Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Adenoviral Infection
2.3. Quantitative Real-Time PCR
2.4. Western Blot
2.5. Measurement of ROS Production
2.6. Quantification of Apoptosis
2.7. Transient Transfection
2.8. PG Quantification (ELISA)
2.9. MI Model and Echocardiography
2.10. Histological Staining by Sirius Red
2.11. Statistical Analysis
3. Results
3.1. In Vitro Model Characterization
3.2. Recombinant NOX5-β Activity Enhanced PGE2 Production via COX-2 Upregulation
3.3. PKC Stimulation Enhances NOX5-Mediated COX-2 Activation
3.4. NOX5 Increases NF-κB-Mediated COX-2 Expression
3.5. Characterization of the Conditional Humanized NOX5-β Knock-In Mice in a Model of MI
3.6. Conditional NOX5-β Knock-In Mice and the Cardiac PG Pathway in MI
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Costantino, S.; Paneni, F.; Cosentino, F. Ageing, metabolism and cardiovascular disease. J. Physiol. 2016, 594, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Takac, I.; Schröder, K.; Brandes, R.P. The Nox family of NADPH oxidases: Friend or foe of the vascular system? Curr. Hypertens. Rep. 2012, 14, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Thomsom, M.J.; Puntmann, V.; Kaski, J.C. Atherosclerosis and oxidant stress: The end of the road for antioxidant vitamin treatment? Cardiovasc. Drugs Ther. 2007, 21, 195–210. [Google Scholar] [CrossRef] [PubMed]
- Touyz, R.M.; Briones, A.M. Reactive oxygen species and vascular biology: Implications in human hypertension. Hypertens. Res. 2011, 34, 5–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Murugesan, P.; Huang, K.; Cai, H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020, 17, 170–194. [Google Scholar] [CrossRef] [PubMed]
- Pandey, D.; Patel, A.; Patel, V.; Chen, F.; Qian, J.; Wang, Y.; Barman, S.A.; Venema, R.C.; Stepp, D.W.; Rudic, R.D. Expression and functional significance of NADPH oxidase 5 (Nox5) and its splice variants in human blood vessels. Am. J. Physiol. Heart Circ. Physiol. 2012, 302, 1919–1928. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wang, Y.; Barman, S.; Fulton, D.J. Enzymatic regulation and functional relevance of NOX5. Curr. Pharm. Des. 2015, 21, 5999–6008. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Yu, Y.; Haigh, S.; Johnson, J.; Lucas, R.; Stepp, D.W.; Fulton, D.J. Regulation of NADPH oxidase 5 by protein kinase C isoforms. PLoS ONE 2014, 9, e88405. [Google Scholar] [CrossRef]
- Yang, C.M.; Chen, Y.W.; Chi, P.L.; Lin, C.C.; Hsiao, L.D. Resveratrol inhibits BK-induced COX-2 transcription by supressing acetylation of AP-1 and NF-ᴋB in human rheumatoid arthritis synovial fibroblasts. Biochem. Pharmacol. 2017, 132, 77–91. [Google Scholar] [CrossRef]
- Zamamiri-Davis, F.; Lu, Y.; Thompson, J.T.; Prabhu, K.S.; Reddy, P.V.; Sordillo, L.M.; Reddy, C.C. Nuclear factor-kappaB mediates over-expression of cyclooxygenase-2 during activation of RAW 264.7 macrophages in selenium deficiency. Free Radic. Biol. Med. 2002, 32, 890–897. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, X.; Flick, L.M.; Drissi, H.; Schwarz, E.M.; O’Keefe, R.J. Titanium particles stimulate COX-2 expression in synovial fibroblasts through an oxidative stress-induced, calpain-dependent, NF-kappaB pathway. Am. J. Physiol. Cell Physiol. 2009, 297, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, P.D.; Campbell, W.B.; Willerson, J.T.; Hillis, L.D. Prostaglandins and ischemic heart disease. Am. J. Med. 1981, 71, 1009–1026. [Google Scholar] [CrossRef]
