Modulation of Cell–Cell Interactions in Drosophila Oocyte Development
Abstract
:1. Introduction
2. Niche-Stem Cell Interaction Utilizes Specialized Cellular Protrusions
3. Escort Cell and Germline Interaction
4. Follicle Cell Patterning by Interplay of Local Signaling
5. Oocyte Polarization: Polarized Exocytosis of Gurken Protein
6. Transfer of Vitelline Components from Follicle Cells to Oocyte: The Potential Role of Microvilli
7. Nurse Cell Dumping
8. Conclusions, Implications, and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, R.C.; Rubinson, A.C.; Smith, R.F. Oogenesis in adult Drosophila melanogaster. Growth 1956, 121–157. [Google Scholar]
- King, B.R.C.; Koch, E.A. Studies on the Ovarian Follicle Cells of Drosophila. J. Cell Sci. 1963, 104, 297–320. [Google Scholar]
- Bastock, R.; St., Johnston, D. Drosophila oogenesis. Curr. Biol. 2008, 18, R1082–R1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nystul, T.; Spradling, A. Regulation of epithelial stem cell replacement and follicle formation in the Drosophila ovary. Genetics 2010, 184, 503–515. [Google Scholar] [CrossRef] [Green Version]
- Fadiga, J.; Nystul, T.G. The follicle epithelium in the Drosophila ovary is maintained by a small number of stem cells. Elife 2019, 8, e49050. [Google Scholar] [CrossRef]
- Wilcockson, S.G.; Ashe, H.L. Drosophila Ovarian Germline Stem Cell Cytocensor Projections Dynamically Receive and Attenuate BMP Signaling. Dev. Cell 2019, 50, 296–312. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Ríos, P.; Guerrero, I.; González-Reyes, A. Cytoneme-Mediated Delivery of Hedgehog Regulates the Expression of Bone Morphogenetic Proteins to Maintain Germline Stem Cells in Drosophila. PLoS Biol. 2012, 10, e1001298. [Google Scholar] [CrossRef] [Green Version]
- Grammont, M.; Irvine, K.D. fringe and Notch specify polar cell fate during Drosophila oogenesis. Development 2001, 128, 2243–2253. [Google Scholar]
- López-Schier, H.; St., Johnston, D. Delta signaling from the germ line controls the proliferation and differentiation of the somatic follicle cells during Drosophila oogenesis. Genes Dev. 2001, 15, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Banisch, T.U.; Maimon, I.; Dadosh, T.; Gilboa, L. Escort cells generate a dynamic compartment for germline stem cell differentiation via combined Stat and Erk signalling. Development 2017, 144, 1937–1947. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, Y.; Sexton, T.R.; Dejima, K.; Perry, D.W.; Takemura, M.; Kobayashi, S.; Nakato, H.; Harrison, D.A. Glypicans regulate JAK/STAT signaling and distribution of the Unpaired morphogen. Development 2012, 139, 4162–4171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, A.G.; Tamori, Y.; Huang, Y.C.; Melendez, N.T.; Deng, W.M. Efficient EGFR signaling and dorsal-ventral axis patterning requires syntaxin dependent Gurken trafficking. Dev. Biol. 2013, 373, 349–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennan, M.D.; Weiner, A.J.; Goralski, T.J.; Mahowald, A.P. The follicle cells are a major site of vitellogenin synthesis in Drosophila melanogaster. Dev. Biol. 1982, 89, 225–236. [Google Scholar] [CrossRef]
- D’Alterio, C.; Tran, D.D.; Yeung, M.W.; Hwang, M.S.; Li, M.A.; Arana, C.J.; Mulligan, V.K.; Kubesh, M.; Sharma, P.; Chase, M.; et al. Drosophila melanogaster Cad99C, the orthologue of human Usher cadherin PCDH15, regulates the length of microvilli. J. Cell Biol. 2005, 171, 549–558. [Google Scholar] [CrossRef]
- Schlichting, K.; Wilsch-Bräuninger, M.; Demontis, F.; Dahmann, C. Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. J. Cell Sci. 2006, 119, 1184–1195. [Google Scholar] [CrossRef] [Green Version]
