.; Sellari-Franceschini, S.; Ribechini, A.; Torregrossa, L.; et al. Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat. Rev. Endocrinol. 2017, 13, 644–660. [Google Scholar] [CrossRef] [PubMed]
- Wendler, J.; Kroiss, M.; Gast, K.; Kreissl, M.C.; Allelein, S.; Lichtenauer, U.; Blaser, R.; Spitzweg, C.; Fassnacht, M.; Schott, M.; et al. Clinical presentation, treatment and outcome of anaplastic thyroid carcinoma: Results of a multicenter study in Germany. Eur. J. Endocrinol. 2016, 175, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Siironen, P.; Hagström, J.; Mäenpää, H.; Louhimo, J.; Heikkilä, A.; Heiskanen, I.; Arola, J.; Haglund, C. Anaplastic and Poorly Differentiated Thyroid Carcinoma: Therapeutic Strategies and Treatment Outcome of 52 Consecutive Patients. Oncology 2010, 79, 400–408. [Google Scholar] [CrossRef]
- Sugitani, I.; Miyauchi, A.; Sugino, K.; Okamoto, T.; Yoshida, A.; Suzuki, S. Prognostic Factors and Treatment Outcomes for Anaplastic Thyroid Carcinoma: ATC Research Consortium of Japan Cohort Study of 677 Patients. World J. Surg. 2012, 36, 1247–1254. [Google Scholar] [CrossRef]
- Ain, K. Anaplastic Thyroid Carcinoma: Behavior, Biology, and Therapeutic Approaches. Thyroid. Off. J. Am. Thyroid. Assoc. 1998, 8, 715–726. [Google Scholar] [CrossRef]
- Smallridge, R.C.; Ain, K.B.; Asa, S.L.; Bible, K.C.; Brierley, J.D.; Burman, K.; Kebebew, E.; Lee, N.Y.; Nikiforov, Y.E.; Rosenthal, M.S.; et al. American Thyroid Association Guidelines for Management of Patients with Anaplastic Thyroid Cancer. Thyroid. Off. J. Am. Thyroid. Assoc. 2012, 22, 1104–1139. [Google Scholar] [CrossRef]
- Neff, R.L.; Farrar, W.B.; Kloos, R.T.; Burman, K.D. Anaplastic Thyroid Cancer. Endocrinol. Metab. Clin. North Am. 2008, 37, 525–538. [Google Scholar] [CrossRef]
- Perri, F.; Di Lorenzo, G.; Scarpati, G.D.V.; Buonerba, C. Anaplastic thyroid carcinoma: A comprehensive review of current and future therapeutic options. World J. Clin. Oncol. 2011, 2, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Besic, N.; Hocevar, M.; Zgajnar, J.; Pogačnik, A.; Grazio-Frkovic, S.; Auersperg, M. Prognostic factors in anaplastic carcinoma of the thyroid—A multivariate survival analysis of 188 patients. Langenbeck’s Arch. Surg. 2004, 390, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Role of Surgery in the Management of Anaplastic Thyroid Carcinoma: Korean Nationwide Multicenter Study of 329 Patients with Anaplastic Thyroid carc…—PubMed-NCBI [Internet]. Available online: https://www.ncbi.nlm.nih.gov/pubmed (accessed on 6 October 2019).
- Glaser, S.M.; Mandish, S.F.; Gill, B.S.; Balasubramani, G.K.; Clump, D.A.; Beriwal, S. Anaplastic thyroid cancer: Prognostic factors, patterns of care, and overall survival. Head Neck 2016, 38, E2083–E2090. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Agarwal, A.; Pradhan, R.; George, N.; Kumari, N.; Sabaretnam, M.; Chand, G.; Mishra, A.; Agarwal, G.; Mishra, S.K. Genetic Alterations in Anaplastic Thyroid Carcinoma. Indian J. Endocrinol. Metab. 2019, 23, 480–485. [Google Scholar]
- Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat. Rev. Cancer 2013, 13, 184–199. [Google Scholar] [CrossRef]
- Tirrò, E.; Martorana, F.; Romano, C.; Vitale, S.; Motta, G.; Di Gregorio, S.; Massimino, M.; Pennisi, M.S.; Stella, S.; Puma, A.; et al. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes 2019, 10, 709. [Google Scholar] [CrossRef] [Green Version]
- Naoum, G.E.; Morkos, M.; Kim, B.; Arafat, W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol. Cancer 2018, 17, 51. [Google Scholar] [CrossRef]
- Fiskus, W.; Mitsiades, N. B-Raf Inhibition in the Clinic: Present and Future. Annu. Rev. Med. 2016, 67, 29–43. [Google Scholar] [CrossRef]
- Ömür, Ö.; Baran, Y. An update on molecular biology of thyroid cancers. Crit. Rev. Oncol. 2014, 90, 233–252. [Google Scholar] [CrossRef] [Green Version]
- Notarangelo, T.; Sisinni, L.; Condelli, V.; Landriscina, M. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell Int. 2017, 17, 86. [Google Scholar] [CrossRef]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, S.M.; La Motta, C.; Elia, G.; Ragusa, F.; Ruffilli, I.; Quattrini, L.; Paparo, S.R.; Piaggi, S.; Patrizio, A.; Ulisse, S.; et al. Antineoplastic Effect of Lenvatinib and Vandetanib in Primary Anaplastic Thyroid Cancer Cells Obtained from Biopsy or Fine Needle Aspiration. Front. Endocrinol. 2018, 9, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.H.; Park, Y.J.; Lim, J.A.; Ahn, H.Y.; Lee, E.-K.; Lee, E.-K.; Kim, K.W.; Hahn, S.K.; Youn, Y.-K.; Kim, K.H.; et al. The association of the BRAFV600E mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer. Cancer 2011, 118, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, S.; Borkhuu, O.; Bao, W.; Yang, Y.-T. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications. J. Clin. Med. Res. 2016, 8, 284–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, M. Identifying genetic alterations in poorly differentiated thyroid cancer: A rewarding pursuit. J. Clin. Endocrinol. Metab. 2009, 94, 4661–4664. [Google Scholar] [CrossRef] [Green Version]
- ElMokh, O.; Ruffieux-Daidié, D.; Roelli, M.A.; Stooss, A.; Phillips, W.A.; Gertsch, J. Combined MEK and Pi3′-kinase inhibition reveals synergy in targeting thyroid cancer in vitro and in vivo. Oncotarget 2017, 8, 24604–24620. [Google Scholar] [CrossRef] [Green Version]
- Valerio, L.; Pieruzzi, L.; Giani, C.; Agate, L.; Bottici, V.; Lorusso, L.; Cappagli, V.; Puleo, L.; Matrone, A.; Viola, D.; et al. Targeted Therapy in Thyroid Cancer: State of the Art. Clin. Oncol. 2017, 29, 316–324. [Google Scholar] [CrossRef]
- Ghosh, C.; Kumar, S.; Kushchayeva, Y.; Gaskins, K.; Boufraqech, M.; Wei, D.; Gara, S.K.; Zhang, L.; Zhang, Y.-Q.; Shen, M.; et al. A Combinatorial Strategy for Targeting BRAFV600E-Mutant Cancers with BRAFV600E Inhibitor (PLX4720) and Tyrosine Kinase Inhibitor (Ponatinib). Clin. Cancer Res. 2020. [Google Scholar] [CrossRef] [Green Version]
- Solit, D.B.; Rosen, N. Resistance to BRAF Inhibition in Melanomas. N. Engl. J. Med. 2011, 364, 772–774. [Google Scholar] [CrossRef]
