Stx5-Mediated ER-Golgi Transport in Mammals and Yeast
Abstract
:1. Introduction
2. SNARE Proteins in ER-Golgi and Intra-Golgi Transport
3. Subcellular Localization of Stx5 Isoforms
4. Posttranslational Modifications
5. Scfd1/Sly1p
6. Tethering Complexes
7. Infections and Neurodegenerative Disease
8. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Puthenveedu, M.A.; Linstedt, A.D. Subcompartmentalizing the Golgi apparatus. Curr. Opin. Cell Biol. 2005, 17, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Cottam, N.P.; Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 2012, 249, 943–955. [Google Scholar] [CrossRef] [PubMed]
- Malsam, J.; Söllner, T.H. Organization of SNAREs within the Golgi stack. Cold Spring Harb. Perspect. Biol. 2011, 3, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Papanikou, E.; Glick, B.S. The yeast Golgi apparatus: Insights and mysteries. FEBS Lett. 2009, 583, 3746–3751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, C.L. Mechanisms of transport through the Golgi complex. J. Cell Sci. 2009, 122, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, T.; Dascher, C.; Bannykh, S.; Plutner, H.; Balch, W.E. Role of vesicle-associated syntaxin 5 in the assembly of pre-Golgi intermediates. Science 1998, 279, 696–700. [Google Scholar] [CrossRef]
- Barlowe, C.; Orci, L.; Yeung, T.; Hosobuchi, M.; Hamamoto, S.; Salama, N.; Rexach, M.F.; Ravazzola, M.; Amherdt, M.; Schekman, R. COPII: A membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 1994, 77, 895–907. [Google Scholar] [CrossRef]
- Appenzeller-Herzog, C. The ER-Golgi intermediate compartment (ERGIC): In search of its identity and function. J. Cell Sci. 2006, 119, 2173–2183. [Google Scholar] [CrossRef]
- Dingjan, I.; Linders, P.T.A.; Verboogen, D.R.J.; Revelo, N.H.; Ter Beest, M.; van den Bogaart, G. Endosomal and Phagosomal SNAREs. Physiol. Rev. 2018, 98, 1465–1492. [Google Scholar] [CrossRef]
- Hong, W. SNAREs and traffic. Biochim. Biophys. Acta 2005, 1744, 120–144. [Google Scholar] [CrossRef] [Green Version]
- Jahn, R.; Scheller, R.H. SNAREs—Engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 2006, 7, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Bentley, M.; Liang, Y.; Mullen, K.; Xu, D.; Sztul, E.; Hay, J.C. SNARE status regulates tether recruitment and function in homotypic COPII vesicle fusion. J. Biol. Chem. 2006, 281, 38825–38833. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Joglekar, A.P.; Williams, A.L.; Hay, J.C. Subunit Structure of a Mammalian ER/Golgi SNARE Complex. J. Biol. Chem. 2000, 275, 39631–39639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Hong, W. Ykt6 Forms a SNARE Complex with Syntaxin 5, GS28, and Bet1 and Participates in a Late Stage in Endoplasmic Reticulum-Golgi Transport. J. Biol. Chem. 2001, 276, 27480–27487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dascher, C.; Matteson, J.; Balch, W.E. Syntaxin 5 regulates endoplasmic reticulum to Golgi transport. J. Biol. Chem. 1994, 269, 29363–29366. [Google Scholar]
- Hay, J.C.; Hirling, H.; Scheller, R.H. Mammalian vesicle trafficking proteins of the endoplasmic reticulum and Golgi apparatus. J. Biol. Chem. 1996, 271, 5671–5679. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.C.; Klumperman, J.; Oorschot, V.; Steegmaier, M.; Kuo, C.S.; Scheller, R.H. Localization, dynamics, and protein interactions reveal distinct roles for ER and Golgi SNAREs [published erratum appears in J Cell Biol 1998 Aug 10;142(3):following 881]. J. Cell Biol. 1998, 141, 1489–1502. [Google Scholar] [CrossRef]