- Gomez, I.; Foudi, N.; Longrois, D.; Norel, X. The role of prostaglandin E2 in human vascular inflammation. Prostaglandins Leukot. Essent. Fatty Acids 2013, 89, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Lin, Z.C.; Liang, C.J.; Yen, F.L.; Chiang, Y.C.; Lee, C.W. Eupafolin inhibits PGE2 production and COX2 expression in LPS-stimulated human dermal fibroblasts by blocking JNK/AP-1 and Nox2/p47(phox) pathway. Toxicol. Appl. Pharmacol. 2014, 279, 240–251. [Google Scholar] [CrossRef]
- Kim, H.G.; Kim, Y.R.; Park, J.H.; Khanal, T.; Choi, J.H.; Do, M.T.; Jin, S.W.; Han, E.H.; Chung, Y.H.; Jeong, H.G. Endosulfan induces COX-2 expression via NADPH oxidase and the ROS, MAPK, and Akt pathways. Arch. Toxicol. 2015, 89, 2039–2050. [Google Scholar] [CrossRef]
- Khanal, T.; Kim, H.G.; Do, M.T.; Choi, J.H.; Chung, Y.C.; Kim, H.S.; Park, Y.J.; Jeong, T.C.; Jeong, H.G. Genipin induces cyclooxygenase-2 expression via NADPH oxidase, MAPKs, AP-1, and NF-ᴋB in RAW 264.7 cells. Food Chem. Toxicol. 2014, 64, 126–134. [Google Scholar] [CrossRef]
- Zhou, X.; Li, D.; Resnick, M.B.; Wands, J.; Cao, W. NADPH oxidase NOX5-S and nuclear factor ᴋB1 mediate acid-induced microsomal prostaglandin E synthase-1 expression in Barrett’s esophageal adenocarcinoma cells. Mol. Pharmacol. 2013, 83, 978–990. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.; Kim, S.; Kim, H.J.; Kim, K.M.; Lee, C.H.; Shin, J.H.; Noh, M. Sphingosylphosphorylcholine down-regulates filaggrin gene transcription through NOX5-based NADPH oxidase and cyclooxygenase-2 in human keratinocytes. Biochem. Pharmacol. 2010, 80, 95–103. [Google Scholar] [CrossRef]
- Andueza, A.; Garde, N.; García-Garzón, A.; Ansorena, E.; López-Zabalza, M.; Iraburu, M.J.; Zalba, G.; Martínez-Irujo, J.J. NADPH oxidase 5 promotes proliferation and fibrosis in human hepatic stellate cells. Free Radic. Biol. Med. 2018, 126, 15–26. [Google Scholar] [CrossRef]
- Pelacho, B.; Nakamura, Y.; Zhang, J.; Ross, J.; Heremans, Y.; Nelson-Holte, M.; Lemke, B.; Hagenbrock, J.; Jiang, Y.; Prosper, F. Multipotent adult progenitor cell transplantation increases vascularity and improves left ventricular function after myocardial infarction. J. Tissue Eng. Regen. Med. 2007, 1, 51–59. [Google Scholar] [CrossRef]
- Nakamura, Y.; Yoshiyama, M.; Omura, T.; Yoshida, K.; Kim, S.; Takeuchi, K.; Iwao, H.; Yoshikawa, J. Transmitral inflow pattern assessed by Doppler echocardiography in angiotensin II type 1A receptor knock out mice with myocardial infarction. Circ. J. 2002, 66, 192–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benavides-Vallve, C.; Corbacho, D.; Iglesias-Garcia, O.; Pelacho, B.; Albiasu, E.; Castaño, S.; Muñoz-Barrutia, A.; Prosper, F.; Ortiz-de-Solozarno, C. New strategies for echocardiographic evaluation of left ventricular function in a mouse model of long-term myocardial infarction. PLoS ONE 2012, 7, e41691. [Google Scholar] [CrossRef] [Green Version]