- Antonello, Z.; Hsu, N.; Bhasin, M.; Roti, G.; Joshi, M.; Van Hummelen, P.; Ye, E.; Lo, A.; Karumanchi, S.A.; Bryke, C.R.; et al. Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E. Oncotarget 2017, 8, 84743–84760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montero-Conde, C.; Ruiz-Llorente, S.; Dominguez, J.M.; Knauf, J.; Viale, A.; Sherman, E.J.; Ryder, M.; Ghossein, R.A.; Rosen, N.; Fagin, J.A. Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discov. 2013, 3, 520–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Lyu, H.; Huang, J.; Liu, B. Targeting of erbB3 receptor to overcome resistance in cancer treatment. Mol. Cancer 2014, 13, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boussemart, L.; Malka-Mahieu, H.; Girault, I.; Allard, D.; Hemmingsson, O.; Tomasic, G.; Thomas, M.; Basmadjian, C.; Ribeiro, N.; Thuaud, F.; et al. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 2014, 513, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Tsumagari, K.; Elmageed, Z.Y.A.; Sholl, A.B.; A Green, E.; Sobti, S.; Khan, A.R.; Kandil, A.; Murad, F.; Friedlander, P.; Boulares, A.H.; et al. Bortezomib sensitizes thyroid cancer to BRAF inhibitor in vitro and in vivo. Endocrine-Relat. Cancer 2018, 25, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, L.; Jin, Y.; Liu, M.; Ruan, M.; Chen, L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget 2017, 8, 19843–19854. [Google Scholar]
- Fu, H.; Cheng, L.; Jin, Y.; Cheng, L.; Liu, M.; Chen, L. MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAFV600E: An In Vitro Study. Mol. Ther. Oncolytics 2019, 12, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Gunda, V.; Sarosiek, K.A.; Brauner, E.; Kim, Y.S.; Amin, S.; Zhou, Z.; Letai, A.; Parangi, S. Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced apoptosis. Cancer Lett. 2017, 395, 1–10. [Google Scholar] [CrossRef]
- Borre, P.V.; Gunda, V.; McFadden, D.G.; Sadow, P.M.; Varmeh, S.; Bernasconi, M.; Parangi, S. Combined BRAFV600E- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 2014, 5, 3996–4010. [Google Scholar] [CrossRef] [Green Version]
- Beadnell, T.C.; Nassar, K.W.; Rose, M.M.; Clark, E.G.; Danysh, B.P.; Hofmann, M.; Pozdeyev, N.; Schweppe, R. Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis 2018, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Akt inhibition enhances the cytotoxic effect of apigenin in combination with PLX4032 in anaplastic thyroid carcinoma cells harboring BRAFV600E. J. Endocrinol. Investig. 2013, 36, 1099–1104. [Google Scholar]
- Kurata, K.; Onoda, N.; Noda, S.; Kashiwagi, S.; Asano, Y.; Hirakawa, K.; Ohira, M. Growth arrest by activated BRAF and MEK inhibition in human anaplastic thyroid cancer cells. Int. J. Oncol. 2016, 49, 2303–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Holmsen, E.; Park, S.; Willingham, M.C.; Qi, J.; Cheng, S.-Y. Synergistic effects of BET and MEK inhibitors promote regression of anaplastic thyroid tumors. Oncotarget 2018, 9, 35408–35421. [Google Scholar] [CrossRef] [Green Version]
- Bin Kim, J.; Yang, E.Y.; Woo, J.; Kwon, H.; Lim, W.; Moon, B.-I. Sodium Selenite Enhanced the Anti-proliferative Effect of MEK-ERK Inhibitor in Thyroid Cancer Cells. Vivo 2019, 34, 185–190. [Google Scholar]
- Liu, D.; Xing, J.; Trink, B.; Xing, M. BRAF mutation-selective inhibition of thyroid cancer cells by the novel MEK inhibitor RDEA119 and genetic-potentiated synergism with the mTOR inhibitor temsirolimus. Int. J. Cancer 2010, 127, 2965–2973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauner, E.; Gunda, V.; Borre, P.V.; Zurakowski, D.; Kim, Y.S.; Dennett, K.V.; Amin, S.; Freeman, G.J.; Parangi, S. Combining BRAF inhibitor and anti PD-L1 antibody dramatically improves tumor regression and anti tumor immunity in an immunocompetent murine model of anaplastic thyroid cancer. Oncotarget 2016, 7, 17194–17211. [Google Scholar] [CrossRef]
- Menachem, A.; Bodner, O.; Pastor, J.; Raz, A.; Kloog, Y. Inhibition of malignant thyroid carcinoma cell proliferation by Ras and galectin-3 inhibitors. Cell Death Discov. 2015, 1, 15047. [Google Scholar] [CrossRef] [Green Version]
- Arcolia, V.; Journe, F.; Renaud, F.; Leteurtre, E.; Gabius, H.-J.; Remmelink, M.; Saussez, S. Combination of galectin-3, CK19 and HBME-1 immunostaining improves the diagnosis of thyroid cancer. Oncol. Lett. 2017, 14, 4183–4189. [Google Scholar] [CrossRef] [Green Version]
- Jin, N.; Jiang, T.; Rosen, D.M.; Nelkin, B.D.; Ball, D.W. Synergistic action of a RAF inhibitor and a dual PI3K/mTOR inhibitor in thyroid cancer. Clin. Cancer Res. 2011, 17, 6482–6489. [Google Scholar] [CrossRef] [Green Version]
- Bertazza, L.; Barollo, S.; Radu, C.M.; Cavedon, E.; Simioni, P.; Faggian, D.; Plebani, M.; Pelizzo, M.R.; Rubin, B.; Boscaro, M.; et al. Synergistic antitumour activity of RAF265 and ZSTK474 on human TT medullary thyroid cancer cells. J. Cell. Mol. Med. 2015, 19, 2244–2252. [Google Scholar] [CrossRef] [Green Version]
- Krayem, M.; Journe, F.; Wiedig, M.; Morandini, R.; Najem, A.; Salès, F.; Van Kempen, L.C.; Sibille, C.; Awada, A.; Marine, J.-C.; et al. p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib. Eur. J. Cancer 2016, 55, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Najem, A.; Krayem, M.; Salès, F.; Hussein, N.; Badran, B.; Robert, C.; Awada, A.; Journe, F.; Ghanem, G. P53 and MITF/Bcl-2 identified as key pathways in the acquired resistance of NRAS-mutant melanoma to MEK inhibition. Eur. J. Cancer 2017, 83, 154–165. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, X.; Li, Y.; Zou, K.; Zhang, Z.; Xu, X. Synergistic Antitumor Effect of BKM120 with Prima-1Met Via Inhibiting PI3K/AKT/mTOR and CPSF4/hTERT Signaling and Reactivating Mutant P53. Cell Physiol. Biochem. Int. J. Exp. Cell Physiol. Biochem. Pharmacol. 2018, 45, 1772–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Targeting TGF-β1 and AKT Signal on Growth and Metastasis of Anaplastic Thyroid Cancer Cell in Vivo [Internet]. European Review. 2016. Available online: https://www.europeanreview.org/article/11013 (accessed on 7 October 2019).