- Mahajan-Miklos, S.; Cooley, L. Intercellular Cytoplasm Transport during Drosophila Oogenesis. Dev. Bio. 1994, 165, 336–351. [Google Scholar] [CrossRef]
- Robinson, D.N.; Cant, K.; Cooley, L. Morphogenesis of Drosophila ovarian ring canals. Development 1994, 120, 2015–2025. [Google Scholar]
- Quinlan, M.E. Cytoplasmic Streaming in the Drosophila Oocyte. Annu. Rev. Cell Dev. Biol. 2016, 32, 173–195. [Google Scholar] [CrossRef]
- Cooley, L.; Theurkauf, W.E. Cytoskeletal functions during Drosophila oogenesis. Science 1994, 266, 590–596. [Google Scholar] [CrossRef]
- Nicolas, E.; Chenouard, N.; Olivo-Marin, J.C.; Guichet, A. A dual role for actin and microtubule cytoskeleton in the transport of Golgi units from the nurse cells to the oocyte across ring canals. Mol. Biol. Cell 2009, 20, 556–568. [Google Scholar] [CrossRef] [Green Version]
- Buszczak, M.; Cooley, L. Eggs to die for: Cell death during Drosophila oogenesis. Cell Death Diff. 2000, 7, 1071–1074. [Google Scholar] [CrossRef] [PubMed]
- Inaba, M.; Yamashita, Y.M.; Buszczak, M. Keeping stem cells under control: New insights into the mechanisms that limit niche-stem cell signaling within the reproductive system. Mol. Reprod. Dev. 2016, 83, 675–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliazer, S.; Palacios, V.; Wang, Z.; Kollipara, R.K.; Kittler, R.; Buszczak, M. Lsd1 Restricts the Number of Germline Stem Cells by Regulating Multiple Targets in Escort Cells. PLoS Genet. 2014, 10, e1004200. [Google Scholar] [CrossRef] [Green Version]
- Mottier-Pavie, V.I.; Palacios, V.; Eliazer, S.; Scoggin, S.; Buszczak, M. The Wnt pathway limits BMP signaling outside of the germline stem cell niche in Drosophila ovaries. Dev. Biol. 2016, 417, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Zheng, X.; Zheng, W.; Zhang, G.; Wang, H.; Tao, Y.; Chen, D. The niche-dependent feedback loop generates a BMP activity gradient to determine the germline stem cell fate. Curr. Biol. 2012, 22, 515–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Harris, R.E.; Bayston, L.J.; Ashe, H.L. Type IV collagens regulate BMP signalling in Drosophila. Nature 2008, 455, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Van De Bor, V.; Zimniak, G.; Papone, L.; Cerezo, D.; Malbouyres, M.; Juan, T.; Ruggiero, F.; Noselli, S. Companion Blood Cells Control Ovarian Stem Cell Niche Microenvironment and Homeostasis. Cell Rep. 2015, 13, 546–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Z.; Wang, Z. The glypican Dally is required in the niche for the maintenance of germline stem cells and short-range BMP signaling in the Drosophila ovary. Development 2009, 136, 3627–3635. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.E.; Pargett, M.; Sutcliffe, C.; Umulis, D.; Ashe, H.L. Brat Promotes Stem Cell Differentiation via Control of a Bistable Switch that Restricts BMP Signaling. Dev. Cell 2011, 20, 72–83. [Google Scholar] [CrossRef]
- Liu, M.; Lim, T.M.; Cai, Y. The Drosophila Female Germline Stem Cell Lineage Acts to Spatially Restrict DPP Function Within the Niche. Sci. Signal. 2010, 3, ra57. [Google Scholar] [CrossRef]
- Schulz, C.; Wood, C.G.; Jones, D.L.; Tazuke, S.I.; Fuller, M.T. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 2002, 129, 4523–4534. [Google Scholar] [PubMed]