- Paek, I.; Orci, L.; Ravazzola, M.; Erdjument-Bromage, H.; Amherdt, M.; Tempst, P.; Söllner, T.H.; Rothman, J.E. ERS-24, a mammalian v-SNARE implicated in vesicle traffic between the ER and the Golgi. J. Cell Biol. 1997, 137, 1017–1028. [Google Scholar] [CrossRef]
- Zhang, T.; Wong, S.H.; Tang, B.L.; Xu, Y.; Peter, F.; Subramaniam, V.N.; Hong, W. The mammalian protein (rbet1) homologous to yeast Bet1p is primarily associated with the pre-Golgi intermediate compartment and is involved in vesicular transport from the endoplasmic reticulum to the Golgi apparatus. J. Cell Biol. 1997, 139, 1157–1168. [Google Scholar] [CrossRef]
- Adolf, F.; Rhiel, M.; Reckmann, I.; Wieland, F.T. Sec24C/D-isoform-specific sorting of the preassembled ER-Golgi Q-SNARE complex. Mol. Biol. Cell 2016, 27, 2697–2707. [Google Scholar] [CrossRef]
- Newman, A.P.; Shim, J.; Ferro-Novick, S. BET1, BOS1, and SEC22 are members of a group of interacting yeast genes required for transport from the endoplasmic reticulum to the Golgi complex. Mol. Cell. Biol. 1990, 10, 3405–3414. [Google Scholar] [CrossRef] [PubMed]
- Sacher, M.; Stone, S.; Ferro-Novick, S. The synaptobrevin-related domains of Bos1p and Sec22p bind to the syntaxin-like region of Sed5p. J. Biol. Chem. 1997, 272, 17134–17138. [Google Scholar] [CrossRef] [PubMed]
- Parlati, F.; Varlamov, O.; Paz, K.; McNew, J.A.; Hurtado, D.; Söllner, T.H.; Rothman, J.E. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 2002, 99, 5424–5429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burri, L.; Varlamov, O.; Doege, C.A.; Hofmann, K.; Beilharz, T.; Rothman, J.E.; Söllner, T.H.; Lithgow, T. A SNARE required for retrograde transport to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2003, 100, 9873–9877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dilcher, M.; Veith, B.; Chidambaram, S.; Hartmann, E.; Schmitt, H.D.; Von Mollard, G.F. Use1p is a yeast SNARE protein required for retrograde traffic to the ER. EMBO J. 2003, 22, 3664–3674. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Martin, S.; James, D.E.; Hong, W. GS15 Forms a SNARE Complex with Syntaxin 5, GS28, and Ykt6 and Is Implicated in Traffic in the Early Cisternae of the Golgi Apparatus. Mol. Biol. Cell 2002, 13, 3493–3507. [Google Scholar] [CrossRef] [Green Version]
- Volchuk, A.; Ravazzola, M.; Perrelet, A.; Eng, W.S.; Di Liberto, M.; Varlamov, O.; Fukasawa, M.; Engel, T.; Söllner, T.H.; Rothman, J.E.; et al. Countercurrent Distribution of Two Distinct SNARE Complexes Mediating Transport within the Golgi Stack. Mol. Biol. Cell 2004, 15, 1506–1518. [Google Scholar] [CrossRef] [Green Version]
- Tai, G.; Lu, L.; Wang, T.L.; Tang, B.L.; Goud, B.; Johannes, L.; Hong, W. Participation of the Syntaxin 5/Ykt6/GS28/GS15 SNARE Complex in Transport from the Early/Recycling Endosome to the Trans -Golgi Network. Mol. Biol. Cell 2004, 15, 4011–4022. [Google Scholar] [CrossRef]
- Banfield, D.K.; Lewis, M.J.; Pelham, H.R.B. A SNARE-like protein required for traffic through the Golgi complex. Nature 1995, 375, 806–809. [Google Scholar] [CrossRef]
- Satoh, T.; Nakamura, Y.; Satoh, A.K. The roles of Syx5 in Golgi morphology and Rhodopsin transport in Drosophila photoreceptors. Biol. Open 2016, 5, 1420–1430. [Google Scholar] [CrossRef] [Green Version]
- Suga, K.; Hattori, H.; Saito, A.; Akagawa, K. RNA interference-mediated silencing of the syntaxin 5 gene induces Golgi fragmentation but capable of transporting vesicles. FEBS Lett. 2005, 579, 4226–4234. [Google Scholar] [CrossRef] [Green Version]