- Guo, H.-Y.; Che, H.-Y.; Si, X.-W.; You, Q.-Y.; Lou, W.-Y. Additive effect by combination of Akt inhibitor, MK-2206, and PDGFR inhibitor, tyrphostin AG 1296, in suppressing anaplastic thyroid carcinoma cell viability and motility. Oncotargets Ther. 2014, 7, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Byeon, H.K.; Na, H.J.; Yang, Y.J.; Ko, S.; Yoon, S.O.; Ku, M.; Yang, J.; Kim, J.W.; Ban, M.J.; Kim, J.H.; et al. Acquired resistance to BRAF inhibition induces epithelial-to-mesenchymal transition in BRAF (V600E) mutant thyroid cancer by c-Met-mediated AKT activation. Oncotarget 2016, 8, 596–609. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.; Di Cristofano, F.; Ranieri, M.; De Martino, D.; Di Cristofano, A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocrine-Relat. Cancer 2019, 26, 425–436. [Google Scholar] [CrossRef]
- Liu, R.; Liu, D.; Xing, M. The Akt inhibitor MK2206 synergizes, but perifosine antagonizes, the BRAF(V600E) inhibitor PLX4032 and the MEK1/2 inhibitor AZD6244 in the inhibition of thyroid cancer cells. J. Clin. Endocrinol. Metab. 2012, 97, E173–E182. [Google Scholar] [CrossRef] [Green Version]
- Cabanillas, M.E.; Habra, M.A. Lenvatinib: Role in thyroid cancer and other solid tumors. Cancer Treat. Rev. 2016, 42, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Abdulghani, J.; Gokare, P.; Gallant, J.-N.; Dicker, D.T.; Whitcomb, T.; Cooper, T.K.; Liao, J.; Derr, J.; Liu, J.; Goldenberg, D.; et al. Sorafenib and quinacrine target anti-apoptotic protein Mcl-1: A poor prognostic marker in anaplastic thyroid cancer (ATC). Clin. Cancer Res. 2016, 22, 6192–6203. [Google Scholar] [CrossRef] [Green Version]
- Koh, Y.W.; Shah, M.H.; Agarwal, K.; Mccarty, S.K.; Koo, B.S.; Brendel, V.J.; Wang, C.; Porter, K.; Jarjoura, D.; Saji, M.; et al. Sorafenib and Mek inhibition is synergistic in medullary thyroid carcinoma in vitro. Endocrine-Relat. Cancer 2012, 19, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Yu, J.; Xie, R.; Chen, W.; Lv, Y. Combinatorial anticancer effects of curcumin and sorafenib towards thyroid cancer cells via PI3K/Akt and ERK pathways. Nat. Prod. Res. 2015, 30, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Ye, X.; Long, B.; Ye, T.; Zhang, L.; Yan, F.; Yang, Y.; Li, L. Inhibition of the AKT/mTOR Pathway Augments the Anticancer Effects of Sorafenib in Thyroid Cancer. Cancer Biother. Radiopharm. 2017, 32, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Ye, T.; Ge, M.; Yang, M.; Zhang, L.; Jin, S.; Ye, X.; Long, B.; Li, L. Inhibition of autophagy enhances the targeted therapeutic effect of sorafenib in thyroid cancer. Oncol. Rep. 2017, 39, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, G.; Nicula, D.; Renko, K.; Derwahl, M. Synergistic anti-proliferative effect of metformin and sorafenib on growth of anaplastic thyroid cancer cells and their stem cells. Oncol. Rep. 2015, 33, 1994–2000. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S.M.; Mukerji, R.; Timmermann, B.N.; Samadi, A.K.; Cohen, M.S. A novel combination of withaferin A and sorafenib shows synergistic efficacy against both papillary and anaplastic thyroid cancers. Am. J. Surg. 2012, 204, 895–901. [Google Scholar] [CrossRef]
- Park, K.C.; Kim, S.-M.; Jeon, J.Y.; Kim, B.-W.; Kim, H.K.; Chang, H.J.; Lee, Y.S.; Kim, S.; Choi, S.H.; Park, C.S.; et al. Synergistic Activity of N-hydroxy-7-(2-naphthylthio) Heptanomide and Sorafenib Against Cancer Stem Cells, Anaplastic Thyroid Cancer. Neoplasia 2017, 19, 145–153. [Google Scholar] [CrossRef]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor Activity of Lenvatinib (E7080): An Angiogenesis Inhibitor That Targets Multiple Receptor Tyrosine Kinases in Preclinical Human Thyroid Cancer Models. J. Thyroid. Res. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Gunda, V.; Gigliotti, B.; Ashry, T.; Ndishabandi, D.; McCarthy, M.; Zhou, Z. Anti-PD-1/PD-L1 therapy augments lenvatinib’s efficacy by favorably altering the immune microenvironment of murine anaplastic thyroid cancer. Int. J. Cancer. 2019, 144, 2266–2278. [Google Scholar] [CrossRef]
- Nakazawa, Y.; Kawano, S.; Matsui, J.; Funahashi, Y.; Tohyama, O.; Muto, H.; Nakagawa, T.; Matsushima, T. Multitargeting strategy using lenvatinib and golvatinib: Maximizing anti-angiogenesis activity in a preclinical cancer model. Cancer Sci. 2015, 106, 201–207. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, S.-M.; Kim, B.-W.; Chang, H.J.; Kim, S.; Park, C.S.; Park, K.C.; Chang, H.-S. Anti-cancer Effects of HNHA and Lenvatinib by the Suppression of EMT-Mediated Drug Resistance in Cancer Stem Cells. Neoplasia 2018, 20, 197–206. [Google Scholar] [CrossRef]
- Chang, V.Y.; Wang, J. Pharmacogenetics of Chemotherapy-Induced Cardiotoxicity. Curr. Oncol. Rep. 2018, 20, 52. [Google Scholar] [CrossRef] [PubMed]
- Gorini, S.; De Angelis, A.; Berrino, L.; Malara, N.; Rosano, G.; Ferraro, E. Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. Oxidative Med. Cell. Longev. 2018, 2018, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trendowski, M.R.; El Charif, O.; Dinh, P.C.; Travis, L.B.; Dolan, M.E. Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clin. Cancer Res. 2018, 25, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, Z.; Yan, X.; Lu, L.; Su, C.; He, Y. Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J. Bioenerg. Biomembr. 2018, 50, 263–270. [Google Scholar] [CrossRef]
- Kim, S.H.; Kang, J.G.; Ihm, S.-H.; Kim, C.S.; Choi, M.G.; Yoo, H.J.; Lee, S.J. Doxorubicin has a synergistic cytotoxicity with cucurbitacin B in anaplastic thyroid carcinoma cells. Tumor Boil. 2017, 39, 1010428317692252. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhou, J.; Zhao, L.; Chen, S. Combination of SL327 and Sunitinib Malate leads to an additive anti-cancer effect in doxorubicin resistant thyroid carcinoma cells. Biomed. Pharmacother. 2017, 88, 985–990. [Google Scholar] [CrossRef]
- Milošević, Z.; Bankovic, J.; Dinic, J.; Tsimplouli, C.; Sereti, E.; Dragoj, M.; Paunovic, V.; Milovanovic, Z.; Stepanović, M.; Tanić, N.; et al. Potential of the dual mTOR kinase inhibitor AZD2014 to overcome paclitaxel resistance in anaplastic thyroid carcinoma. Cell. Oncol. 2018, 41, 409–426. [Google Scholar] [CrossRef]
- A Trial of Vistusertib with Paclitaxel for Solid Tumours (TAX-TORC) [Internet]. Cancer Research UK. 2015. Available online: https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-of-vistusertib-with-paclitaxel-for-solid-tumours-tax-torc (accessed on 13 November 2019).
- Kim, S.H.; Kang, J.G.; Kim, C.S.; Ihm, S.-H.; Choi, M.G.; Yoo, H.J.; Lee, S.J. The effect of 17-allylamino-17-demethoxygeldanamycin alone or in combination with paclitaxel on anaplastic thyroid carcinoma cells. Endocrine 2014, 48, 886–893. [Google Scholar] [CrossRef]
- Park, C.H.; Han, S.E.; Nam-Goong, I.S.; Kim, Y.I.; Kim, E.S. Combined Effects of Baicalein and Docetaxel on Apoptosis in 8505c Anaplastic Thyroid Cancer Cells via Downregulation of the ERK and Akt/mTOR Pathways. Endocrinol. Metab. 2018, 33, 121–132. [Google Scholar] [CrossRef]
