Genetic Variation Underpinning ADHD Risk in a Caribbean Community
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. SNPs Selection, DNA Extraction, and Genotyping
3. Statistical Analysis
3.1. Quality Control
3.2. Genetic- and Haplotype-Based Association Analyses
4. Results
4.1. Family-Based Association Tests
4.2. Haplotype Block within ADGRL3 Confer Susceptibility to ADHD
5. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Visser, S.; Bitsko, R.; Danielson, M.; Perou, R. Increasing prevalence of parent-reported attention-deficit/hyperactivity disorder among children—United States, 2003 and 2007. Mortal. Morb. Wkly. Rep. 2010, 59, 1439–1443. [Google Scholar]
- Jain, M.; Velez, J.I.; Acosta, M.T.; Palacio, L.G.; Balog, J.; Roessler, E.; Pineda, D.; Londono, A.C.; Palacio, J.D.; Arbelaez, A.; et al. A cooperative interaction between lphn3 and 11q doubles the risk for adhd. Mol. Psychiatry 2011, 17, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.T.; Velez, J.I.; Bustamante, M.L.; Balog, J.Z.; Arco-Burgos, M.; Muenke, M. A two-locus genetic interaction between lphn3 and 11q predicts adhd severity and long-term outcome. Transl. Psychiatry 2011, 1, e17. [Google Scholar] [CrossRef] [PubMed]
- Bukstein, O.G. Attention deficit hyperactivity disorder and substance use disorders. Curr. Top. Behav. Neurosci. 2012, 9, 145–172. [Google Scholar] [PubMed]
- Pelham, W.E., Jr.; Fabiano, G.A. Evidence-based psychosocial treatments for attention-deficit/hyperactivity disorder. J. Clin. Child. Adolesc. Psychol. 2008, 37, 184–214. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Burgos, M.; Jain, M.; Acosta, M.T.; Shively, S.; Stanescu, H.; Wallis, D.; Domene, S.; Velez, J.I.; Karkera, J.D.; Balog, J.; et al. A common variant of the latrophilin 3 gene, lphn3, confers susceptibility to adhd and predicts effectiveness of stimulant medication. Mol. Psychiatry 2010, 15, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Sibley, M.H.; Pelham, W.E., Jr.; Molina, B.S.; Gnagy, E.M.; Waschbusch, D.A.; Garefino, A.C.; Kuriyan, A.B.; Babinski, D.E.; Karch, K.M. Diagnosing adhd in adolescence. J. Consult. Clin. Psychol. 2012, 80, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Sibley, M.H.; Pelham, W.E.; Molina, B.S.; Gnagy, E.M.; Waschbusch, D.A.; Biswas, A.; MacLean, M.G.; Babinski, D.E.; Karch, K.M. The delinquency outcomes of boys with adhd with and without comorbidity. J. Abnorm. Child. Psychol. 2011, 39, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Molina, B.S.; Pelham, W.E.; Gnagy, E.M.; Thompson, A.L.; Marshal, M.P. Attention-deficit/hyperactivity disorder risk for heavy drinking and alcohol use disorder is age specific. Alcohol Clin. Exp. Res. 2007, 31, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.; Palacio, L.G.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Restrepo, M.I.; Munoz, J.F.; Lopera, F.; Wallis, D.; Berg, K.; et al. Attention-deficit/hyperactivity disorder and comorbid disruptive behavior disorders: Evidence of pleiotropy and new susceptibility loci. Biol. Psychiatry 2007, 61, 1329–1339. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Burgos, M.; Castellanos, F.X.; Pineda, D.; Lopera, F.; Palacio, J.D.; Palacio, L.G.; Rapoport, J.L.; Berg, K.; Bailey-Wilson, J.E.; Muenke, M. Attention-deficit/hyperactivity disorder in a population isolate: Linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11. Am. J. Hum. Genet. 2004, 75, 998–1014. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. Attention deficit/hyperactivity disorder (adhd): Complex phenotype, simple genotype? Genet. Med. 2004, 6, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.F.; Muenke, M.; Arcos-Burgos, M. From the black widow spider to human behavior: Latrophilins, a relatively unknown class of g protei-coupled receptors, are implicated in psychiatric disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2011, 156B, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bruxel, E.M.; Salatino-Oliveira, A.; Akutagava-Martins, G.C.; Tovo-Rodrigues, L.; Genro, J.P.; Zeni, C.P.; Polanczyk, G.V.; Chazan, R.; Schmitz, M.; Arcos-Burgos, M.; et al. Lphn3 and attention-deficit/hyperactivity disorder: A susceptibility and pharmacogenetic study. Genes Brain Behav. 