- Amessou, M.; Fradagrada, A.; Falguieres, T.; Lord, J.M.; Smith, D.C.; Roberts, L.M.; Lamaze, C.; Johannes, L. Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J. Cell Sci. 2007, 120, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yang, H.; Liu, W.; Duan, X.; Shang, W.; Xia, D.; Tong, C. Sec22 Regulates Endoplasmic Reticulum Morphology but Not Autophagy and Is Required for Eye Development in Drosophila. J. Biol. Chem. 2015, 290, 7943–7951. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Schaffner, C.; Winslow, A.R.; Menzies, F.M.; Peden, A.A.; Floto, R.A.; Rubinsztein, D.C. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J. Cell Sci. 2011, 124, 469–482. [Google Scholar] [CrossRef] [Green Version]
- Van Zyl, J.H.D.; Den Haan, R.; Van Zyl, W.H. Overexpression of native Saccharomyces cerevisiae ER-to-Golgi SNARE genes increased heterologous cellulase secretion. Appl. Microbiol. Biotechnol. 2016, 100, 505–518. [Google Scholar] [CrossRef]
- Blomen, V.A.; Májek, P.; Jae, L.T.; Bigenzahn, J.W.; Nieuwenhuis, J.; Staring, J.; Sacco, R.; van Diemen, F.R.; Olk, N.; Stukalov, A.; et al. Gene essentiality and synthetic lethality in haploid human cells. Science 2015, 350, 1092–1096. [Google Scholar] [CrossRef]
- Winzeler, E.A.; Shoemaker, D.D.; Astromoff, A.; Liang, H.; Anderson, K.; Andre, B.; Bangham, R.; Benito, R.; Boeke, J.D.; Bussey, H.; et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285, 901–906. [Google Scholar] [CrossRef]
- Koscielny, G.; Yaikhom, G.; Iyer, V.; Meehan, T.F.; Morgan, H.; Atienza-Herrero, J.; Blake, A.; Chen, C.-K.; Easty, R.; Di Fenza, A.; et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res. 2014, 42, D802–D809. [Google Scholar] [CrossRef]
- Xu, H.; Brill, J.A.; Hsien, J.; McBride, R.; Boulianne, G.L.; Trimble, W.S. Syntaxin 5 Is Required for Cytokinesis and Spermatid Differentiation in Drosophila. Dev. Biol. 2002, 251, 294–306. [Google Scholar] [CrossRef] [Green Version]
- Parlati, F.; McNew, J.A.; Fukuda, R.; Miller, R.; Söllner, T.H.; Rothman, J.E. Topological restriction of SNARE-dependent membrane fusion. Nature 2000, 407, 194–198. [Google Scholar] [CrossRef]
- Furukawa, N.; Mima, J. Multiple and distinct strategies of yeast SNAREs to confer the specificity of membrane fusion. Sci. Rep. 2014, 4, 1–13. [Google Scholar] [CrossRef]
- Tsui, M.M.K.; Tai, W.C.S.; Banfield, D.K. Selective Formation of Sed5p-containing SNARE Complexes Is Mediated by Combinatorial Binding Interactions. Mol. Biol. Cell 2001, 12, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Cosson, P.; Ravazzola, M.; Varlamov, O.; Sollner, T.H.; Di Liberto, M.; Volchuk, A.; Rothman, J.E.; Orci, L. Dynamic transport of SNARE proteins in the Golgi apparatus. Proc. Natl. Acad. Sci. USA 2005, 102, 14647–14652. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, C.; Erlmann, P.; Villeneuve, J.; Santos, A.J.; Martínez-Alonso, E.; Martínez-Menárguez, J.Á.; Malhotra, V. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 2014, 3, e02784. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, S.A. VLDL exits from the endoplasmic reticulum in a specialized vesicle, the VLDL transport vesicle, in rat primary hepatocytes. Biochem. J. 2008, 413, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, S.; Mani, A.M.; Siddiqi, S.A. The identification of the SNARE complex required for the fusion of VLDL-transport vesicle with hepatic cis-Golgi. Biochem. J. 2010, 429, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Dieckmann, M.; Jaeger, S.; Weggen, S.; Pietrzik, C.U. Stx5 is a novel interactor of VLDL-R to affect its intracellular trafficking and processing. Exp. Cell Res. 2013, 319, 1956–1972. [Google Scholar] [CrossRef]