- Pozdeyev, N.; Berlinberg, A.; Zhou, Q.; Wuensch, K.; Shibata, H.; Wood, W.M.; Haugen, B.R. Targeting the NF-κB Pathway as a Combination Therapy for Advanced Thyroid Cancer. PLoS ONE 2015, 10, e0134901. [Google Scholar] [CrossRef]
- Lopergolo, A.; Nicolini, V.; Favini, E.; Bo, L.D.; Tortoreto, M.; Cominetti, D.; Folini, M.; Perego, P.; Castiglioni, V.; Scanziani, E.; et al. Synergistic Cooperation Between Sunitinib and Cisplatin Promotes Apoptotic Cell Death in Human Medullary Thyroid Cancer. J. Clin. Endocrinol. Metab. 2014, 99, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Desidero, T.; Antonelli, A.; Orlandi, P.; Ferrari, S.M.; Fioravanti, A.; Ali, G.; Fontanini, G.; Basolo, F.; Francia, G.; Bocci, G. Synergistic efficacy of irinotecan and sunitinib combination in preclinical models of anaplastic thyroid cancer. Cancer Lett. 2017, 411, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Isham, C.R.; Bossou, A.R.; Negron, V.; Fisher, K.E.; Kumar, R.; Marlow, L.; Lingle, W.L.; Smallridge, R.C.; Sherman, E.J.; Suman, V.J.; et al. Pazopanib Enhances Paclitaxel-Induced Mitotic Catastrophe in Anaplastic Thyroid Cancer. Sci. Transl. Med. 2013, 5, 166ra3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, C.; Gao, Z.; Wang, R.; Yang, Z.; Shi, B.; Hou, P. Lenvatinib enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am. J. Cancer Res. 2017, 7, 903–912. [Google Scholar] [PubMed]
- Wiseman, S.M.; Masoudi, H.; Niblock, P.; Turbin, D.; Rajput, A.; Hay, J.; Bugis, S.; Filipenko, D.; Huntsman, D.; Gilks, B. Anaplastic Thyroid Carcinoma: Expression Profile of Targets for Therapy Offers New Insights for Disease Treatment. Ann. Surg. Oncol. 2006, 14, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Ljubas, J.; Ovesen, T.; Rusan, M. A Systematic Review of Phase II Targeted Therapy Clinical Trials in Anaplastic Thyroid Cancer. Cancers 2019, 11, 943. [Google Scholar] [CrossRef] [Green Version]
- Catalano, M.G.; Pugliese, M.; Gallo, M.; Brignardello, E.; Milla, P.; Orlandi, F.; Limone, P.P.; Arvat, E.; Boccuzzi, G.; Piovesan, A. Valproic Acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid Cancer: Results of a Multicenter Randomized Controlled Phase II/III Trial. Int. J. Endocrinol. 2016, 2016, 2930414. [Google Scholar] [CrossRef] [Green Version]
- Smallridge, R.C.; Copland, J.A.; Brose, M.S.; Wadsworth, J.T.; Houvras, Y.; Menefee, M.E.; Bible, K.C.; Shah, M.H.; Gramza, A.W.; Klopper, J.P.; et al. Efatutazone, an oral PPAR-γ agonist, in combination with paclitaxel in anaplastic thyroid cancer: Results of a multicenter phase 1 trial. J. Clin. Endocrinol. Metab. 2013, 98, 2392–2400. [Google Scholar] [CrossRef] [Green Version]
- Yeung, S.-C.J.; She, M.; Yang, H.; Pan, J.; Sun, L.; Chaplin, D. Combination Chemotherapy Including Combretastatin A4 Phosphate and Paclitaxel Is Effective against Anaplastic Thyroid Cancer in a Nude Mouse Xenograft Model. J. Clin. Endocrinol. Metab. 2007, 92, 2902–2909. [Google Scholar] [CrossRef]
- Cohen, M.S.; Hussain, H.B.; Moley, J.F. Inhibition of medullary thyroid carcinoma cell proliferation and RET phosphorylation by tyrosine kinase inhibitors. Surgery 2002, 132, 960–967. [Google Scholar] [CrossRef]
- DeGroot, J.; Plazamenacho, I.; Schepers, H.; Drenthdiephuis, L.; Osinga, J.; Plukker, J.; Links, T.; Eggen, B.; Hofstra, R. Cellular effects of imatinib on medullary thyroid cancer cells harboring multiple endocrine neoplasia Type 2A and 2B associated RET mutations. Surgery 2006, 139, 806–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halperin, D.M.; Phan, A.T.; O Hoff, A.; Aaron, M.; Yao, J.C.; Hoff, P.M. A phase I study of imatinib, dacarbazine, and capecitabine in advanced endocrine cancers. BMC Cancer 2014, 14, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Phase I/II Trial of Crolibulin (EPC2407) Plus Cisplatin in Adults with Solid Tumors with a Focus on Anaplastic Thyroid Cancer (ATC)—Study Results—ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01240590 (accessed on 7 October 2019).
- Chow, L.Q.; Santana-Davila, R.; Pantel, A.; Roth, M.; Anderson, L.N.; Failor, A.; Doot, R.; Mankoff, D. A phase I study of pazopanib in combination with escalating doses of 131I in patients with well-differentiated thyroid carcinoma borderline refractory to radioiodine. PLoS ONE 2017, 12, e0178325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Rivero, J.; Edgerly, M.; Ward, J.; Madan, R.A.; Balasubramaniam, S.; Fojo, T.; Gramza, A.W. Phase I/II Trial of Vandetanib and Bortezomib in Adults with Locally Advanced or Metastatic Medullary Thyroid Cancer. Oncologist 2019, 24, 16. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, A.; Modica, R.; Severino, R.; Camera, L.; Fonti, R.; Del Prete, M.; Chiofalo, M.G.; Aria, M.; Ferolla, P.; Vitale, G.; et al. The antiproliferative effect of pasireotide LAR alone and in combination with everolimus in patients with medullary thyroid cancer: A single-center, open-label, phase II, proof-of-concept study. Endocrine 2018, 62, 46–56. [Google Scholar] [CrossRef] [Green Version]
- Sherman, E.J.; Dunn, L.A.; Ho, A.L.; Baxi, S.S.; Ghossein, R.A.; Fury, M.G.; Haque, S.; Sima, C.S.; Cullen, G.; Fagin, J.A.; et al. Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 2017, 123, 4114–4121. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600–Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Van Der Tuin, K.; Garcia, M.V.; E Corver, W.; Khalifa, M.N.; Neto, D.R.; Corssmit, E.P.M.; Hes, F.J.; Links, T.P.; Smit, J.W.A.; Plantinga, T.S.; et al. Targetable gene fusions identified in radioactive iodine refractory advanced thyroid carcinoma. Eur. J. Endocrinol. 2019, 180, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Lange, A.M.; Lo, H.-W. Inhibiting TRK Proteins in Clinical Cancer Therapy. Cancers 2018, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Solomon, J.; Benayed, R.; Hechtman, J.; Ladanyi, M. Identifying patients with NTRK fusion cancer. Ann. Oncol. 2019, 30, viii16–viii22. [Google Scholar] [CrossRef] [Green Version]
- Laetsch, T.W.; Dubois, S.G.; Mascarenhas, L.; Turpin, B.; Federman, N.; Albert, C.M.; Nagasubramanian, R.; Davis, J.L.; Rudzinski, E.; Feraco, A.M.; et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: Phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol. 2018, 19, 705–714. [Google Scholar] [CrossRef]
- Cabanillas, M.E.; Ryder, M.; Jimenez, C. Targeted Therapy for Advanced Thyroid Cancer: Kinase Inhibitors and Beyond. Endocr. Rev. 2019, 40, 1573–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2018, 32, 147–153. [Google Scholar] [CrossRef]
- Nikitski, A.V.; Rominski, S.L.; Wankhede, M.; Kelly, L.M.; Panebianco, F.; Barila, G.; Altschuler, D.L.; Nikiforov, Y.E. Mouse Model of Poorly Differentiated Thyroid Carcinoma Driven by STRN-ALK Fusion. Am. J. Pathol. 2018, 188, 2653–2661. [Google Scholar] [CrossRef] [Green Version]
- Chou, A.; Fraser, S.; Toon, C.W.; Clarkson, A.; Sioson, L.; Farzin, M.; Cussigh, C.; Aniss, A.; O’Neill, C.; Watson, N.; et al. A Detailed Clinicopathologic Study of ALK-translocated Papillary Thyroid Carcinoma. Am. J. Surg. Pathol. 2015, 39, 652–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Thyroid Cancer Type | Cell Line | Species | Mutation | Molecular Target | Combination of Therapies | References |