- Dao, V.T.; Elbatreek, M.H.; Altenhöfer, S.; Casas, A.I.; Pachado, M.P.; Neullens, C.T.; Knaus, U.G.; Schmidt, H.H.H.W. Isoform-selective NADPH oxidase inhibitor panel for pharmacological target validation. Free Radic. Biol. Med. 2019, 148, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Montezano, A.C.; Burger, D.; Paravicini, T.M.; Chignalia, A.Z.; Yusuf, H.; Almasri, M.; He, Y.; Callera, G.E.; He, G.; Krause, K.H. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ. Res. 2010, 106, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, N.V.; Avdonin, P.V.; Nadeev, A.D.; Zharkikh, I.L.; Jenkins, R.O. Reactive oxygen species in pathogenesis of atherosclerosis. Curr. Pharm. Des. 2015, 21, 1134–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riba, A.; Deres, L.; Sumegi, B.; Toth, K.; Szabados, E.; Halmosi, R. Cardioprotective effect of resveratrol in a postinfarction heart failure model. Oxid. Med. Cell Longev. 2017, 2017, 6819281. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Su, D.; Li, L.; Cai, H.; Zhang, M.; Zhai, J.; Li, M.; Wu, X.; Hu, K. Anti-inflammatory effects of Aureusidin in LPS-stimulated RAW264.7 macrophages via supressing NF-ᴋB and activating ROS- and MAPKs-dependent Nrf2/HO-1 signaling pathways. Toxicol. Appl. Pharmacol. 2019, 387–114846. [Google Scholar]
- Tsai, M.H.; Hsu, L.F.; Lee, C.W.; Chiang, Y.C.; Lee, M.H.; How, J.M.; Wu, C.M.; Huang, C.L.; Lee, I.T. Resveratrol inhibits urban particulate matter-induced COX-2/PGE2 release in human fibroblast-like synoviocytes via the inhibition of activation of NADPH oxidase/ROS/NF-ᴋB. Int. J. Biochem. Cell Biol. 2017, 88, 113–123. [Google Scholar] [CrossRef]
- Su, L.; Wang, Z.; Huang, F.; Lan, R.; Chen, X.; Han, D.; Zhang, L.; Zhang, W.; Hong, J. 18β-Glycyrrhetinic acid mitigates radiation-induced skin damage via NADPH oxidase/ROS/p38MAPK and NF-ᴋB pathways. Environ. Toxicol. Pharmacol. 2018, 60, 81–90. [Google Scholar] [CrossRef]
- Serrander, L.; Jaquet, V.; Bedard, K.; Plastre, O.; Hartley, O.; Arnaudeau, S.; Demaurex, N.; Schlegel, W.; Krause, K.H. NOX5 is expressed at the plasma membrane and generates superoxide in response to protein kinase C activation. Biochimie 2007, 89, 1159–1167. [Google Scholar] [CrossRef]
- Hussain, M.; Awan, F.R. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin. Exp. Hypertens. 2018, 40, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Montezano, A.C.; Nguyen Dinh Cat, A.; Rios, F.J.; Touyz, R.M. Angiotensin II and vascular injury. Curr. Hypertens. Rep. 2014, 16, 431. [Google Scholar] [CrossRef] [PubMed]
- Cheshmehkani, A.; Senatorov, I.S.; Dhuguru, J.; Ghoneim, O.; Moniri, N.H. Free-fatty acid receptor-4 (FFA4) modulates ROS generation and COX-2 expression via the C-terminal β-arrestin phosphosensor in Raw 264.7 macrophages. Biochem. Pharmacol. 2017, 146, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Girón, J.V.; Palacios, R.; Martín, A.; Hernanz, R.; Aguado, A.; Martínez-Revelles, S.; Barrús, M.T.; Salaices, M.; Alonso, M.J. Pioglitazone reduces angiotensin II-induced COX-2 expression through inhibition of ROS production and ET-1 transcription in vascular cells from spontaneously hypertensive rats. Am. J. Physiol. Heart Circ. Physiol. 2014, 306, 1582–1593. [Google Scholar] [CrossRef]