- Siddiqi, S.A.; Siddiqi, S.; Mahan, J.; Peggs, K.; Gorelick, F.S.; Mansbach, C.M. The Identification of a Novel Endoplasmic Reticulum to Golgi SNARE Complex Used by the Prechylomicron Transport Vesicle. J. Biol. Chem. 2006, 281, 20974–20982. [Google Scholar] [CrossRef] [Green Version]
- Hui, N.; Nakamura, N.; Sönnichsen, B.; Shima, D.T.; Nilsson, T.; Warren, G. An isoform of the Golgi t-SNARE, syntaxin 5, with an endoplasmic reticulum retrieval signal. Mol. Biol. Cell 1997, 8, 1777–1787. [Google Scholar] [CrossRef]
- Norlin, S.; Parekh, V.S.; Naredi, P.; Edlund, H. Asna1/TRC40 controls β-cell function and endoplasmic reticulum homeostasis by ensuring retrograde transport. Diabetes 2016, 65, 110–119. [Google Scholar]
- Schuldiner, M.; Metz, J.; Schmid, V.; Denic, V.; Rakwalska, M.; Schmitt, H.D.; Schwappach, B.; Weissman, J.S. The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell 2008, 134, 634–645. [Google Scholar] [CrossRef]
- Chen, L.; Lau, M.S.Y.; Banfield, D.K. Multiple ER-Golgi SNARE transmembrane domains are dispensable for trafficking but required for SNARE recycling. Mol. Biol. Cell 2016, 27, 2633–2641. [Google Scholar] [CrossRef]
- Sharpe, H.J.; Stevens, T.J.; Munro, S. A Comprehensive Comparison of Transmembrane Domains Reveals Organelle-Specific Properties. Cell 2010, 142, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Watson, R.T.; Pessin, J.E. Transmembrane domain length determines intracellular membrane compartment localization of syntaxins 3, 4, and 5. Am. J. Physiol. Physiol. 2001, 281, C215–C223. [Google Scholar] [CrossRef]
- Banfield, D.K.; Lewis, M.J.; Rabouille, C.; Warren, G.; Pelham, H.R.B. Localization of Sed5, a putative vesicle targeting molecule, to the cis- Golgi network involves both its transmembrane and cytoplasmic domains. J. Cell Biol. 1994, 127, 357–371. [Google Scholar] [CrossRef]
- Kasai, K.; Akagawa, K. Roles of the cytoplasmic and transmembrane domains of syntaxins in intracellular localization and trafficking. J. Cell Sci. 2001, 114, 3115–3124. [Google Scholar]
- Suga, K.; Saito, A.; Tomiyama, T.; Mori, H.; Akagawa, K. The Syntaxin 5 Isoforms Syx5 and Syx5L have Distinct Effects on the Processing of β-amyloid Precursor Protein. J. Biochem. 2009, 146, 905–915. [Google Scholar] [CrossRef]
- Dominguez, M.; Dejgaard, K.; Füllekrug, J.; Dahan, S.; Fazel, A.; Paccaud, J.-P.; Thomas, D.Y.; Bergeron, J.J.M.; Nilsson, T. gp25L/emp24/p24 Protein Family Members of the cis- Golgi Network Bind Both COP I and II Coatomer. J. Cell Biol. 1998, 140, 751–765. [Google Scholar] [CrossRef]
- Cho, J.H.; Noda, Y.; Yoda, K. Proteins in the early Golgi compartment of Saccharomyces cerevisiae immunoisolated by Sed5p. FEBS Lett. 2000, 469, 151–154. [Google Scholar] [CrossRef]
- Araç, D.; Dulubova, I.; Pei, J.; Huryeva, I.; Grishin, N.V.; Rizo, J. Three-dimensional structure of the rSly1 N-terminal domain reveals a conformational change induced by binding to syntaxin 5. J. Mol. Biol. 2005, 346, 589–601. [Google Scholar] [CrossRef]
- Bracher, A.; Weissenhorn, W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J. 2002, 21, 6114–6124. [Google Scholar] [CrossRef] [Green Version]
- Mancias, J.D.; Goldberg, J. Structural basis of cargo membrane protein discrimination by the human COPII coat machinery. EMBO J. 2008, 27, 2918–2928. [Google Scholar] [CrossRef]
- Geng, L.; Boehmerle, W.; Maeda, Y.; Okuhara, D.Y.; Tian, X.; Yu, Z.; Choe, C.; Anyatonwu, G.I.; Ehrlich, B.E.; Somlo, S. Syntaxin 5 regulates the endoplasmic reticulum channel-release properties of polycystin-2. Proc. Natl. Acad. Sci. USA 2008, 105, 15920–15925. [Google Scholar] [CrossRef] [Green Version]