2015, 14, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Sanchez, C.I.; Riveiro-Alvarez, R.; Soto-Insuga, V.; Rodrigo, M.; Tirado-Requero, P.; Mahillo-Fernandez, I.; Abad-Santos, F.; Carballo, J.J.; Dal-Re, R.; Ayuso, C. Attention deficit hyperactivity disorder: Genetic association study in a cohort of spanish children. Behav. Brain Funct. 2016, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Association of lphn3 rs6551665 a/g polymorphism with attention deficit and hyperactivity disorder in korean children. Gene 2015, 566, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Bosch, R.; Richarte, V.; Palomar, G.; Gastaminza, X.; Bielsa, A.; Arcos-Burgos, M.; Muenke, M.; et al. Contribution of lphn3 to the genetic susceptibility to adhd in adulthood: A replication study. Genes Brain Behav. 2010, 10, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Acosta, M.T.; Swanson, J.; Stehli, A.; Molina, B.S.; Team, M.T.A.; Martinez, A.F.; Arcos-Burgos, M.; Muenke, M. Adgrl3 (lphn3) variants are associated with a refined phenotype of adhd in the mta study. Mol. Genet. Genom. Med. 2016, 4, 540–547. [Google Scholar] [CrossRef]
- Song, J.; Kim, S.W.; Hong, H.J.; Lee, M.G.; Lee, B.W.; Choi, T.K.; Lee, S.H.; Yook, K.H. Association of snap-25, slc6a2, and lphn3 with oros methylphenidate treatment response in attention-deficit/hyperactivity disorder. Clin. Neuropharmacol. 2014, 37, 136–141. [Google Scholar] [CrossRef]
- Labbe, A.; Liu, A.; Atherton, J.; Gizenko, N.; Fortier, M.E.; Sengupta, S.M.; Ridha, J. Refining psychiatric phenotypes for response to treatment: Contribution of lphn3 in adhd. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159, 776–785. [Google Scholar] [CrossRef]
- Fallgatter, A.J.; Ehlis, A.C.; Dresler, T.; Reif, A.; Jacob, C.P.; Arcos-Burgos, M.; Muenke, M.; Lesch, K.P. Influence of a latrophilin 3 (lphn3) risk haplotype on event-related potential measures of cognitive response control in attention-deficit hyperactivity disorder (adhd). Eur Neuropsychopharmacol. 2013, 23, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Villalón, J. Colonias Extranjeras en Barranquilla, Colombia; Ediciones Uninorte: Barranquilla, Colombia, 2008. [Google Scholar]
- Mathias, R.A.; Taub, M.A.; Gignoux, C.R.; Fu, W.; Musharoff, S.; O′Connor, T.D.; Vergara, C.; Torgerson, D.G.; Pino-Yanes, M.; Shringarpure, S.S.; et al. A continuum of admixture in the western hemisphere revealed by the african diaspora genome. Nat. Commun. 2016, 7, 12522. [Google Scholar] [CrossRef] [PubMed]
- Arcos-Burgos, M.; Muenke, M. Genetics of population isolates. Clin. Genet. 2002, 61, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Bravo, M.L.; Valenzuela, C.Y.; Arcos-Burgos, O.M. Polymorphisms and phyletic relationships of the paisa community from antioquia (colombia). Gene Geogr. 1996, 10, 11–17. [Google Scholar] [PubMed]
- De Castro, M.; Restrepo, C.M. Genetics and genomic medicine in colombia. Mol. Genet. Genom. Med. 2015, 3, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Ossa, H.; Aquino, J.; Pereira, R.; Ibarra, A.; Ossa, R.H.; Perez, L.A.; Granda, J.D.; Lattig, M.C.; Groot, H.; Fagundes de Carvalho, E.; et al. Outlining the ancestry landscape of colombian admixed populations. PLoS ONE 2016, 11, e0164414. [Google Scholar] [CrossRef] [PubMed]
- Mapa Genético de los Colombianos. Available online: http://historico.unperiodico.unal.edu.co/ediciones/105/15.html (accessed on 8 March 2019).
- Pineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Jimenez-Figueroa, G.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Mejía-Segura, E.; Puentes-Rozo, J. Conglomerados de clases latentes en 408 miembros de 120 familias nucleares de barranquilla con un caso índice afectado de trastorno de atención hiperactividad. Acta Neurol. Colomb. 2016, 32, 275–284. [Google Scholar] [CrossRef]
- Cervantes-Henriquez, M.L.; Acosta-Lopez, J.E.; Martinez-Banfi, M.L.; Velez, J.I.; Mejia-Segura, E.; Lozano-Gutierrez, S.G.; Sanchez-Rojas, M.; Zurbaran, M.A.; Zurek, E.E.; Arcos-Burgos, M.; et al. Adhd endophenotypes in caribbean families. J. Atten. Disord. 2018. [Google Scholar] [CrossRef]
- Reich, W. Diagnostic interview for children and adolescents (dica). J. Am. Acad. Child. Adolesc. Psychiatry 2000, 39, 59–66. [Google Scholar] [CrossRef]
- Palacio, J.D.; Castellanos, F.X.; Pineda, D.A.; Lopera, F.; Arcos-Burgos, M.; Quiroz, Y.T.; Henao, G.C.; Puerta, I.C.; Ramirez, D.L.; Rapoport, J.L.; et al. Attention-deficit/hyperactivity disorder and comorbidities in 18 paisa colombian multigenerational families. J. Am. Acad. Child. Adolesc. Psychiatry 2004, 43, 1506–1515. [Google Scholar] [CrossRef]
- Tacchini, G.; Coppola, M.T.; Musazzi, A.; Altamura, A.C.; Invernizzi, G. multinational validation of the composite international diagnostic interview (cidi). Minerva Psichiatr. 1994, 35, 63–80. [Google Scholar] [PubMed]
- Acosta-Lopez, J.; Cervantes-Henriquez, M.L.; Jiménez-Figueroa, G.; Nunez, B.M.; Sanchez, R.M.; Puentes, R.P. Uso de una escala comportamental wender utah para evaluar en retrospectiva trastorno de atención-hiperactividad en adultos de la ciudad de barranquilla. Rev. Univ. Salud 2013, 15, 45–61. [Google Scholar]
- Pineda, D.A.; Kamphaus, R.W.; Mora, O.; Restrepo, M.A.; Puerta, I.C.; Palacio, L.G.; Jimenez, I.; Mejia, S.; Garcia, M.; Arango, J.C.; et al. A system of multidimensional behavior assessment. A scale for parents of children from 6 to 11 years of age. Colombian version. Rev. Neurol. 1999, 28, 672–681. [Google Scholar] [PubMed]
- APA. Diagnostic and Statistical Manual of Mental Disorders (Dsm), 4th ed.; American Psychiatric Association: Washington, DC, USA, 2000. [Google Scholar]
- DSM-IV. Manual Diagnóstico y Estadístico de Los Trastornos Mentales: Texto Revisado; Masson: Pontarlier, France, 2002. [Google Scholar]
- Puentes-Rozo, P.J.; Pineda, D.A.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martinez-Banfi, M.L.; Jiménez-Figueroa, G.; Mejía-Segura, E.; Sánchez-Rojas, M.; Pineda-Alhucema, W.; Zurbarán, M.A.; et al. Attention Deficit/Hyperactivity Disorder and Comorbidities in 120 Nuclear Families From a Caribbean Community. Unpublished work. 2017. [Google Scholar]
- Zhang, L.; Chang, S.; Li, Z.; Zhang, K.; Du, Y.; Ott, J.; Wang, J. Adhdgene: A genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res. 2012, 40, D1003–D1009. [Google Scholar] [CrossRef] [PubMed]
- Mastronardi, C.A.; Pillai, E.; Pineda, D.A.; Martinez, A.F.; Lopera, F.; Velez, J.I.; Palacio, J.D.; Patel, H.; Easteal, S.; Acosta, M.T.; et al. Linkage and association analysis of adhd endophenotypes in extended and multigenerational pedigrees from a genetic isolate. Mol. Psychiatry 2016, 21, 1434–1440. [Google Scholar] [CrossRef] [PubMed]
- Bansal, V.; Libiger, O.; Torkamani, A.; Schork, N.J. Statistical analysis strategies for association studies involving rare variants. Nat. Rev. Genet. 2010, 11, 773–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easton, D.F.; Pooley, K.A.; Dunning, A.M.; Pharoah, P.D.; Thompson, D.; Ballinger, D.G.; Struewing, J.P.; Morrison, J.; Field, H.; Luben, R.; et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007, 447, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, W.; Wang, Y.; Wang, Y.; Li, R.; Lin, R.; Jin, L. Missing call bias in high-throughput genotyping. BMC Genom. 2009, 10, 106. [Google Scholar] [CrossRef]