- Xia, L.; Jia, S.; Huang, S.; Wang, H.; Zhu, Y.; Mu, Y.; Kan, L.; Zheng, W.; Wu, D.; Li, X.; et al. The Fused/Smurf complex controls the fate of Drosophila germline stem cells by generating a gradient BMP response. Cell 2010, 143, 978–990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Xia, L.; Chen, D.; Yang, Y.; Huang, H.; Yang, L.; Zhao, Q.; Shen, L.; Wang, J.; Chen, D. Otefin, a Nuclear Membrane Protein, Determines the Fate of Germline Stem Cells in Drosophila via Interaction with Smad Complexes. Dev. Cell 2008, 14, 494–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, C.Y.; Su, Y.H.; Yang, S.M.; Lin, K.Y.; Lai, C.M.; Rastegari, E.; Amartuvshin, O.; Cho, Y.; Cai, Y.; Hsu, H.J. Smad-Independent BMP Signaling in Somatic Cells Limits the Size of the Germline Stem Cell Pool. Stem Cell Rep. 2018, 11, 811–827. [Google Scholar] [CrossRef] [Green Version]
- Inaba, M.; Buszczak, M.; Yamashita, Y.M. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 2015, 523, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Morris, L.X.; Spradling, A.C. Long-term live imaging provides new insight into stem cell regulation and germline-soma coordination in the Drosophila ovary. Development 2011, 138, 2207–2215. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Weber, F.A.; Kornberg, T.B. Cytonemes: Cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 1999, 97, 599–607. [Google Scholar] [CrossRef] [Green Version]
- Kirilly, D.; Wang, S.; Xie, T. Self-maintained escort cells form a germline stem cell differentiation niche. Development 2011, 138, 5087–5097. [Google Scholar] [CrossRef] [Green Version]
- Maimon, I.; Popliker, M.; Gilboa, L. Without children is required for stat-mediated zfh1 transcription and for germline stem cell differentiation. Development 2014, 141, 2602–2610. [Google Scholar] [CrossRef] [Green Version]
- Gilboa, L.; Lehmann, R. Soma-germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature 2006, 443, 97–100. [Google Scholar] [CrossRef]
- Mattila, P.K.; Batista, F.D.; Treanor, B. Dynamics of the actin cytoskeleton mediates receptor cross talk: An emerging concept in tuning receptor signaling. J. Cell Biol. 2016, 212, 267–280. [Google Scholar] [CrossRef]
- Ruohola, H.; Bremer, K.A.; Baker, D.; Swedlow, J.R.; Jan, L.Y.; Jan, Y.N. Role of neurogenic genes in establishment of follicle cell fate and oocyte polarity during oogenesis in Drosophila. Cell 1991, 66, 433–449. [Google Scholar] [CrossRef]
- Xu, T.; Caron, L.A.; Fehon, R.G.; Artavanis-Tsakonas, S. The involvement of the Notch locus in Drosophila oogenesis. Development 1992, 115, 913–922. [Google Scholar]
- Goode, S.; Melnick, M.; Chou, T.B.; Perrimon, N. The neurogenic genes egghead and brainiac define a novel signaling pathway essential for epithelial morphogenesis during Drosophila oogenesis. Development 1996, 122, 3863–3879. [Google Scholar]
- Torres, I.L.; López-Schier, H.; St Johnston, D. A Notch/Delta-dependent relay mechanism establishes anterior-posterior polarity in Drosophila. Dev. Cell 2003, 5, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Baksa, K.; Parke, T.; Dobens, L.L.; Dearolf, C.R. The Drosophila STAT protein, stat92E, regulates follicle cell differentiation during oogenesis. Dev. Biol. 2002, 243, 166–175. [Google Scholar] [CrossRef] [Green Version]
- Ghiglione, C.; Devergne, O.; Georgenthum, E.; Carballès, F.; Médioni, C.; Cerezo, D.; Noselli, S. The Drosophila cytokine receptor Domeless controls border cell migration and epithelial polarization during oogenesis. Development 2002, 129, 5437–5447. [Google Scholar] [CrossRef] [Green Version]
- McGregor, J.R.; Xi, R.; Harrison, D.A. JAK signaling is somatically required for follicle cell differentiation in Drosophila. Development 2002, 129, 705–717. [Google Scholar]
- Forbes, A.J.; Spradling, A.C.; Ingham, P.W.; Lin, H. The role of segment polarity genes during early oogenesis in Drosophila. Development 1996, 122, 3283–3294. [Google Scholar]