---|---|---|---|---|---|---|
Anaplastic form | SW1736 | Human | Heterozygous BRAFV600E, Heterozygous for TERT c.228C >T (-124C >T), Homozygous for TP53 p.Gln192Ter, Heterozygous for TSHR p.Ile486Phe | BRAFV600E inhibitor/proteasome inhibitor | Vemurafenib + Bortezomib | Tsumagari et al., 2018 |
MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 | ||||
Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | ||||
Withanolide (potent of heat-shock protein inhibition)/VEGF inhibitor | Withaferin A + Sorafenib | Cohen et al., 2012 | ||||
Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | ||||
mTOR inhibitor/chemotherapy | AZD2014 + paclitaxel | Milošević et al., 2018 | ||||
Histone deacetylase inhibitor/chemotherapy | Suberoylanilide hydroxamic acid (SAHA) + docetaxel | Pozdeyev et al., 2015 | ||||
KAT 18 | Human | Heterozygous for MRE11A p.Leu57Ter, Heterozygous for TERT c.228C >T (−124C >T), Homozygous for TP53 p.Gly199Val (c.596G >T) | BRAFV600E inhibitor/proteasome inhibitor | Vemurafenib + Bortezomib | Tsumagari et al., 2018 | |
MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 | ||||
KAT 4 | Human | Heterozygous for APC p.Glu853Ter (c.2557G >T) and p.Thr1556fs*3 (c.4666_4667insA), Heterozygous for BRAF p.Val600Glu (c.1799T >A), Heterozygous for PIK3CA p.Pro449Thr (c.1345C >A), Homozygous for SMAD4 p.Gln311Ter (c.931C >T), Homozygous for TP53 p.Arg273His (c.818G >A) | AKT inhibitor/platelet-derived growth factor receptor inhibitor | MK-2206 + tyrphotsin AG 1296 | Che et al., 2014 | |
MEK1/2 inhibitor/VEGF inhibitor | SL327 + sunitinib | Wang et al., 2017 | ||||
8505c | Human | Homozygous for BRAF p.Val600Glu, Homozygous for NF2 p.Glu129Ter, Heterozygous for TERT c.250C >T, Homozygous for TP53 p.Arg248Gly | Bcl2 family inhibitor/MAPK inhibitors | ABT-737 + PLX4720 + PD32590 | Gunda et al., 2017 | |
SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | ||||
Flavonoid derivative/BRAFV600E inhibitor/PI3K inhibitor | Apigenin + vemurafenib + wortmannin | Kim et al., 2013 | ||||
Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | ||||
Raf inhibitor/PI3K inhibitor | RAF265 + Dactolisib (BEZ-235) | Jin et al., 2011 | ||||
Growth factor inhibition/AKT inhibitor | shRNA TGF-β1 + MK-2206 | Li et al., 2016 | ||||
BRAFV600E inhibitor/c-Met inhibitor | Vemurafenib + PHA665752 | Byeon et al., 2017 | ||||
Mek inhibitor/PI3K inhibitor | PD-325901 + GDC-0941 | ElMokh et al., 2017 | ||||
VEGF inhibitor/PI3K inhibitor/AKT inhibition | Sorafenib + Dactolisib (BEZ235)/small interfering RNA (siRNA) directed against AKT | Yi H et al.,2017 | ||||
VEGF inhibitor/antimalaria drug | Sorafenib + Quinacrine | Abdulghani et al., 2016 | ||||
VEGF inhibitor/antimalaria drug | Sorafenib + chloroquine | Yi H et al.,2018 | ||||
VEGF inhibitor/Histone deacetylase inhibitor | Sorafenib + N-hydroxy-7-(2-naphthylthio) hepatonomide (HNHA) | Cheong Park et al., 2017 | ||||
anti parasitic drug/chemotherapy | Atovaquone + Doxorubicin | Zhuo Lv et al., 2018 | ||||
Oxidized tetracyclic triterpenoids (inhibitor JAK/STAT)/chemotherapy | Cucurbitacin B + Doxorubicin | Hyoung Kim et al., 2017 | ||||
mTOR inhibitor/chemotherapy | AZD2014 + paclitaxel | Milošević et al., 2018 | ||||
Antibiotic/Chemotherapy | Tanespimycine (17-allylamino-17-demethoxygeldanamycin) + paclitaxel | Kim et al., 2014 | ||||
Bioactive flavone/chemotherapy | Baicalein + docetaxel | Ho Park et al., 2018 | ||||
Histone deacetylase inhibitor/chemotherapy | Suberoylanilide hydroxamic acid (SAHA) + docetaxel | Pozdeyev et al., 2015 | ||||
VEGF inhibitor/chemotherapy | Lenvatinib + Paclitaxel | Jing et al., 2017 | ||||
BRAF inhibitor/TKI | Vemurafenib + Ponatinib | Ghosh et al., 2020 | ||||
MEK inhibitor/dietary supplement | U0126 + sodium selenite | Kim et al., 2020 | ||||
HTh-7 | Human | NRAS p.Gln61Arg (c.182A >G), KMT2D p.Gln4118Ter, Homozygous for TERT c.250C >T, TP53 p.Gly245Ser | Bcl2 family inhibitor/MAPK inhibitors | ABT-737 + PLX4720 + PD32590 | Gunda et al., 2017 | |
Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | ||||
Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | ||||
TBP-3743 | Murine | BrafV600E/WT; p53/ | SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | |
Immunotherapy/VEGF inhibitor | Anti PDL1 + lenvatinib | Gunda et al., 2019 | ||||
TBPt-3403 | Murine | BrafV600E/WT; Pten−/− | SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | |
TBPt-3610R | Murine | BrafV600E/WT; Pten−/− | SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | |
FRO | Human | Heterozygous BRAFV600E mutation | Flavonoid derivative/BRAFV600E inhibitor/PI3K inhibitor | Apigenin + vemurafenib + wortmannin | Kim et al., 2013 | |
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
ACT-1 | Human | Heterozygous for NRAS p.Gln61Lys, Heterozygous for TERT c.250C >T, Homozygous for TP53 p.Cys242Ser | MAPK inhibitors | Trametinib + dabrafenib | Kurata et al., 2016 | |
OCUT-1 | Human | Heterozygous for BRAF p.Val600Glu (c.1799T >A), Heterozygous for TERT c.228C >T (-124C >T), Homozygous for TERT c.250C >T | MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 | |
AKT inhibitor/MEK inhibitor | MK-2206 + selumetinib | Liu et al., 2012 | ||||
OCUT-2 | Human | Heterozygous for BRAF p.Val600Glu, Homozygous for TERT c.250C >T | MAPK inhibitors | Trametinib + dabrafenib | Kurata et al., 2016 | |
OCUT-4 | Human | BRAF and PI3KCA mutations | MAPK inhibitors | Trametinib + dabrafenib | Kurata et al., 2016 | |
OCUT-6 | Human | Wildtype BRAF and NRAS mutations | MAPK inhibitors | Trametinib + dabrafenib | Kurata et al., 2016 | |
THJ-11T | Human | KRAS p.Gly12Val (c.35G >T), Heterozygous for TERT c.228C >T | MEK inhibitor/BET inhibitor | Trametinib + JQ1 | Zhu et al., 2018 | |
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
THJ-16T | Human | MKRN1-BRAF in-frame gene fusion, Heterozygous for PIK3CA p.Glu545Lys, Homozygous for EP300 p.Ser799Phefs*5, Heterozygous for RET p.Glu90Lys, Heterozygous for TERT c.228C >T, Homozygous for TP53 p.Arg273His | MEK inhibitor/BET inhibitor | Trametinib + JQ1 | Zhu et al., 2018 | |
PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | ||||
VEGF inhibitor/antimalaria drug | Sorafenib + Quinacrine | Abdulghani et al., 2016 | ||||
Histone deacetylase inhibitor + chemotherapy | Suberoylanilide hydroxamic acid (SAHA) + docetaxel | Pozdeyev et al., 2015 | ||||
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
BRAF inhibitor + TKI | Vemurafenib + Ponatinib | Ghosh et al., 2020 | ||||
THJ-21T | Human | Homozygous for BRAF p.Val600Glu (c.1799T >A), Heterozygous for TERT c.228C >T (-124C >T); in promoter, Homozygous for TP53 p.Arg280Thr (c.839G >C) | PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | |
VEGF inhibitor/antimalaria drug | Sorafenib + Quinacrine | Abdulghani et al., 2016 | ||||
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
THJ-29T | Human | FGFR2-OGDH in-frame gene fusion, Homozygous for CDKN2A p.Gln70Serfs*102 (c.207delG) (G55fs), Heterozygous for HDAC10 p.His134Thrfs*19 (c.399delG), Heterozygous for TERT c.250C >T (-146C >T); in promoter, Homozygous for TP53 p.Gln104Ter (c.310C >T) | PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | |
VEGF inhibitor/antimalaria drug | Sorafenib + Quinacrine | Abdulghani et al., 2016 | ||||
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
Hth-74 | Human | Homozygous for NF1 p.Leu732fs (c.2195_2202delTGCCCAAC), Homozygous for TERT c.228C >T (-124C >T) | PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | |
VEGF inhibitor/anti diabetic drug | Sorafenib + metformin | Chen et al., 2015 | ||||
Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | ||||
ARO | Human | Heterozygous for APC p.Glu853Ter (c.2557G >T), Thr1556fs*3 (c.4666_4667insA), Heterozygous for BRAF p.Val600Glu (c.1799T >A), Heterozygous for PIK3CA p.Pro449Thr (c.1345C >A), Homozygous for SMAD4 p.Gln311Ter (c.931C >T), Homozygous for TP53 p.Arg273His (c.818G >A) | Ras inhibitor/galectin 3 inhibitor | Transfarnesylthiosalicylic acid (FTS) + Modified citrus pectin (MCP) | Menachem et al., 2015 | |
HTOR | Human | X-Normal thyroid cells | Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | |
PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | ||||
CAL-62 | Human | Heterozygous for CREBBP p.Glu1541Ter (c.4621G >T), Homozygous for EP300 p.Asp1485fs (c.4454delA), Homozygous for KRAS p.Gly12Arg (c.34G >C), Homozygous for NF2 p.Glu215Ter (c.643G >T), Homozygous for TP53 p.Ala161Asp (c.482C >A) | Raf inhibitor/PI3K inhibitor | RAF265 + Dactolisib (BEZ-235) | Jin et al., 2011 | |
AKT inhibitor/platelet-derived growth factor receptor inhibitor | MK-2206 + tyrphotsin AG 1296 | Che et al., 2014 | ||||
Oxidized tetracyclic triterpenoids (inhibitor JAK/STAT)/chemotherapy | Cucurbitacin B + doxorubicin | Hyoung Kim et al., 2017 | ||||
Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | ||||
MEK inhibitor/VEGF inhibitor | SL327 + sunitinib | Wang et al., 2017 | ||||
Antibiotic/Chemotherapy | Tanespimycine (17-allylamino-17-demethoxygeldanamycin) + paclitaxel | Kim et al., 2014 | ||||
C643 | Human | HRAS p.Gly13Arg (c.37G >C), Heterozygous for PTEN p.Phe341Leu (c.1023T >G), Heterozygous for TERT c.228C >T (-124C >T), Homozygous for TP53 p.Arg248Gln (c.743G >A), VTCN1 p.Tyr215Ter (c.645C >G) | Raf inhibitor/PI3K inhibitor | RAF265 + BEZ-235 | Jin et al., 2011 | |
VEGF inhibitor/chemotherapy | Lenvatinib + Paclitaxel | Jing et al., 2017 | ||||
BRAF inhibitor/TKI | Vemurafenib + Ponatinib | Ghosh et al., 2020 | ||||
SNU-80 | Human | BRAF p.Gly469Arg (c.1405G >C), Heterozygous for TP53 p.Pro278Ala (c.832C >G) | Histone deacetylase inhibitor/VEGF inhibitor | N-hydroxy-7-(2-naphthylthio) hepatonomide (HNHA) + Sorafenib | Cheong Park et al., 2017 | |
GSA1 | Human | X | Histone deacetylase inhibitor/VEGF inhibitor | N-hydroxy-7-(2-naphthylthio) hepatonomide (HNHA) + Sorafenib | Cheong Park et al., 2017 | |
T238 | Human | BRAF p.Val600Glu (c.1799T >A),Homozygous for CDKN2A p.Leu63Arg (c.188T >G),Heterozygous for PIK3CA p.Glu542Lys (c.1624G >A),Heterozygous for TERT c.228C >T (-124C >T),Homozygous for TP53 p.Ser183Ter (c.548C >G) | Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | |
Hth-83 | Human | Homozygous for AR p.Gly456_Gly457insGly (c.1368_1369insGGA), Heterozygous for HRAS p.Gln61Arg (c.182A >G),Heterozygous for TERT c.228C >T (-124C >T),Heterozygous for TP53 p.Pro153Alafs*28 | Selective inhibitor of nuclear export/chemotherapy | Selinexor + doxorubicin | Garg et al., 2017 | |
8305C | Human | Heterozygous for ATM p.Gln2800Ter (c.8398C >T),Heterozygous for BRAF p.Val600Glu (c.1799T >A),Heterozygous for NRAS p.Phe90fs (c.270delT),Homozygous for TP53 p.Arg273Cys (c.817C >T),Heterozygous for TERT c.250C >T (-146C >T) | Chemotherapy/VEGF inhibitor | Irinotecan + sunitinib | Di Desidero et al., 2017 | |
VEGF inhibitor/chemotherapy | Lenvatinib + Paclitaxel | Jing et al., 2017 | ||||
FB3 | Human | X | Chemotherapy/VEGF inhibitor | Irinotecan + sunitinib | Di Desidero et al., 2017 | |
KTC-1 | Human | Heterozygous for BRAF p.Val600Glu, Heterozygous for RAC1 p.Asp63Val, Heterozygous for TERT c.250C >T | VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | |
KTC-2 | Human | Heterozygous for BRAF p.Val600Glu (c.1799T >A),Heterozygous for KMT2D p.Glu490Ter (c.1468G >T),Heterozygous for TERT c.228C >T (-124C >T) | VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | |
KTC-3 | Human | X | VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | |
Papillary form | BCPAP | Human | Homozygous for BRAF p.Val600Glu, Heterozygous for TERT c.228C >T, Homozygous for TP53 p.Asp259Tyr | MEK inhibitor/VEGF inhibitor | Dabrafenib/selumetinib + lapatinib | Cheng et al.,2017 |
Bcl2 family inhibitor/MAPK inhibitors | ABT-737 + PLX4720 + PD32590 | Gunda et al., 2017 | ||||
SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | ||||
MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 | ||||
Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | ||||
Raf inhibitor/PI3K inhibitor | RAF265 + Dactolisib (BEZ-235) | Jin et al., 2011 | ||||
PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | ||||
BRAFV600E inhibitor/c-met inhibitor | PLX4032 + PHA665752 | Byeon et al., 2017 | ||||
Natural withanolide/VEGF inhibitor | Withaferin A + Sorafenib | Cohen et al., 2012 | ||||
Histone deacetylase inhibitor + chemotherapy | Suberoylanilide hydroxamic acid (SAHA) + docetaxel | Pozdeyev et al., 2015 | ||||
BRAF inhibitor/TKI | Vemurafenib + Ponatinib | Ghosh et al., 2020 | ||||
BRAF inhibitor/EZH2 inhibitor | Selumetinib/dabrafenib + tazemetostat | Fu et al., 2020 | ||||
K1 | Human | Heterozygous for BRAF p.Val600Glu, Heterozygous for PIK3CA p.Glu542Lys, Heterozygous for TERT c.228C >T | MEK inhibitor/VEGF inhibitor | Dabrafenib/selumetinib + lapatinib | Cheng et al.,2017 | |
AKT inhibitor/MEK inhibitor | MK-2206 + selumetinib | Liu et al., 2012 | ||||
BRAF inhibitor/EZH2 inhibitor | Selumetinib/dabrafenib + tazemetostat | Fu et al., 2020 | ||||
BHP 2-7 | Human | CCDC6-RET (RET/PTC1) gene fusion, Homozygous for CDKN2A p.Ala68fs, Heterozygous for STAG2 p.Gln1089Ter, Heterozygous for TERT c.228C >T | MEK inhibitor/VEGF inhibitor | Dabrafenib/selumetinib + lapatinib | Cheng et al.,2017 | |
TPC-1 | Human | CCDC6-RET (RET/PTC1) gene fusion, Homozygous for CDKN2A p.Ala68fs, Heterozygous for STAG2 p.Gln1089Ter, Heterozygous for TERT c.228C >T | Bcl2 family inhibitor/MAPK inhibitors | ABT-737 + PLX4720 + PD32590 | Gunda et al., 2017 | |
Raf inhibitor/immunotherapy | PLX4720 + anti PDL-1 | Brauner et al., 2015 | ||||
MEK inhibitor/dietary supplement | U0126 + sodium selenite | Kim et al., 2020 | ||||
BRAF inhibitor + EZH2 inhibitor | Selumetinib/dabrafenib + tazemetostat | Fu et al., 2020 | ||||
TBP-3868 | Murine | BrafV600E/WT; p53−/− | SRC inhibitor/Raf inhibitor | Dasatinib + PLX4720 | Vanden Borre et al., 2014 | |
Follicular form | FTC-133 | Human | Homozygous for FLCN p.His429fs (c.1285delC), Homozygous for MSH6 p.Lys1045fs (c.3135delG),Homozygous for NF1 p.Cys167Ter (c.501T >A), Homozygous for PTEN p.Arg130Ter (c.388C >T), Homozygous for TERT c.228C >T (-124C >T), Homozygous for TP53 p.Arg273His (c.818G >A) | MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 |
Raf inhibitor/PI3K inhibitor | RAF265 + Dactolisib (BEZ-235) | Jin et al., 2011 | ||||