- Hunter, D.J.; Kraft, P.; Jacobs, K.B.; Cox, D.G.; Yeager, M.; Hankinson, S.E.; Wacholder, S.; Wang, Z.; Welch, R.; Hutchinson, A.; et al. A genome-wide association study identifies alleles in fgfr2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 2007, 39, 870–874. [Google Scholar] [CrossRef]
- Whittaker, P.; Bumpstead, S.; Downes, K.; Ghori, J. Snp analysis by maldi-tof mass spectrometry. In Cell Biology: A Laboratory Handbook, 3rd ed.; Celis, J., Simons, K., Small, J., Hunter, T., Shotton, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Laird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19, S36–S42. [Google Scholar] [CrossRef]
- Spielman, R.S.; McGinnis, R.E.; Ewens, W.J. Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (iddm). Am. J. Hum. Genet. 1993, 52, 506–516. [Google Scholar] [PubMed]
- Mowlem, F.D.; Rosenqvist, M.A.; Martin, J.; Lichtenstein, P.; Asherson, P.; Larsson, H. Sex differences in predicting adhd clinical diagnosis and pharmacological treatment. Eur. Child. Adolesc. Psychiatry 2018, 28, 481–489. [Google Scholar] [CrossRef]
- Oerbeck, B.; Overgaard, K.; Pripp, A.H.; Aase, H.; Reichborn-Kjennerud, T.; Zeiner, P. Adult adhd symptoms and satisfaction with life: Does age and sex matter? J. Atten. Disord 2019, 23, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ramtekkar, U.P.; Reiersen, A.M.; Todorov, A.A.; Todd, R.D. Sex and age differences in attention-deficit/hyperactivity disorder symptoms and diagnoses: Implications for dsm-v and icd-11. J. Am. Acad. Child. Adolesc. Psychiatry 2010, 49, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Skogli, E.W.; Teicher, M.H.; Andersen, P.N.; Hovik, K.T.; Oie, M. Adhd in girls and boys–Gender differences in co-existing symptoms and executive function measures. BMC Psychiatry 2013, 13, 298. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Laird, N.M. On a general class of conditional tests for family-based association studies in genetics: The asymptotic distribution, the conditional power, and optimality considerations. Genet. Epidemiol. 2002, 23, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Laird, N.M. Power calculations for a general class of family-based association tests: Dichotomous traits. Am. J. Hum. Genet. 2002, 71, 575–584. [Google Scholar] [CrossRef]
- Rabinowitz, D.; Laird, N. A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum. Hered. 2000, 50, 211–223. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Vélez, J.I.; Correa, J.C.; Arcos-Burgos, M. A new method for detecting significant p-values with applications to genetic data. Rev. Colomb. Estad. 2014, 37, 67–76. [Google Scholar] [CrossRef]
- Lange, C.; DeMeo, D.; Silverman, E.K.; Weiss, S.T.; Laird, N.M. Pbat: Tools for family-based association studies. Am. J. Hum. Genet. 2004, 74, 367–369. [Google Scholar] [CrossRef]
- Lunetta, K.L.; Faraone, S.V.; Biederman, J.; Laird, N.M. Family-based tests of association and linkage that use unaffected sibs, covariates, and interactions. Am. J. Hum. Genet. 2000, 66, 605–614. [Google Scholar] [CrossRef]
- Xu, X.; Rakovski, C.; Xu, X.; Laird, N. An efficient family-based association test using multiple markers. Genet. Epidemiol. 2006, 30, 620–626. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of ld and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef]