- Tworoger, M.; Larkin, M.K.; Bryant, Z.; Ruohola-Baker, H. Mosaic analysis in the Drosophila ovary reveals a common Hedgehog- inducible precursor stage for stalk and polar cells. Genetics 1991, 151, 739–748. [Google Scholar]
- Zhang, Y.; Kalderon, D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature 2001, 410, 599–604. [Google Scholar] [CrossRef]
- Dai, W.; Peterson, A.; Kenney, T.; Burrous, H.; Montell, D.J. Quantitative microscopy of the Drosophila ovary shows multiple niche signals specify progenitor cell fate. Nat. Commun. 2017, 8, 1244. [Google Scholar] [CrossRef]
- Mostov, K.; Su, T.; ter Beest, M. Polarized epithelial membrane traffic: Conservation and plasticity. Nat. Cell Biol. 2003, 5, 287–293. [Google Scholar] [CrossRef]
- Angus, K.L.; Griffiths, G.M. Cell polarisation and the immunological synapse. Curr. Opin. Cell Biol. 2013, 25, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.C.; TerBush, D.; Abraham, M.; Guo, W. The Exocyst Complex in Polarized Exocytosis. Int. Rev. Cytol. 2004, 233, 243–265. [Google Scholar]
- Saunders, C.; Cohen, R.S. The Role of Oocyte Transcription, the 5′UTR, and Translation Repression and Derepression in Drosophila gurken mRNA and Protein Localization. Mol. Cell 1999, 3, 43–54. [Google Scholar] [CrossRef]
- Zhao, T.; Graham, O.S.; Raposo, A.; St Johnston, D. Growing Microtubules Push the Oocyte Nucleus to Polarize the Drosophila Dorsal-Ventral Axis. Science 2012, 336, 999–1003. [Google Scholar] [CrossRef] [Green Version]
- Roth, S.; Neuman-Silberberg, F.S.; Barcelo, G.; Schüpbach, T. Cornichon and the EGF receptor signaling process are necessary for both anterior-posterior and dorsal-ventral pattern formation in Drosophila. Cell 1995, 81, 967–978. [Google Scholar] [CrossRef] [Green Version]
- González-Reyes, A.; Elliott, H.; St Johnston, D. Polarization of both major body axes in Drosophila by gurken-torpedo signalling. Nature 1995, 375, 654–658. [Google Scholar] [CrossRef]
- Nilson, L.A.; Schüpbach, T. 7 EGF Receptor Signaling in Drosophila Oogenesis. Curr. Top. Dev. Biol. 1998, 44, 203–243. [Google Scholar]
- Queenan, A.M.; Barcelo, G.; Van Buskirk, C.; Schüpbach, T. The transmembrane region of Gurken is not required for biological activity, but is necessary for transport to the oocyte membrane in Drosophila. Mech. Dev. 1991, 89, 35–42. [Google Scholar] [CrossRef]
- Steinhauer, J.; Kalderon, D. Microtubule polarity and axis formation in theDrosophila oocyte. Dev. Dyn. 2006, 235, 1455–1468. [Google Scholar] [CrossRef]
- Coutelis, J.B.; Ephrussi, A. Rab6 mediates membrane organization and determinant localization during Drosophila oogenesis. Development 2007, 134, 1419–1430. [Google Scholar] [CrossRef] [Green Version]
- Iwanami, N.; Nakamura, Y.; Satoh, T.; Liu, Z.; Satoh, A.K. Rab6 Is Required for Multiple Apical Transport Pathways but Not the Basolateral Transport Pathway in Drosophila Photoreceptors. PLoS Genet. 2016, 12, e1005828. [Google Scholar] [CrossRef] [Green Version]
- Schonbaum, C.P.; Lee, S.; Mahowald, A.P. The Drosophila yolkless gene encodes a vitellogenin receptor belonging to the low density lipoprotein receptor superfamily. Proc. Natl. Acad. Sci. USA 1995, 92, 1485–1489. [Google Scholar] [CrossRef] [Green Version]
- Schonbaum, C.P.; Perrino, J.J.; Mahowald, A.P. Regulation of the vitellogenin receptor during Drosophila melanogaster oogenesis. Mol. Biol. Cell 2000, 11, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Trougakos, I.P.; Papassideri, I.S.; Waring, G.L.; Margaritis, L.H. Differential sorting of constitutively co-secreted proteins in the ovarian follicle cells of Drosophila. Eur. J. Cell Biol. 2001, 80, 271–284. [Google Scholar] [CrossRef]