- Lowe, M.; Lane, J.D.; Woodman, P.G.; Allan, V.J. Caspase-mediated cleavage of syntaxin 5 and giantin accompanies inhibition of secretory traffic during apoptosis. J. Cell Sci. 2004, 117, 1139–1150. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Tang, D.; Wang, Y. Monoubiquitination of Syntaxin 5 Regulates Golgi Membrane Dynamics during the Cell Cycle. Dev. Cell 2016, 38, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, A.; Kamena, F.; Kama, R.; Spang, A.; Gerst, J.E. Control of Golgi Morphology and Function by Sed5 t-SNARE Phosphorylation. Mol. Biol. Cell 2005, 16, 4918–4930. [Google Scholar] [CrossRef] [Green Version]
- Shestakova, A.; Suvorova, E.; Pavliv, O.; Khaidakova, G.; Lupashin, V. Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J. Cell Biol. 2007, 179, 1179–1192. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Wakana, Y.; Noda, C.; Arasaki, K.; Furuno, A.; Tagaya, M. Contribution of the long form of syntaxin 5 to the organization of the endoplasmic reticulum. J. Cell Sci. 2012, 125, 5658–5666. [Google Scholar] [CrossRef] [Green Version]
- Avci, D.; Malchus, N.S.; Heidasch, R.; Lorenz, H.; Richter, K.; Neßling, M.; Lemberg, M.K. The intramembrane protease SPP impacts morphology of the endoplasmic reticulum by triggering degradation of morphogenic proteins. J. Biol. Chem. 2019, 294, 2786–2800. [Google Scholar] [CrossRef]
- Willett, R.; Kudlyk, T.; Pokrovskaya, I.; Schönherr, R.; Ungar, D.; Duden, R.; Lupashin, V. COG complexes form spatial landmarks for distinct SNARE complexes. Nat. Commun. 2013, 4, 1553. [Google Scholar] [CrossRef]
- Peng, R.; Grabowski, R.; De Antoni, A.; Gallwitz, D. Specific interaction of the yeast cis-Golgi syntaxin Sed5p and the coat protein complex II component Sec24p of endoplasmic reticulum-derived transport vesicles. Proc. Natl. Acad. Sci. USA 2002, 96, 3751–3756. [Google Scholar] [CrossRef]
- Mossessova, E.; Bickford, L.C.; Goldberg, J. SNARE selectivity of the COPII coat. Cell 2003, 114, 483–495. [Google Scholar] [CrossRef]
- Uchiyama, K. p97/p47-Mediated Biogenesis of Golgi and ER. J. Biochem. 2005, 137, 115–119. [Google Scholar] [CrossRef]
- Rabouille, C.; Kondo, H.; Newman, R.; Hui, N.; Freemont, P.; Warren, G. Syntaxin 5 is a common component of the NSF- and p97-mediated reassembly pathways of Golgi cisternae from mitotic golgi fragments in vitro. Cell 1998, 92, 603–610. [Google Scholar] [CrossRef]
- Carr, C.M.; Rizo, J. At the junction of SNARE and SM protein function. Curr. Opin. Cell Biol. 2010, 22, 488–495. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, T.; Dulubova, I.; Min, S.; Chen, X.; Rizo, J.; Südhof, T.C. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2002, 2, 295–305. [Google Scholar] [CrossRef]
- Li, Y.; Gallwitz, D.; Peng, R. Structure-based functional analysis reveals a role for the SM protein Sly1p in retrograde transport to the endoplasmic reticulum. Mol. Biol. Cell 2005, 16, 3951–3962. [Google Scholar] [CrossRef]
- Dascher, C.; Balch, W.E. Mammalian Sly1 regulates syntaxin 5 function in endoplasmic reticulum to Golgi transport. J. Biol. Chem. 1996, 271, 15866–15869. [Google Scholar] [CrossRef]
- Laufman, O.; Kedan, A.; Hong, W.; Lev, S. Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. Embo J. 2009, 28, 2006–2017. [Google Scholar] [CrossRef] [Green Version]
- Hou, N.; Yang, Y.; Scott, I.C.; Lou, X. The Sec domain protein Scfd1 facilitates trafficking of ECM components during chondrogenesis. Dev. Biol. 2017, 421, 8–15. [Google Scholar] [CrossRef]
