Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia
Abstract
:1. Hypoxia and Ciliopathy: Key Players in the Pathogenesis of Biliary Atresia?
1.1. Molecular Mechanisms of Hypoxia-Inducible Factors in Ciliary Dysfunction
1.2. Structural Basis of Ciliogenesis
1.3. Primary Cilia Play a Critical Role and Function in the Liver
2. Liver Function and Ciliopathies
2.1. Ciliary Dysfunction in Biliary Atresia: Insights and Implications
2.1.1. Genetic Variants in Ciliary Function and Their Impact on Biliary Atresia
2.1.2. The Role of Ciliary Genes in BASM
3. The Role of Hypoxia
3.1. Biliary Hypoxia: Mechanisms and Impacts
3.2. Relationship Between Hypoxia and Ciliary Function
3.2.1. Hypoxia and Ciliopathy in Liver Diseases
3.2.2. Ciliary Alterations Driven by Hypoxia Beyond the Liver
HIF-1α: A Fundamental Player in Hypoxia and Cilia Dynamics
Impact of HIF-2α on Primary Cilia
Hypoxia and mTOR: Effects on Ciliary Function and Autophagy
4. Potential Therapeutic Interventions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADPLD | Autosomal dominant polycystic liver disease |
AURKA | Aurora kinase A |
BA | Biliary atresia |
BASM | Biliary atresia-associated splenic malformation |
CABA | Cardiac-associated biliary atresia |
CD | Caroli Disease |
CDG | Congenital Disorder of Glycosylation |
CHF | Congenital Hepatic Fibrosis |
DPM | Ductal plate malformation |
DR | Ductular reaction |
ER | Endoplasmic reticulum |
FGF-2 | Fibroblast growth factor-2 |
GWAS | Genome-wide association studies |
HIF | Hypoxia-inducible factors |
HIF-3α | Hypoxia-inducible factor 3 alpha |
HRE | Hypoxia-responsive element |
IC | Ischemic cholangiopathy |
IFT | Intraflagellar transport |
IFT-A | IFT complex A |
IFT-B | IFT complex B |
KIF3B | Kinesin-like protein KIF3B |
LTx | Liver transplantation |
MAN1A2 | Mannosidase alpha class 1A member 2 |
MSC | Mesenchymal stem cells |
PC | Primary cilia |
PCNT | Pericentrin |
PLD | Polycystic Liver Disease |
pVHL | Von Hippel-Lindau tumor suppressor protein |
PVP | Peribiliary vascular plexus |
TRPV4 | Transient receptor potential cation subfamily V member 4 |
TTC17 | Tetratricopeptide repeat domain 17 |
USP8 | Ubiquitin-specific protease 8 |
V2R | Vasopressin receptor |
VDAC1-ΔC- | Voltage-gated anion channel |
VHL | Von Hippel-Lindau |
References
- Santos, J.L.; Carvalho, E.; Bezerra, J.A. Advances in biliary atresia: From patient care to research. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas E Biol. 2010, 43, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Choquette, M.; Bezerra, J.A. Cholestatic liver disease in children. Curr. Gastroenterol. Rep. 2010, 12, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Suchy, F.J. Biliary atresia in sea lampreys. What can it tell us about the disorder in human infants? Hepatology 2013, 57, 2114–2116. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, J.A.-O.; Wells, R.G.; Mack, C.L.; Karpen, S.J.; Hoofnagle, J.H.; Doo, E.; Sokol, R.J. Biliary Atresia: Clinical and Research Challenges for the Twenty-First Century. Hepatology 2018, 68, 1163–1173. [Google Scholar] [CrossRef]
- Berauer, J.P.; Mezina, A.I.; Okou, D.T.; Sabo, A.; Muzny, D.M.; Gibbs, R.A.; Hegde, M.R.; Chopra, P.; Cutler, D.J.; Perlmutter, D.H.; et al. Identification of Polycystic Kidney Disease 1 Like 1 Gene Variants in Children with Biliary Atresia Splenic Malformation Syndrome. Hepatology 2019, 70, 899–910. [Google Scholar] [CrossRef]
- Lakshminarayanan, B.; Davenport, M. Biliary atresia: A comprehensive review. J. Autoimmun. 2016, 73, 1–9. [Google Scholar] [CrossRef]
- Carvalho, E.; Liu, C.; Shivakumar, P.; Sabla, G.; Aronow, B.; Bezerra, J.A. Analysis of the biliary transcriptome in experimental biliary atresia. Gastroenterology 2005, 129, 713–717. [Google Scholar] [CrossRef]
- Chandra, R.S. Biliary atresia and other structural anomalies in the congenital polysplenia syndrome. J. Pediatr. 1974, 85, 649–655. [Google Scholar] [CrossRef]