- Spradling, A.C. Developmental genetics of oogenesis. In The Development of Drosophila melanogaster; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1993. [Google Scholar]
- Waring, G.L.; Mahowald, A.P. Identification and time of synthesis of chorion proteins in Drosophila melanogaster. Cell 1979, 16, 599–607. [Google Scholar] [CrossRef]
- Hames, B.D.; Bownes, M. Synthesis of yolk proteins in Drosophila melanogaster. Insect Biochem. 1978, 8, 319–328. [Google Scholar] [CrossRef]
- Li, R.; Albertini, D.F. The road to maturation: Somatic cell interaction and self-organization of the mammalian oocyte. Nat. Rev. Mol. Cell Biol. 2013, 14, 141–152. [Google Scholar] [CrossRef]
- Clarke, H.J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7. [Google Scholar] [CrossRef]
- Baena, V.; Terasaki, M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019, 9, 1262. [Google Scholar] [CrossRef]
- Terasaki, M.; Shemesh, T.; Kasthuri, N.; Klemm, R.W.; Schalek, R.; Hayworth, K.J.; Hand, A.R.; Yankova, M.; Huber, G.; Lichtman, J.W.; et al. Stacked endoplasmic reticulum sheets are connected by helicoidal membrane motifs. Cell 2013, 154, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Koch, E.A.; King, R.C. Further studies on the ring canal system of the ovarian cystocytes of Drosophila melanogaster. Cell Tissue Res. 1969, 102, 129–152. [Google Scholar] [CrossRef]
- Gutzeit, H. The role of microtubules in the differentiation of ovarian follicles during vitellogenesis in Drosophila. Roux’s Arch. Dev. Biol. 1986, 195, 173–181. [Google Scholar] [CrossRef]
- Yue, L.; Spradling, A.C. A gene required for ring canal formation during Drosophila oogenesis, encodes a homolog of adducin. Genes Dev. 1992, 6, 2443–2454. [Google Scholar] [CrossRef]
- Cooley, L.; Verheyen, E.; Ayers, K. Chickadee encodes a profilin required for intercellular cytoplasm transport during Drosophila oogenesis. Cell 1992, 69, 173–184. [Google Scholar] [CrossRef]
- Sokol, N.S.; Cooley, L. Drosophila Filamin encoded by the cheerio locus is a component of ovarian ring canals. Curr. Biol. 1999, 9, 1221–1230. [Google Scholar] [CrossRef] [Green Version]
- Cooley, L. Drosophila ring canal growth requires Src and Tec kinases. Cell 1998, 93, 913–915. [Google Scholar] [CrossRef] [Green Version]
- Januschke, J.; Gervais, L.; Dass, S.; Kaltschmidt, J.A.; Lopez-Schier, H.; St Johnston, D.; Brand, A.H.; Roth, S.; Guichet, A. Polar transport in the Drosophila oocyte requires Dynein and Kinesin I cooperation. Curr. Biol. 2002, 12, 1971–1989. [Google Scholar] [CrossRef] [Green Version]
- Brendza, R.P.; Serbus, L.R.; Saxton, W.M.; Duffy, J.B. Posterior Localization of Dynein and Dorsal-Ventral Axis Formation Depend on Kinesin in Drosophila Oocytes anterior margin in a microtubule-dependent manner. Curr. Biol. 2002, 12, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- Cha, B.J.; Koppetsch, B.S.; Theurkauf, W.E. In vivo analysis of drosophila bicoid mRNA localization reveals a novel microtubule-dependent axis specification pathway. Cell 2001, 106, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, S.; Kulkarni, S.; Karess, R. Drosophila nonmuscle myosin II is required for rapid cytoplasmic transport during oogenesis and for axial nuclear migration in early embryos. Development 1995, 121, 1937–1946. [Google Scholar] [PubMed]
- Tootle, T.L.; Spradling, A.C. Drosophila Pxt: A cyclooxygenase-like facilitator of follicle maturation. Development 2008, 135, 839–847. [Google Scholar] [CrossRef] [Green Version]