- Liang, X.; Yang, L.X.; Guo, R.; Shi, Y.; Hou, X.; Yang, Z.; Zhou, X.; Liu, H. Atorvastatin attenuates plaque vulnerability by downregulation of EMMPRIN expression via COX-2/PGE2 pathway. Exp. Ther. Med. 2017, 13, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, S.; Rossin, D.; Testa, G.; Gamba, P.; Staurenghi, E.; Biasi, F.; Poli, G.; Leonarduzzi, G. Up-regulation of COX-2 and mPGES-1 by 27-hydroxycholesterol and 4-hydroxynonenal: A crucial role in atherosclerotic plaque instability. Free Radic. Biol. Med. 2018, 129, 354–363. [Google Scholar] [CrossRef]
- Guzik, T.J.; Chen, W.; Gongora, M.C.; Guzik, B.; Lob, H.E.; Mangalat, D.; Hoch, N.; Dikalov, S.; Rudzinski, P.; Kapelak, B. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease. J. Am. Coll. Cardiol. 2008, 52, 1803–1809. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018, 117, 76–89. [Google Scholar] [CrossRef]
- Hahn, N.E.; Meischl, C.; Kawahara, T.; Musters, R.J.; Verhoef, V.M.; van der Velden, J.; Vonk, A.B.; Paulus, W.J.; van Rossum, A.C.; Niessen, H.W. NOX5 expression is increased in intramyocardial blood vessels and cardiomyocytes after acute myocardial infarction in humans. Am. J. Pathol. 2012, 180, 2222–2229. [Google Scholar] [CrossRef]
- Cuccurullo, C.; Fazia, M.L.; Mezzetti, A.; Cipollone, F. COX-2 expression in atherosclerosis: The good, the bad or the ugly? Curr. Med. Chem. 2007, 14, 1595–1605. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Z.; Sun, C.; Gu, D.; Teng, X.; Zhao, Y.; Zheng, Z. A variant in COX-2 gene is associated with left main coronary artery disease and clinical outcomes of coronary artery bypass grafting. Biomed. Res. Int. 2017, 2017, 2924731. [Google Scholar] [CrossRef] [PubMed]
- Ross, S.; Eikelboom, J.; Anand, S.S.; Eriksson, N.; Gerstein, H.C.; Mehta, S.; Connolly, S.J.; Rose, L.; Ridker, P.M.; Wallentin, L. Association of cyclooxygenase-2 genetic variant with cardiovascular disease. Eur. Heart J. 2014, 35, 2242–2248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Nong, Y.; Tukaye, D.N.; Rokosh, G.; Du, J.; Zhu, X.; Book, M.; Tomlin, A.; Li, Q.; Bolli, R. Inducible cardiac-specific overexpression of cyclooxygenase-2 (COX-2) confers resistance to ischemia/reperfusion injury. Basic Res. Cardiol. 2019, 114, 32. [Google Scholar] [CrossRef] [PubMed]
- Patrono, C. Cardiovascular effects of cyclooxygenase-2 inhibitors: A mechanistic and clinical perspective. Br. J. Clin. Pharmacol. 2016, 84, 957–964. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Sequence | Reverse Sequence |
---|---|---|
Hs cPLA-2 | GAAGATTCTCAGGTTTTAAAGACGC | GGCATCCATTAACGTAATCTCCAA |
Hs COX-1 | AAGTACCAGGTGCTGGATG | TGATGGTCTCCCCTATGA |
Hs COX-2 | TGCGGGAACACAACAGAGT | TAGCCACTCAAGTGTTGCAC |
Hs PGES | AGGATGCCCTGAGACACGGAG | CCCAGGAAAAGGAAGGGGTAG |
Hs PTGIS | ACATCTTTACTATACTGGTTGGGGG | TGTGGAGAAGAGTCAGTTTCATC |
Hs NOX1 | GCAGGGAGACAGGTGCCTTTTCC | CTACAGACTTGGGGTGGGAGGT |
Hs NOX2 | TTCCAGTGCGTGCTGCTCA | CTGCGGTCTGCCCACGTAC |
Hs NOX4 | CTGGCTCGCCAACGAAGGGG | GCTTGGAACCTTCTGTGATCCTCGG |
Hs NOX5 | ATGAGTGGCACCCCTTCACCATCAG | TCAGCAGGCTCACAAACCACTCGAA |
Hs GAPDH | CCAAGGTCATCCATGACAAC | TGTCATACCAGGAAATGAGC |
Mm cPLA-2 | ACGTGATGTGCCGGTGG | AAGAGAGGCAAAGGACACCG |
Mm COX-1 | ACTCACAGTGCGGTCCAAC | AACTCCCTTCTCAGCAGCAG |
Mm COX-2 | TTCGGGAGCACAACAGAGT | TAACCGCTCAGGTGTTGCAC |
Mm PGES | AGGATGCGCTGAAACGTGGAG | CCGAGGAAGAGGAAAGGATAG |