- Peng, R.; Gallwitz, D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J. Cell Biol. 2002, 157, 645–655. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.; Gallwitz, D. Multiple SNARE interactions of an SM protein: Sed5p/Sly1p binding is dispensable for transport. Embo J. 2004, 23, 3939–3949. [Google Scholar] [CrossRef] [Green Version]
- Demircioglu, F.E.; Burkhardt, P.; Fasshauer, D. The SM protein Sly1 accelerates assembly of the ER-Golgi SNARE complex. Proc. Natl. Acad. Sci. USA 2014, 111, 13828–13833. [Google Scholar] [CrossRef]
- Kosodo, Y. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J. Cell Sci. 2002, 115, 3683–3691. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.L.; Ehm, S.; Jacobson, N.C.; Xu, D.; Hay, J.C. rsly1 Binding to Syntaxin 5 Is Required for Endoplasmic Reticulum-to-Golgi Transport but Does Not Promote SNARE Motif Accessibility. Mol. Biol. Cell 2004, 15, 162–175. [Google Scholar] [CrossRef] [Green Version]
- Lobingier, B.T.; Nickerson, D.P.; Lo, S.-Y.; Merz, A.J. SM proteins Sly1 and Vps33 co-assemble with Sec17 and SNARE complexes to oppose SNARE disassembly by Sec18. Elife 2014, 3, e02272. [Google Scholar] [CrossRef]
- Braun, S.; Jentsch, S. SM-protein-controlled ER-associated degradation discriminates between different SNAREs. EMBO Rep. 2007, 8, 1176–1182. [Google Scholar] [CrossRef]
- Joglekar, A.P.; Hay, J.C. Evidence for regulation of ER/Golgi SNARE complex formation by hsc70 chaperones. Eur. J. Cell Biol. 2005, 84, 529–542. [Google Scholar] [CrossRef]
- Climer, L.K.; Dobretsov, M.; Lupashin, V. Defects in the COG complex and COG-related trafficking regulators affect neuronal Golgi function. Front. Neurosci. 2015, 9, 1–9. [Google Scholar] [CrossRef]
- Wang, T.; Grabski, R.; Sztul, E.; Hay, J.C. p115-SNARE Interactions: A Dynamic Cycle of p115 Binding Monomeric SNARE Motifs and Releasing Assembled Bundles. Traffic 2015, 16, 148–171. [Google Scholar] [CrossRef]
- Willett, R.; Ungar, D.; Lupashin, V. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem. Cell Biol. 2013, 140, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Laufman, O.; Freeze, H.H.; Hong, W.; Lev, S. Deficiency of the cog8 subunit in normal and cdg-derived cells impairs the assembly of the cog and golgi SNARE complexes. Traffic 2013, 14, 1065–1077. [Google Scholar] [CrossRef]
- Laufman, O.; Hong, W.; Lev, S. The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic assembly of SNARE complexes. J. Cell Sci. 2013, 126, 1506–1516. [Google Scholar] [CrossRef]
- Willett, R.; Blackburn, J.B.; Climer, L.; Pokrovskaya, I.; Kudlyk, T.; Wang, W.; Lupashin, V. COG lobe B sub-complex engages v-SNARE GS15 and functions via regulated interaction with lobe A sub-complex. Sci. Rep. 2016, 6, 29139. [Google Scholar] [CrossRef] [Green Version]
- Suvorova, E.S.; Duden, R.; Lupashin, V.V. The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J. Cell Biol. 2002, 157, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Shorter, J.; Beard, M.B.; Seemann, J.; Dirac-Svejstrup, A.B.; Warren, G. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J. Cell Biol. 2002, 157, 45–62. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Davis, S.; Ferro-Novick, S.; Novick, P. Rewiring a Rab regulatory network reveals a possible inhibitory role for the vesicle tether, Uso1. Proc. Natl. Acad. Sci. USA 2017, 114, E8637–E8645. [Google Scholar] [CrossRef]