- Groen, C.M.; Spracklen, A.J.; Fagan, T.N.; Tootle, T.L. Drosophila Fascin is a novel downstream target of prostaglandin signaling during actin remodeling. Mol. Biol. Cell 2012, 23, 4567–4578. [Google Scholar] [CrossRef]
- Spracklen, A.J.; Kelpsch, D.J.; Chen, X.; Spracklen, C.N.; Tootle, T.L. Prostaglandins temporally regulate cytoplasmic actin bundle formation during Drosophila oogenesis. Mol. Biol. Cell 2014, 25, 397–411. [Google Scholar] [CrossRef]
- Guild, G.M.; Connelly, P.S.; Shaw, M.K.; Tilney, L.G. Actin filament cables in Drosophila nurse cells are composed of modules that slide passively past one another during dumping. J. Cell Biol. 1997, 138, 783–797. [Google Scholar] [CrossRef] [Green Version]
- Huelsmann, S.; Ylä, J.; Brown, N.H. Article Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells. Dev. Cell 2013, 26, 604–615. [Google Scholar] [CrossRef] [Green Version]
- McCall, K.; Steller, H. Requirement for DCP-1 caspase during Drosophila oogenesis. Science 1998, 279, 230–234. [Google Scholar] [CrossRef]
- Foley, K.; Cooley, L. Apoptosis in late stage Drosophila nurse cells does not require genes within the H99 deficiency. Development 1998, 125, 1075–1082. [Google Scholar]
- Timmons, A.K.; Mondragon, A.A.; Meehan, T.L.; McCall, K. Control of non-apoptotic nurse cell death by engulfment genes in Drosophila. Fly 2017, 11, 104–111. [Google Scholar] [CrossRef]
- Timmons, A.K.; Mondragon, A.A.; Schenkel, C.E.; Yalonetskaya, A.; Taylor, J.D.; Moynihan, K.E.; Etchegaray, J.I.; Meehan, T.L.; McCall, K. Phagocytosis genes nonautonomously promote developmental cell death in the Drosophila ovary. Proc. Natl. Acad. Sci. USA 2016, 113, E1246–E1255. [Google Scholar] [CrossRef] [Green Version]
- Suzanne, M.; Perrimon, N.; Noselli, S. The Drosophila JNK pathway controls the morphogenesis of the egg dorsal appendages and micropyle. Dev. Biol. 2001, 237, 282–294. [Google Scholar] [CrossRef] [Green Version]
Sending Cell | Receiving Cell | Signaling Pathway | Cellular/Extracellular Components | Function | References | |
---|---|---|---|---|---|---|
Cap cells | GSCs | BMP | Filopodia Cytocensors | Signal reception and attenuation | [6] | |
HSPG (Dally) | Local Dpp tethering | |||||
Cap cells | Escort cells | Hh | Cytonemes | Hh delivery | [7] | |
Anterior Cyst | Follicle cells ->Polar cells | Delta/Notch | Contact dependent signaling | Local polar cell specification | [8,9] | |
Escort cells | Cystoblasts, Cyst | EGFR JAK/STAT | Microtubule rich membrane extension | Posterior allocation of the cyst (?) | [10] | |
Polar Cells | Follicle cells -> Stalk cells | JAK/STAT | HSPG (Dally) | Local Unpaired gradient | [11] | |
Oocyte | Dorsoventral Follicle cells | Gurken/Torpedo (EGFR) | Polarized Gurken secretion (Exocyst) | Signal localization | [12] | |
Follicle cells | Oocyte | N/A | Exo/endo cytosis Microvilli | Vitellogenesis | [13,14,15] | |
Nurse cells | Oocyte | N/A | Ring canal Microtubules | Cytoplasm transfer | [16,17,18] | |
Actin/Myosin | Dumping | [19,20,21] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antel, M.; Inaba, M. Modulation of Cell–Cell Interactions in Drosophila Oocyte Development. Cells 2020, 9, 274. https://doi.org/10.3390/cells9020274
Antel M, Inaba M. Modulation of Cell–Cell Interactions in Drosophila Oocyte Development. Cells. 2020; 9(2):274. https://doi.org/10.3390/cells9020274
Chicago/Turabian StyleAntel, Matthew, and Mayu Inaba. 2020. "Modulation of Cell–Cell Interactions in Drosophila Oocyte Development" Cells 9, no. 2: 274. https://doi.org/10.3390/cells9020274
APA StyleAntel, M., & Inaba, M. (2020). Modulation of Cell–Cell Interactions in Drosophila Oocyte Development. Cells, 9(2), 274. https://doi.org/10.3390/cells9020274