- Evangelou, E.; Trikalinos, T.A.; Salanti, G.; Ioannidis, J.P. Family-based versus unrelated case-control designs for genetic associations. PLoS Genet. 2006, 2, e123. [Google Scholar] [CrossRef]
- Laird, N.M.; Lange, C. Family-based designs in the age of large-scale gene-association studies. Nat. Rev. Genet. 2006, 7, 385–394. [Google Scholar] [CrossRef]
- Ott, J.; Kamatani, Y.; Lathrop, M. Family-based designs for genome-wide association studies. Nat. Rev. Genet. 2011, 12, 465–474. [Google Scholar] [CrossRef]
- Leung, P.W.; Chan, J.K.; Chen, L.H.; Lee, C.C.; Hung, S.F.; Ho, T.P.; Tang, C.P.; Moyzis, R.K.; Swanson, J.M. Family-based association study of drd4 gene in methylphenidate-responded attention deficit/hyperactivity disorder. PLoS ONE 2017, 12, e0173748. [Google Scholar] [CrossRef]
- Thakur, G.A.; Sengupta, S.M.; Grizenko, N.; Choudhry, Z.; Joober, R. Family-based association study of adhd and genes increasing the risk for smoking behaviours. Arch. Dis. Child. 2012, 97, 1027–1033. [Google Scholar] [CrossRef]
- Turic, D.; Williams, H.; Langley, K.; Owen, M.; Thapar, A.; O’Donovan, M.C. A family based study of catechol-o-methyltransferase (comt) and attention deficit hyperactivity disorder (adhd). Am. J. Med. Genet. B Neuropsychiatr. Genet. 2005, 133B, 64–67. [Google Scholar] [CrossRef]
- Neale, B.M.; Lasky-Su, J.; Anney, R.; Franke, B.; Zhou, K.; Maller, J.B.; Vasquez, A.A.; Asherson, P.; Chen, W.; Banaschewski, T.; et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Yuan, F.F.; Huang, X.; Hou, Y.; Wang, M.; Lin, J.; Wu, J. Association of pik3cg gene polymorphisms with attention-deficit/hyperactivity disorder: A case-control study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017. [Google Scholar] [CrossRef]
- Sanchez-Mora, C.; Richarte, V.; Garcia-Martinez, I.; Pagerols, M.; Corrales, M.; Bosch, R.; Vidal, R.; Viladevall, L.; Casas, M.; Cormand, B.; et al. Dopamine receptor drd4 gene and stressful life events in persistent attention deficit hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 480–491. [Google Scholar] [CrossRef]
- Wiguna, T.; Ismail, R.I.; Winarsih, N.S.; Kaligis, F.; Hapsari, A.; Budiyanti, L.; Sekartini, R.; Rahayu, S.; Guerrero, A.P.S. Dopamine transporter gene polymorphism in children with adhd: A pilot study in indonesian samples. Asian J. Psychiatry 2017, 29, 35–38. [Google Scholar] [CrossRef]
- Lasky-Su, J.; Banaschewski, T.; Buitelaar, J.; Franke, B.; Brookes, K.; Sonuga-Barke, E.; Ebstein, R.; Eisenberg, J.; Gill, M.; Manor, I.; et al. Partial replication of a drd4 association in adhd individuals using a statistically derived quantitative trait for adhd in a family-based association test. Biol. Psychiatry 2007, 62, 985–990. [Google Scholar] [CrossRef]
- Brem, S.; Grunblatt, E.; Drechsler, R.; Riederer, P.; Walitza, S. The neurobiological link between ocd and adhd. Atten. Defic Hyperact. Disord. 2014, 6, 175–202. [Google Scholar] [CrossRef]
- Hawi, Z.; Matthews, N.; Wagner, J.; Wallace, R.H.; Butler, T.J.; Vance, A.; Kent, L.; Gill, M.; Bellgrove, M.A. DNA variation in the snap25 gene confers risk to adhd and is associated with reduced expression in prefrontal cortex. PLoS ONE 2013, 8, e60274. [Google Scholar] [CrossRef]
- Arcos-Burgos, M.; Velez, J.I.; Martinez, A.F.; Ribases, M.; Ramos-Quiroga, J.A.; Sanchez-Mora, C.; Richarte, V.; Roncero, C.; Cormand, B.; Fernandez-Castillo, N.; et al. Adgrl3 (lphn3) variants predict substance use disorder. Transl. Psychiatry 2019, 9, 42. [Google Scholar] [CrossRef]
- Choudhry, Z.; Sengupta, S.M.; Grizenko, N.; Fortier, M.E.; Thakur, G.A.; Bellingham, J.; Joober, R. Lphn3 and attention-deficit/hyperactivity disorder: Interaction with maternal stress during pregnancy. J. Child Psychol. Psychiatry 2012, 53, 892–902. [Google Scholar] [CrossRef]
