Next Article in Journal
Modulation of Autophagy for Controlling Immunity
Next Article in Special Issue
Tankyrase (PARP5) Inhibition Induces Bone Loss through Accumulation of Its Substrate SH3BP2
Previous Article in Journal
Intestinal Mucosal Mast Cells: Key Modulators of Barrier Function and Homeostasis
Previous Article in Special Issue
Diastereomeric Recognition of 5’,8-cyclo-2’-Deoxyadenosine Lesions by Human Poly(ADP-ribose) Polymerase 1 in a Biomimetic Model
Article Menu
Issue 2 (February) cover image

Export Article

Open AccessArticle
Cells 2019, 8(2), 137; https://doi.org/10.3390/cells8020137

Automodified Poly(ADP-Ribose) Polymerase Analysisto Monitor DNA Damagein Peripheral Lymphocytes of Floriculturists Occupationally Exposed to Pesticides

Department of Biology, University of Naples “Federico II”, Via Cintia, 80126 Naples, Italy
*
Author to whom correspondence should be addressed.
Received: 31 December 2018 / Revised: 5 February 2019 / Accepted: 6 February 2019 / Published: 8 February 2019
(This article belongs to the Special Issue Molecular Role of PARP in Health and Disease)
Full-Text   |   PDF [3036 KB, uploaded 8 February 2019]   |  

Abstract

Increased DNA damage and the propension to cancer development, depend on the modulation of the mechanisms to control and maintain genomic integrity. Poly(ADP-Ribose)Polymerase activation and automodification are early responses to genotoxic stress. Upon binding to DNA strand breaks, the enzyme, a molecular DNA nick sensor, is hyperactivated: this is the first step in a series of events leading to either DNA repair or apoptosis. Enzyme hyperactivation and automodification can be easily measured and are widely used to look at DNA damage extent in the cell. We investigated whether these two markers (increased catalytic activity and auto modification), could help to monitor DNA damage in lymphocytes of flower growers from Southern Italy, occupationally exposed to pesticides. Peripheral lymphocyte lysates were analyzed for Poly(ADP-Ribose)Polymerase activity, and by SDS-PAGE and anti-Poly(ADP-Ribose)Polymerase 1-antibodyto measure automodified Poly(ADP-Ribose)Polymerase levels bydensitometry. Poly(ADP-Ribose)Polymerase activity and PARP automodification followed the same trend. Growers daily exposed to pesticides, showed both biomarkers very high, either in the presence or in the absence of pathologies. PARP activity and auto-modification in peripheral blood lymphocytes are possible, non-invasive, androutinartools to monitor the healthy conditions of floricoltorists. View Full-Text
Keywords: Poly(ADP-Ribose)Polymerase; automodified PARP (PAR-PARP); DNA damage; pesticides; growers; greenhouses Poly(ADP-Ribose)Polymerase; automodified PARP (PAR-PARP); DNA damage; pesticides; growers; greenhouses
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Imperato, S.; Mistretta, C.; Marone, M.; Migliaccio, I.; Pulcinelli, I.; Faraone Mennella, M.R. Automodified Poly(ADP-Ribose) Polymerase Analysisto Monitor DNA Damagein Peripheral Lymphocytes of Floriculturists Occupationally Exposed to Pesticides. Cells 2019, 8, 137.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Cells EISSN 2073-4409 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top