PI3K inhibitor/p53 reactivator | NVP-BKM120 + PRIMA-1Met | Li et al., 2018 | ||||
VEGF inhibitor/PI3K inhibitors | Sorafenib+ Dactolisib (BEZ235)/small interfering RNA (siRNA) directed against AKT | Yi H et al.,2017 | ||||
VEGF inhibitor/spice | Sorafenib + curcumin | Zhang et al., 2015 | ||||
VEGF inhibitor/antimalaric drug | Sorafenib + chloroquine | Yi H et al.,2018 | ||||
anti parasitic drug/chemotherapy | Atovaquone + Doxorubicin | Zhuo Lv et al., 2018 | ||||
WRO-82-1 | Human | BRAF p.Val600Glu (c.1799T >A), TP53 p.Pro223Leu (c.668C >T) | MEK1/2 inhibitor/mTOR inhibitor | RDEA119 + temsirolimus | Liu et al., 2010 | |
VEGF inhibitor/chemotherapy | Pazopanib + Paclitaxel | Isham et al., 2013 | ||||
Medullary form | TT | Human | Heterozygous for RET p.Cys634Trp (c.1902C >G), Heterozygous for TBX3 p.Trp197Ter (c.591G >A) | PI3K inhibitor/Raf inhibitor | ZSTK474+ RAF265 | Bertazza et al., 2015 |
VEGF inhibitor/MEK inhibitor- mTOR inhibitor/MEK inhibitor | Sorafenib + AZD6244/Everolimus + AZD6244 | Koh et al., 2012 | ||||
MZ-CRC-1 | Human | Heterozygous for HIST3H3 p.Arg3Ter (c.7C >T),Homozygous for MAX c.295+1G >A, Homozygous for PBRM1 p.Arg534Ter (c.1600C >T),Heterozygous for RET p.Met918Thr (c.2753T >C) | VEGF inhibitor/MEK inhibitor- mTOR inhibitor/MEK inhibitor | Sorafenib + AZD6244/Everolimus + AZD6244 | Koh et al., 2012 | |
VEGF inhibitor/chemotherapy | Sunitinib + cisplatin | Lopergolo et al., 2014 |
N° NCT | Study | Phase | Status | Drugs | Chemotherapies | MAPK Inhibitors | mTOR Inhibitors | VEGF Inhibitors | EGFR Inhibitors | PDL1 Inhibitors | Others |
---|---|---|---|---|---|---|---|---|---|---|---|
NCT00923247 | A Targeted Phase I/II Trial of ZD6474 (Vandetanib; ZACTIMA) Plus the Proteasome Inhibitor, Bortezomib (Velcade), in Adults with Solid Tumors With a Focus on Hereditary or Sporadic, Locally Advanced or Metastatic Medullary Thyroid Cancer (MTC) | I-II | Terminated (Terminated due to slow accrual, primary endpoint reached and investigator left NIH.) | Bortezomib | X | ||||||
Vandetanib | X | ||||||||||
NCT01270321 | Pasireotide and Everolimus in Adult Patients with Radioiodine-Refractory Differentiated and Medullary Thyroid Cancer | II | Active, not recruiting | Everolimus | X | ||||||
Pasireotide | X | ||||||||||
NCT01141309 | Evaluating the Combination of Everolimus and Sorafenib in the Treatment of Thyroid Cancer | II | Active, not recruiting | Sorafenib | X | ||||||
Everolimus | X | ||||||||||
NCT02472080 | Gemcitabine-Oxaliplatin for Advanced Refractory Thyroid Cancer Patients: A Phase II Study | II | Recruiting | Gemcitabine | X | ||||||
Oxaliplatin | X | ||||||||||
NCT03300765 | Trail Evaluating Apatinib With IMRT for Inoperable or Iodine Refractory Thyroid Cancer | II | Recruiting | Apatinib | X | ||||||
Radiation: Intensity modulated radiation therapy | X | ||||||||||
NCT01947023 | Dabrafenib and Lapatinib Ditosylate in Treating Patients with Refractory Thyroid Cancer That Cannot Be Removed by Surgery | I | Active, not recruiting | Dabrafenib | X | ||||||
Lapatinib Ditosylate | X | ||||||||||
NCT01723202 | Dabrafenib With or Without Trametinib in Treating Patients with Recurrent Thyroid Cancer | II | Active, not recruiting | Dabrafenib | X | ||||||
Trametinib | X | ||||||||||
NCT02152995 | Trametinib in Increasing Tumoral Iodine Incorporation in Patients with Recurrent or Metastatic Thyroid Cancer | II | Recruiting | Trametinib | X | ||||||
Radiation: Iodine I 124 | X | ||||||||||
Radiation: Iodine I-131 | X | ||||||||||
NCT03065387 | Study of the Pan-ERBB Inhibitor Neratinib Given in Combination with Everolimus, Palbociclib or Trametinib in Advanced Cancer Subjects With EGFR Mutation/Amplification, HER2 Mutation/Amplification, HER3/4 Mutation or KRAS Mutation | I | Recruiting | Neratinib | X | ||||||
Everolimus | X | ||||||||||
Palbociclib | X | ||||||||||
Trametinib | X | ||||||||||
NCT01552434 | Bevacizumab and Temsirolimus Alone or in Combination with Valproic Acid or Cetuximab in Treating Patients With Advanced or Metastatic Malignancy or Other Benign Disease | I | Recruiting | Bevacizumab | X | ||||||
Cetuximab | X | ||||||||||
Temsirolimus | X | ||||||||||
Valproic Acid | X | ||||||||||
NCT03170960 | Study of Cabozantinib in Combination with Atezolizumab to Subjects with Locally Advanced or Metastatic Solid Tumors | I-II | Recruiting | Cabozantinib | X | ||||||
Atezolizumab | X | ||||||||||
NCT03085056 | Trametinib in Combination with Paclitaxel in the Treatment of Anaplastic Thyroid Cancer | Early I | Recruiting | Trametinib | X | ||||||
Paclitaxel | X | ||||||||||
NCT02152137 | Inolitazone Dihydrochloride and Paclitaxel in Treating Patients with Advanced Anaplastic Thyroid Cancer | II | Active, not recruiting | Efatutazone | X | ||||||
Paclitaxel | X | ||||||||||
NCT03430882 | TAK228 With Carbo and Taxol in Advanced Malignancies | I | Recruiting | Sapanisertib (TAK-228) | X | ||||||
Paclitaxel | X | ||||||||||
Carboplatin | X | ||||||||||
NCT00077103 | Induction Chemotherapy Using Doxorubicin and Cisplatin Followed by Combretastatin A4 Phosphate and Radiation Therapy in Treating Patients with Newly Diagnosed Regionally Advanced Anaplastic Thyroid Cancer | I–II | Terminated (slow accrual) | Filgrastim | X | ||||||
Cisplatin | X | ||||||||||
Doxorubicin hydrochloride | X | ||||||||||
Fosbretabulin disodium | X | ||||||||||
Radiation | X | ||||||||||
NCT00603941 | A Phase 1/2 Dose Finding Study of an Experimental New Drug CS7017, an Oral PPARγ Agonist Taken by Mouth Twice Daily in Combination with Paclitaxel Chemotherapy (anaplastic thyroid cancer) | I–II | CS7017 | X | |||||||
Paclitaxel | X | ||||||||||
NCT03387943 | PLD Combined with Cisplatin in the Treatment of Advanced Poorly Differentiated Thyroid Carcinoma | II | Recruiting | Pegylated liposomal doxorubicin hydrochloride (PLD) | X | ||||||
Cisplatin | X | ||||||||||
NCT03181100 | Atezolizumab Combinations with Chemotherapy for Anaplastic and Poorly Differentiated Thyroid Carcinomas | II | Recruiting | Nab-paclitaxel | X | ||||||
Paclitaxel | X | ||||||||||
Vemurafenib | X | ||||||||||
Cobimetinib | X | ||||||||||
Atezolizumab | X | ||||||||||
Bevacizumab | X | ||||||||||
NCT02936102 | A Study of FAZ053 Single Agent and in Combination with PDR001 in Patients with Advanced Malignancies. (anaplastic thyroid cancer) | I | Recruiting | FAZ053 | X | ||||||
PDR001 | X | ||||||||||
NCT03122496 | Immunotherapy and Stereotactic Body Radiotherapy (SBRT) for Metastatic Anaplastic Thyroid Cancer | I | Recruiting | Durvalumab | X | ||||||
Tremelimumab | X | ||||||||||
Radiation: Stereotactic Body Radiotherapy (SBRT) | X | ||||||||||
NCT03211117 | Pembrolizumab, Chemotherapy, and Radiation Therapy with or Without Surgery in Treating Patients with Anaplastic Thyroid Cancer | II | Active, not recruiting | Docetaxel | X | ||||||
Doxorubicin Hydrochloride | X | ||||||||||
Radiation: Intensity-Modulated Radiation Therapy | X | ||||||||||
Pembrolizumab | X | ||||||||||
NCT03360890 | Pembrolizumab With Chemotherapy for Poorly Chemoresponsive Thyroid and Salivary Gland Tumors | II | Recruiting | Pembrolizumab | X | ||||||