- Kappel, D.B.; Schuch, J.B.; Rovaris, D.L.; da Silva, B.S.; Cupertino, R.B.; Winkler, C.; Teche, S.P.; Vitola, E.S.; Karam, R.G.; Rohde, L.A.; et al. Further replication of the synergistic interaction between lphn3 and the ntad gene cluster on adhd and its clinical course throughout adulthood. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 120–127. [Google Scholar] [CrossRef]
- Kappel, D.B.; Schuch, J.B.; Rovaris, D.L.; da Silva, B.S.; Muller, D.; Breda, V.; Teche, S.P.; Riesgo, R.S.; Schuler-Faccini, L.; Rohde, L.A.; et al. Adgrl3 rs6551665 as a common vulnerability factor underlying attention-deficit/hyperactivity disorder and autism spectrum disorder. Neuromol. Med. 2019, 21, 60–67. [Google Scholar] [CrossRef]
- Sollner, T.; Whiteheart, S.W.; Brunner, M.; Erdjument-Bromage, H.; Geromanos, S.; Tempst, P.; Rothman, J.E. Snap receptors implicated in vesicle targeting and fusion. Nature 1993, 362, 318–324. [Google Scholar] [CrossRef]
- Brophy, K.; Hawi, Z.; Kirley, A.; Fitzgerald, M.; Gill, M. Synaptosomal-associated protein 25 (snap-25) and attention deficit hyperactivity disorder (adhd): Evidence of linkage and association in the irish population. Mol. Psychiatry 2002, 7, 913–917. [Google Scholar] [CrossRef]
- Hess, E.J.; Collins, K.A.; Wilson, M.C. Mouse model of hyperkinesis implicates snap-25 in behavioral regulation. J. Neurosci. 1996, 16, 3104–3111. [Google Scholar] [CrossRef]
- Galvez, J.M.; Forero, D.A.; Fonseca, D.J.; Mateus, H.E.; Talero-Gutierrez, C.; Velez-van-Meerbeke, A. Evidence of association between snap25 gene and attention deficit hyperactivity disorder in a latin american sample. Atten. Defic. Hyperact. Disord. 2014, 6, 19–23. [Google Scholar] [CrossRef]
- Evans, S.J.; Choudary, P.V.; Neal, C.R.; Li, J.Z.; Vawter, M.P.; Tomita, H.; Lopez, J.F.; Thompson, R.C.; Meng, F.; Stead, J.D.; et al. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl. Acad. Sci. USA 2004, 101, 15506–15511. [Google Scholar] [CrossRef] [Green Version]
- Yun, Y.R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: Biology, function, and application for tissue regeneration. J. Tissue Eng. 2010, 2010, 218142. [Google Scholar] [CrossRef]
- Mashayekhi, F.; Hadavi, M.; Vaziri, H.R.; Naji, M. Increased acidic fibroblast growth factor concentrations in the serum and cerebrospinal fluid of patients with alzheimer’s disease. J. Clin. Neurosci. 2010, 17, 357–359. [Google Scholar] [CrossRef]
- Tao, Q.Q.; Sun, Y.M.; Liu, Z.J.; Ni, W.; Yang, P.; Li, H.L.; Lu, S.J.; Wu, Z.Y. A variant within fgf1 is associated with alzheimer’s disease in the han chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2014, 165, 131–136. [Google Scholar] [CrossRef]
- Yamagata, H.; Chen, Y.; Akatsu, H.; Kamino, K.; Ito, J.; Yokoyama, S.; Yamamoto, T.; Kosaka, K.; Miki, T.; Kondo, I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite alzheimer’s disease. Biochem. Biophys. Res. Commun. 2004, 321, 320–323. [Google Scholar] [CrossRef]
- Lange, M.; Norton, W.; Coolen, M.; Chaminade, M.; Merker, S.; Proft, F.; Schmitt, A.; Vernier, P.; Lesch, K.P.; Bally-Cuif, L. The adhd-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol. Psychiatry 2012, 17, 946–954. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.F.; Abe, Y.; Hong, S.; Molyneux, K.; Yarnell, D.; Lohr, H.; Driever, W.; Acosta, M.T.; Arcos-Burgos, M.; Muenke, M. An ultraconserved brain-specific enhancer within adgrl3 (lphn3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol. Psychiatry 2016, 80, 943–954. [Google Scholar] [CrossRef] [PubMed]