- Nelson, D.S.; Alvarez, C.; Gao, Y.S.; García-Mata, R.; Fialkowski, E.; Sztul, E. The membrane transport factor TAP/p115 cycles between the Golgi and earlier secretory compartments and contains distinct domains required for its localization and function. J. Cell Biol. 1998, 143, 319–331. [Google Scholar] [CrossRef]
- Diao, A.; Frost, L.; Morohashi, Y.; Lowe, M. Coordination of Golgin tethering and SNARE assembly: GM130 binds syntaxin 5 in a p115-regulated manner. J. Biol. Chem. 2008, 283, 6957–6967. [Google Scholar] [CrossRef]
- Canton, J.; Kima, P.E. Targeting host syntaxin-5 preferentially blocks leishmania parasitophorous vacuole development in infected cells and limits experimental leishmania infections. Am. J. Pathol. 2012, 181, 1348–1355. [Google Scholar] [CrossRef]
- Stechmann, B.; Bai, S.-K.; Gobbo, E.; Lopez, R.; Merer, G.; Pinchard, S.; Panigai, L.; Tenza, D.; Raposo, G.; Beaumelle, B.; et al. Inhibition of retrograde transport protects mice from lethal ricin challenge. Cell 2010, 141, 231–242. [Google Scholar] [CrossRef]
- Canton, J.; Ndjamen, B.; Hatsuzawa, K.; Kima, P.E. Disruption of the fusion of Leishmania parasitophorous vacuoles with ER vesicles results in the control of the infection. Cell. Microbiol. 2012, 14, 937–948. [Google Scholar] [CrossRef]
- Cruz, L.; Streck, N.T.; Ferguson, K.; Desai, T.; Desai, D.H.; Amin, S.G.; Buchkovich, N.J. Potent Inhibition of Human Cytomegalovirus by Modulation of Cellular SNARE Syntaxin 5. J. Virol. 2017, 91, 1–17. [Google Scholar] [CrossRef]
- Nonnenmacher, M.E.; Cintrat, J.-C.; Gillet, D.; Weber, T. Syntaxin 5-Dependent Retrograde Transport to the trans -Golgi Network Is Required for Adeno-Associated Virus Transduction. J. Virol. 2014, 89, 1673–1687. [Google Scholar] [CrossRef]
- Suga, K.; Tomiyama, T.; Mori, H.; Akagawa, K. Syntaxin 5 interacts with presenilin holoproteins, but not with their N- or C-terminal fragments, and affects beta-amyloid peptide production. Biochem. J. 2004, 381, 619–628. [Google Scholar] [CrossRef]
- Suga, K.; Saito, A.; Tomiyama, T.; Mori, H.; Akagawa, K. Syntaxin 5 interacts specifically with presenilin holoproteins and affects processing of βAPP in neuronal cells. J. Neurochem. 2005, 94, 425–439. [Google Scholar] [CrossRef]
- Suga, K.; Saito, A.; Mishima, T.; Akagawa, K. ER and Golgi stresses increase ER–Golgi SNARE Syntaxin5: Implications for organelle stress and βAPP processing. Neurosci. Lett. 2015, 604, 30–35. [Google Scholar] [CrossRef]
- Thayanidhi, N.; Helm, J.R.; Nycz, D.C.; Bentley, M.; Liang, Y.; Hay, J.C. α-Synuclein Delays Endoplasmic Reticulum (ER)-to-Golgi Transport in Mammalian Cells by Antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 2010, 21, 1850–1863. [Google Scholar] [CrossRef]
- Canton, J.; Kima, P.E. Interactions of pathogen-containing compartments with the secretory pathway. Cell. Microbiol. 2012, 14, 1676–1686. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linders, P.T.; van der Horst, C.; ter Beest, M.; van den Bogaart, G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells 2019, 8, 780. https://doi.org/10.3390/cells8080780
Linders PT, van der Horst C, ter Beest M, van den Bogaart G. Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells. 2019; 8(8):780. https://doi.org/10.3390/cells8080780
Chicago/Turabian StyleLinders, Peter TA, Chiel van der Horst, Martin ter Beest, and Geert van den Bogaart. 2019. "Stx5-Mediated ER-Golgi Transport in Mammals and Yeast" Cells 8, no. 8: 780. https://doi.org/10.3390/cells8080780
APA StyleLinders, P. T., van der Horst, C., ter Beest, M., & van den Bogaart, G. (2019). Stx5-Mediated ER-Golgi Transport in Mammals and Yeast. Cells, 8(8), 780. https://doi.org/10.3390/cells8080780