Docetaxel | X | ||||||||||
NCT03217747 | Study to Evaluate the Safety and Tolerability of Avelumab in Combination with Other Anticancer Therapies in Patients with Advanced Malignancies | I-II | Recruiting | Avelumab | X | ||||||
Utomilumab | X | ||||||||||
PF-04518600 | X | ||||||||||
Cisplatin | X | ||||||||||
Radiation | X | ||||||||||
NCT03246958 | Nivolumab Plus Ipilimumab in Thyroid Cancer | II | Recruiting | Nivolumab | X | ||||||
Ipilimumab | X | ||||||||||
NCT03753919 | Durvalumab Plus Tremelimumab for the Treatment of Patients with Progressive, Refractory Advanced Thyroid Carcinoma—The DUTHY Trial | II | Not yet recruiting | Durvalumab | X | ||||||
Tremelimumab | X | ||||||||||
NCT00354523 | Imatinib in Combination with Dacarbazine and Capecitabine in Medullary Thyroid Carcinoma | I | Terminated (Study closed following Phase I portion, insufficient activity to continue to Phase II.) | Capecitabine (Xeloda) | X | ||||||
DTIC-Dome (Dacarbazine) | |||||||||||
Gleevec (Imatinib Mesylate) | X | ||||||||||
NCT03215095 | RAI Plus Immunotherapy for Recurrent/Metastatic Thyroid Cancers | Early I | Recruiting | Durvalumab (Medi4736) | X | ||||||
Radiation | X | ||||||||||
NCT03732495 | Study of the Efficacy of Lenvatinib Combined with Denosumab in the Treatment of Patients with Predominant Bone Metastatic Radioiodine Refractory Differentiated Thyroid Carcinomas | II | Not yet recruiting | Lenvatinib | X | ||||||
Denosumab | X | ||||||||||
NCT02973997 | Lenvatinib and Pembrolizumab in DTC | II | Recruiting | Lenvatinib | X | ||||||
NCT03506048 | Lenvatinib and Iodine Therapy in Treating Patients with Radioactive Iodine-Sensitive Differentiated Thyroid Cancer | II | Not yet recruiting | Lenvatinib | X | ||||||
Radiation: iodine I 131 | |||||||||||
NCT02432274 | Study of Lenvatinib in Children and Adolescents with Refractory or Relapsed Solid Malignancies and Young Adults with Osteosarcoma | I-II | Recruiting | Lenvatinib | X | ||||||
Ifosfamide | X | ||||||||||
Etoposide | X | ||||||||||
NCT02393690 | Iodine I-131 With or Without Selumetinib in Treating Patients with Recurrent or Metastatic Thyroid Cancer | II | Recruiting | Selumetinib | X | ||||||
Radiation: Iodine I-131 | X | ||||||||||
NCT03647657 | 177Lu-PP-F11N in Combination with Sacubitril for Receptor Targeted Therapy and Imaging of Metastatic Thyroid Cancer | Early I | Not yet recruiting | 177Lu-PP-F11N | X | ||||||
Sacuitril | X |
Study | Phase | Molecules and Dosage | Patients Treated by Combination | Adverse Effects | Median Progression Free Survival |
---|---|---|---|---|---|
The antiproliferative effect of pasireotide LAR alone and in combination with everolimus in patients with medullary thyroid cancer: a single-center, open-label, phase II, proof-of-concepts study Faggiano et al., 2018 | II | Pasireotide (SOM230): 60 mg IM every 28 ± 2 days Everolimus (RAD001): 10 mg per os/day | 7 | Hyperglycemia Fatigue Dyspnoea | 9.0 months |
Phase I/II trial of Vandetanib and Bortezomib in Adults with Locally Advanced or Metastatic Medullary Thyroid cancer De Rivero et al., 2018 | I (II) | Bortezomib: 1.3 mg/m2 IV on days 1, 4, 8, and 11 Vandetanib: 300 mg orally/day | 19 | Hypertension Fatigue Thrombocytopenia Diarrhea Arthralgia | X |
Valproic acid, a Histone Deacetylase Inhibitor, in Combination with Paclitaxel for Anaplastic Thyroid cancer: Results of a Multicenter Randomized Controlled Phase II/III trial Catalano et al., 2016 | II/III | Valproic acid: 1000 mg/day Paclitaxel: IV 80 mg/m2/week | 11 | Hematologic toxicity Gastrointestinal toxicity Neurotoxicity Cardiac toxicity Muscle and skeletal toxicity | 4 months |
Efatutazone, an oral PPAR-γ Agonist, in Combination with Paclitaxel in Anaplastic Thyroid Cancer: Results of a multicenter Phase 1 Trial Smallridge et al., 2013 | I | Efatutazone: 0.15 mg/0.3 mg/0.5 mg twice/day Paclitaxel: every 3 weeks | 15 | Anemia Oedema | 3 months for 0.15 mg 4.5 months for 0.3 mg |
Combination of Temsirolimus and Sorafenib in the Treatment of Radioactive Iodine Refractory Thyroid Cancer Sherman et al., 2017 | II | Temsirolimus: 25 mg IV weekly Sorafenib: 200 mg orally twice/day 8 weeks of treatment | 37 | Anemia Nausea Vomiting Hypertension | Partial Response 8 (26.7%) Stable Disease 21 (70.0%) Disease Progression 1 (3.3%) |
Dabrafenib and trametinib treatment in patients with locally advanced or metastatic BRAF V600E Mutant Anaplastic Thyroid cancer Subbiah et al., 2017 | II | Dabrafenib: 150 mg twice/day Trametinib: 2 mg once/day | 16 | Fatigue Pyrexia Nausea | X |
Randomized Safety and Efficacy Study of Fosbretabulin (CA4P) with Paclitaxel/Carboplatin Against Anaplastic Thyroid Carcinoma Sosa et al., 2014 | II-III | CA4P: 60 mg/m2 on days 1, 8, and 15 Paclitaxel: 200 mg/m2 on Day 2 Carboplatin: AUC 6 | 55 | Bronchitis Anemia Leukopenia Diarrhea Dysphagia Vomiting Fatigue Dyspnea Alopecia Hypertension | 5.2 months |
A Phase I/II Trial of Crolibulin (EPC2407) Plus Cisplatin in Adults with Solid Tumors With a Focus on Anaplastic Thyroid Cancer (ATC) Gramza et al., National Cancer Institute, National Institutes of Health, Bethesda, MD | I-II The phase II portion was not completed because it was impossible to recruit. | Crolibulin: IV 8–20 mg/m2 Cisplatin: IV 75–100 mg/m2 | 26 | Nausea Pancreatitis Fatigue Hypoalbuminemia Hypomagnesemia Hyponatremia Hypertension Platelet count decreased | X |
A phase I study of imatinib, dacarbazine, and capecitabine in advanced endocrine cancers Halperin et al., 2014 | I | Capecitabine (Xeloda): 500 mg/m2 twice/day on days 1–14 DTIC-Dome (Dacarbazine): 251 mg/m2/day on days 1–3 Gleevec (Imatinib Mesylate): 300 mg/day on days 1–21 | 8 | Constipation Diarrhea Dyspnea Oedema Fatigue Insomnia Nausea Pain | X |
A phase I and pharmacokinetic study of irofulven and capecitabine administered every 2 weeks in patients with advanced solid tumors Alexandre et al., 2007 | I | Irofulven: IV 0.4 mg over 30 min on days 1 and 15 every 4 weeks Capecitabine: 2000 mg/m2/day on days 1–15 | 4 | Leukopenia Neutropenia Anemia Thrombocytopenia | X |
A phase I study of pazopanib in combination with escalating doses of 131 I in patients with well-differentiated thyroid carcinoma borderline refractory to radioiodine Chow et al., 2017 | I | Pazopanib hydrochloride: 800 mg/day ≥600 mg/day Radiation: iodine I 131 | 6 | Fatigue Anorexia Diarrhea Dysgeusia Nausea Transaminemia Hypertension Thrombocytopenia | 6.7 months |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laetitia, G.; Sven, S.; Fabrice, J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells 2020, 9, 830. https://doi.org/10.3390/cells9040830
Laetitia G, Sven S, Fabrice J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells. 2020; 9(4):830. https://doi.org/10.3390/cells9040830
Chicago/Turabian StyleLaetitia, Gheysen, Saussez Sven, and Journe Fabrice. 2020. "Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses" Cells 9, no. 4: 830. https://doi.org/10.3390/cells9040830
APA StyleLaetitia, G., Sven, S., & Fabrice, J. (2020). Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells, 9(4), 830. https://doi.org/10.3390/cells9040830