- Orsini, C.A.; Setlow, B.; DeJesus, M.; Galaviz, S.; Loesch, K.; Ioerger, T.; Wallis, D. Behavioral and transcriptomic profiling of mice null for lphn3, a gene implicated in adhd and addiction. Mol. Genet. Genom. Med. 2016, 4, 322–343. [Google Scholar] [CrossRef] [PubMed]
- Wallis, D.; Arcos-Burgos, M.; Jain, M.; Castellanos, F.X.; Palacio, J.D.; Pineda, D.; Lopera, F.; Stanescu, H.; Pineda, D.; Berg, K.; et al. Polymorphisms in the neural nicotinic acetylcholine receptor alpha4 subunit (chrna4) are associated with adhd in a genetic isolate. Atten. Defic. Hyperact. Disord. 2009, 1, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Adewuya, A.O.; Famuyiwa, O.O. Attention deficit hyperactivity disorder among nigerian primary school children: Prevalence and co-morbid conditions. Eur. Child. Adolesc. Psychiatry 2007, 16, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.W.; Nigg, J.T.; Miller, R.L. Attention deficit hyperactivity disorder in african american children: What can be concluded from the past ten years? Clin. Psychol. Rev. 2009, 29, 77–86. [Google Scholar] [CrossRef]
- Morgan, P.L.; Staff, J.; Hillemeier, M.M.; Farkas, G.; Maczuga, S. Racial and ethnic disparities in adhd diagnosis from kindergarten to eighth grade. Pediatrics 2013, 132, 85–93. [Google Scholar] [CrossRef]
- Samuel, V.J.; Biederman, J.; Faraone, S.V.; George, P.; Mick, E.; Thornell, A.; Curtis, S.; Taylor, A.; Brome, D. Clinical characteristics of attention deficit hyperactivity disorder in african american children. Am. J. Psychiatry 1998, 155, 696–698. [Google Scholar] [CrossRef]
- Castellanos, F.X.; Tannock, R. Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nat. Rev. Neurosci. 2002, 3, 617–628. [Google Scholar] [CrossRef]
- Pineda, D.A.; Lopera, F.; Puerta, I.C.; Trujillo-Orrego, N.; Aguirre-Acevedo, D.C.; Hincapie-Henao, L.; Arango, C.P.; Acosta, M.T.; Holzinger, S.I.; Palacio, J.D.; et al. Potential cognitive endophenotypes in multigenerational families: Segregating adhd from a genetic isolate. Atten. Defic. Hyperact. Disord. 2011, 3, 291–299. [Google Scholar] [CrossRef]
- Arcos-Burgos, M.; Muenke, M. Toward a better understanding of adhd: Lphn3 gene variants and the susceptibility to develop adhd. Atten. Defic. Hyperact. Disord. 2010, 2, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Figueroa, G.; Ardila-Duarte, C.; Pineda, D.A.; Acosta-Lopez, J.E.; Cervantes-Henriquez, M.L.; Pineda-Alhucema, W.; Cervantes-Gutierrez, J.; Quintero-Ibarra, M.; Sanchez-Rojas, M.; Velez, J.I.; et al. Prepotent response inhibition and reaction times in children with attention deficit/hyperactivity disorder from a caribbean community. Atten. Defic. Hyperact. Disord. 2017, 9, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Barnett, I.J.; Lee, S.; Lin, X. Detecting rare variant effects using extreme phenotype sampling in sequencing association studies. Genet. Epidemiol. 2013, 37, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Emond, M.J.; Louie, T.; Emerson, J.; Zhao, W.; Mathias, R.A.; Knowles, M.R.; Wright, F.A.; Rieder, M.J.; Tabor, H.K.; Nickerson, D.A.; et al. Exome sequencing of extreme phenotypes identifies dctn4 as a modifier of chronic pseudomonas aeruginosa infection in cystic fibrosis. Nat. Genet. 2012, 44, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Johar, A.S.; Anaya, J.M.; Andrews, D.; Patel, H.R.; Field, M.; Goodnow, C.; Arcos-Burgos, M. Candidate gene discovery in autoimmunity by using extreme phenotypes, next generation sequencing and whole exome capture. Autoimmun. Rev. 2015, 14, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Paz-Filho, G.; Boguszewski, M.C.; Mastronardi, C.A.; Patel, H.R.; Johar, A.S.; Chuah, A.; Huttley, G.A.; Boguszewski, C.L.; Wong, M.L.; Arcos-Burgos, M.; et al. Whole exome sequencing of extreme morbid obesity patients: Translational implications for obesity and related disorders. Genes 2014, 5, 709–725. [Google Scholar] [CrossRef] [PubMed]