Mm PTGIS | TTGTCAGCGGGGGATAAA | GACCCATATTCCCCTGTGTG |
Mm TXA2S | AACAGAATGGCCTCAGGTCT | AGTTCACAGGCTTGGCTGAT |
Mm NOX2 | ACTCCTTGGGTCAGCACTGG | GTTCCTGTCCAGTTGTCTTCG |
Mm NOX4 | GGAGACTGGACAGAACGATTCC | TGTATAACTTAGGGTAATTTCTAGAGTGAATGA |
Mm GAPDH | TGCTGAGTATGTCGTGGAGTCTA | CATTGCTGACAATCTTGAGTGAG |
Protein | Band Molecular Weight, kDa | Provider | Dilution |
---|---|---|---|
Primary antibodies | |||
Anti-NOX5 (polyclonal, rabbit) | 75 | Abcam | 1:500 |
Anti-COX-2 (monoclonal, rabbit) | 72 | Cell Signalling | 1:1000 |
Anti-β-actin (monoclonal, mouse) | 42 | Sigma | 1:10000 |
Secondary antibodies | |||
Anti-rabbit (polyclonal, donkey) | - | GE Healthcare | 1:10000 |
Anti-mouse (monoclonal, goat) | - | GE Healthcare | 1:4000 |
Basal | 2 Days | 28 Days | ||||
---|---|---|---|---|---|---|
NOX5+/−CRE+/− | CRE+/− | NOX5+/−CRE+/− | CRE+/− | NOX5+/−CRE+/− | CRE+/− | |
IVS;d (mm) | 0.58 ± 0.01 | 0.56 ± 0.01 | 0.68 ± 0.03 | 0.63 ± 0.02 | 0.76 ± 0.02 | 0.73 ± 0.02 |
LVID;d (mm) | 4.45 ± 0.09 | 4.50 ± 0.06 | 4.63 ± 0.08 | 4.69 ± 0.09 | 5.12 ± 0.14 | 5.41 ± 0.19 |
LVPW;d (mm) | 0.56 ± 0.01 | 0.56 ± 0.01 | 0.62 ± 0.01 | 0.62 ± 0.03 | 0.71 ± 0.01 | 0.71 ± 0.02 |
IVS;s (mm) | 0.70 ± 0.01 | 0.69 ± 0.01 | 0.79 ± 0.02 | 0.73 ± 0.02 | 0.87 ± 0.02 | 0.85 ± 0.02 |
LVID;s (mm) | 3.22 ± 0.09 | 3.23 ± 0.06 | 3.82 ± 0.10 | 3.89 ± 0.09 | 4.15 ± 0.18 | 4.42 ± 0.22 |
LVPW;s (mm) | 0.69 ± 0.01 | 0.69 ± 0.02 | 0.75 ± 0.01 | 0.74 ± 0.02 | 0.87 ± 0.03 | 0.84 ± 0.02 |
LV Vol;d (µL) | 90.70 ± 4.18 | 92.51 ± 2.81 | 99.22 ± 4.17 | 101.26 ± 4.69 | 126.48 ± 8.14 | 136.45 ± 16.02 |
LV Vol;s (µL) | 41.83 ± 2.90 | 43.23 ± 2.01 | 62.45 ± 3.94 | 65.47 ± 3.72 | 79.30 ± 8.43 | 87.02 ± 8.26 |
% EF | 53.75 ± 1.50 | 54.18 ± 1.24 | 36.55 ± 1.73 | 35.39 ± 1.90 | 38.87 ± 2.99 | 37.34 ± 3.23 |
% FS | 27.45 ± 1.20 | 29.59 ± 1.82 | 17.58 ± 0.94 | 16.98 ± 1.03 | 19.18 ± 1.66 | 18.44 ± 1.82 |
LV Mass (mg) | 90.82 ± 3.18 | 90.45 ± 2.78 | 115.86 ± 6.32 | 110.91 ± 4.97 | 159.80 ± 7.84 | 172.80 ± 12.41 |
Corrected LV Mass (mg) | 72.55 ± 2.53 | 71.99 ± 2.31 | 90.44 ± 5.41 | 89.95 ± 3.69 | 127.89 ± 6.28 | 138.24 ± 9.93 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marqués, J.; Cortés, A.; Pejenaute, Á.; Ansorena, E.; Abizanda, G.; Prósper, F.; Martínez-Irujo, J.J.; Miguel, C.d.; Zalba, G. Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells. Cells 2020, 9, 637. https://doi.org/10.3390/cells9030637
Marqués J, Cortés A, Pejenaute Á, Ansorena E, Abizanda G, Prósper F, Martínez-Irujo JJ, Miguel Cd, Zalba G. Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells. Cells. 2020; 9(3):637. https://doi.org/10.3390/cells9030637
Chicago/Turabian StyleMarqués, Javier, Adriana Cortés, Álvaro Pejenaute, Eduardo Ansorena, Gloria Abizanda, Felipe Prósper, Juan José Martínez-Irujo, Carlos de Miguel, and Guillermo Zalba. 2020. "Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells" Cells 9, no. 3: 637. https://doi.org/10.3390/cells9030637
APA StyleMarqués, J., Cortés, A., Pejenaute, Á., Ansorena, E., Abizanda, G., Prósper, F., Martínez-Irujo, J. J., Miguel, C. d., & Zalba, G. (2020). Induction of Cyclooxygenase-2 by Overexpression of the Human NADPH Oxidase 5 (NOX5) Gene in Aortic Endothelial Cells. Cells, 9(3), 637. https://doi.org/10.3390/cells9030637