Affected | Unaffected | Statistic Index | p-Value | Effect Size | |
---|---|---|---|---|---|
n = 221 | n = 165 | ||||
Gender | Frequency (%) | Frequency (%) | χ2 | ||
Male | 151 (68.32) | 70 (42.42) | 24.849 | <0.00001 | — |
Female | 70 (31.68) | 95 (57.58) | |||
Mean (SD) | Mean (SD) | Mann–Whitney’s U | |||
Age | 21.4 (15.31) | 33.9 (12.69) | 26435 | <0.0001 | 0.883 |
Chr | Marker | Position a | Gene | Marker Information | |||
---|---|---|---|---|---|---|---|
Alleles b | MAF c | HW p-Value | %Genotyping | ||||
4 | rs1565902 | 61,542,902 | ADGRL3 | C/T | 0.473 | 0.048 | 89.4 |
4 | rs10001410 | 61,608,511 | ADGRL3 | C/T | 0.372 | 0.841 | 92.0 |
4 | rs2122642 | 61,832,546 | ADGRL3 | C/T | 0.330 | 0.326 | 91.5 |
5 | rs2282794 | 142,602,144 | FGF1 | G/A | 0.458 | 0.244 | 85.8 |
11 | rs916457 | 637,014 | DRD4 | C/A | 0.074 | 0.546 | 88.1 |
20 | rs362990 | 10,295,573 | SNAP25 | T/G | 0.120 | 0.788 | 80.3 |
Chr | Marker | Gene | Position a | Marker Information | FBAT Results | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ref. | Observed | (Counts) [Frequency] | Allele | Cohort Frequency | Model | NIF | p-Value | ||||
20 | rs362990 | SNAP25 | 10,276,221 | A | A/T | (4145/863) [0.828/0.172] | T | 0.094 | Additive | 55 | 2.46 × 10−4 |
HA | 55 | 5.21 × 10−4 | |||||||||
5 | rs2282794 | FGF1 | 141,981,709 | G | A/G | (520/4488) [0.104/0.896] | A | 0.458 | Dominant | 44 | 0.013 |
G | 0.542 | Recessive | 44 | 0.013 | |||||||
HA | 64 | 0.016 | |||||||||
4 | rs2122642 | ADGRL3 | 62,698,264 | G | C/T | (2722/2286) [0.543/0.457] | C | 0.744 | Recessive | 45 | 0.035 |
T | 0.256 | Dominant | 45 | 0.035 |
Markers | Haplotype | Frequency | OR (T:U) | χ2 | p-Value | |
---|---|---|---|---|---|---|
Raw | Permuted | |||||
rs1565902-rs10001410-rs2122642 | CCC | 0.411 | 1.74 (74.1:42.5) | 8.5 | 0.004 | 0.021 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puentes-Rozo, P.J.; Acosta-López, J.E.; Cervantes-Henríquez, M.L.; Martínez-Banfi, M.L.; Mejia-Segura, E.; Sánchez-Rojas, M.; Anaya-Romero, M.E.; Acosta-Hoyos, A.; García-Llinás, G.A.; Mastronardi, C.A.; et al. Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells 2019, 8, 907. https://doi.org/10.3390/cells8080907
Puentes-Rozo PJ, Acosta-López JE, Cervantes-Henríquez ML, Martínez-Banfi ML, Mejia-Segura E, Sánchez-Rojas M, Anaya-Romero ME, Acosta-Hoyos A, García-Llinás GA, Mastronardi CA, et al. Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells. 2019; 8(8):907. https://doi.org/10.3390/cells8080907
Chicago/Turabian StylePuentes-Rozo, Pedro J., Johan E. Acosta-López, Martha L. Cervantes-Henríquez, Martha L. Martínez-Banfi, Elsy Mejia-Segura, Manuel Sánchez-Rojas, Marco E. Anaya-Romero, Antonio Acosta-Hoyos, Guisselle A. García-Llinás, Claudio A. Mastronardi, and et al. 2019. "Genetic Variation Underpinning ADHD Risk in a Caribbean Community" Cells 8, no. 8: 907. https://doi.org/10.3390/cells8080907
APA StylePuentes-Rozo, P. J., Acosta-López, J. E., Cervantes-Henríquez, M. L., Martínez-Banfi, M. L., Mejia-Segura, E., Sánchez-Rojas, M., Anaya-Romero, M. E., Acosta-Hoyos, A., García-Llinás, G. A., Mastronardi, C. A., Pineda, D. A., Castellanos, F. X., Arcos-Burgos, M., & Vélez, J. I. (2019). Genetic Variation Underpinning ADHD Risk in a Caribbean Community. Cells, 8(8), 907. https://doi.org/10.3390/cells8080907