- Davenport, M.; Muntean, A.; Hadzic, N. Biliary Atresia: Clinical Phenotypes and Aetiological Heterogeneity. J. Clin. Med. 2021, 10, 5675. [Google Scholar] [CrossRef]
- Fratta, L.X.; Hoss, G.R.; Longo, L.; Uribe-Cruz, C.; da Silveira, T.R.; Vieira, S.M.; Kieling, C.O.; Dos Santos, J.L. Hypoxic-ischemic gene expression profile in the isolated variant of biliary atresia. J. Hepatobiliary Pancreat Sci. 2015, 22, 846–854. [Google Scholar] [CrossRef]
- Humphrey, T.M.; Stringer, M.D. Biliary atresia: US diagnosis. Radiology 2007, 244, 845–851. [Google Scholar] [CrossRef] [PubMed]
- Desmet, V.J. Ductal plates in hepatic ductular reactions. Hypothesis and implications. II. Ontogenic liver growth in childhood. Virchows Arch. Int. J. Pathol. 2011, 458, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Desmet, V.J. Ductal plates in hepatic ductular reactions. Hypothesis and implications. I. Types of ductular reaction reconsidered. Virchows Arch. Int. J. Pathol. 2011, 458, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mavila, N.; Siraganahalli Eshwaraiah, M.; Kennedy, J. Ductular Reactions in Liver Injury, Regeneration, and Disease Progression—An Overview. Cells 2024, 13, 579. [Google Scholar] [CrossRef]
- Quelhas, P.; Breton, M.C.; Oliveira, R.C.; Cipriano, M.A.; Teixeira, P.; Cerski, C.T.; Shivakumar, P.; Vieira, S.M.G.; Kieling, C.O.; Verde, I.; et al. HIF-1alpha-pathway activation in cholangiocytes of patients with biliary atresia: An immunohistochemical/molecular exploratory study. J. Pediatr. Surg. 2023, 58, 587–594. [Google Scholar] [CrossRef]
- Quelhas, P.; Oliveira, R.; Kieling, C.; Vieira, S.; dos Santos, J. Structural Disruption of Cilia and Increased Cytoplasmic Tubulin in Biliary Atresia—An Exploratory Study Focusing on Early Postoperative Prognosis Following Portoenterostomy. Biomedicines 2025, 13, 87. [Google Scholar] [CrossRef]
- Coelho, J.C.; Trubian, P.S.; Freitas, A.C.; Parolin, M.B.; Schulz, G.J.; Martins, E.L. Cost comparison of cadaveric liver transplantation with living-donor transplantation. Rev. Assoc. Medica Bras. 2005, 51, 158–163. [Google Scholar] [CrossRef]
- Portela, M.P.; Neri, E.D.; Fonteles, M.M.; Garcia, J.H.; Fernandes, M.E. The cost of liver transplantation at a university hospital of Brazil. Rev. Assoc. Medica Bras. 2010, 56, 322–326. [Google Scholar] [CrossRef]
- Edom, P.T.; Meurer, L.; da Silveira, T.R.; Matte, U.; dos Santos, J.L. Immunolocalization of VEGF A and its receptors, VEGFR1 and VEGFR2, in the liver from patients with biliary atresia. Appl. Immunohistochem. Mol. Morphol. AIMM 2011, 19, 360–368. [Google Scholar] [CrossRef]
- de Souza, A.F.; Meurer, L.; da Silveira, T.R.; Gregório, C.; Reus, N.; Uribe, C.; Matte, U.; dos Santos, J.L. Angiopoietin 1 and angiopoietin 2 are associated with medial thickening of hepatic arterial branches in biliary atresia. Pediatr. Res. 2014, 75, 22–28. [Google Scholar] [CrossRef]
- Oetzmann von Sochaczewski, C.; Pintelon, I.; Brouns, I.; Thys, S.; Deigendesch, N.; Kübler, J.F.; Timmermans, J.P.; Petersen, C. Experimentally Induced Biliary Atresia by Means of Rotavirus-Infection Is Directly Linked to Severe Damage of the Microvasculature in the Extrahepatic Bile Duct. Anat. Rec. 2019, 302, 818–824. [Google Scholar] [CrossRef]
- Loboda, A.; Jozkowicz, A.; Dulak, J. HIF-1 and HIF-2 transcription factors--similar but not identical. Mol. Cells 2010, 29, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Tarade, D.; Ohh, M. The HIF and other quandaries in VHL disease. Oncogene 2018, 37, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Dengler, V.L.; Galbraith, M.; Espinosa, J.M. Transcriptional regulation by hypoxia inducible factors. Crit. Rev. Biochem. Mol. Biol. 2014, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chu, A.S.; Russo, P.A.; Wells, R.G. Cholangiocyte cilia are abnormal in syndromic and non-syndromic biliary atresia. Mod. Pathol. 2012, 25, 751–757. [Google Scholar] [CrossRef]
- Frassetto, R.; Parolini, F.; Marceddu, S.; Satta, G.; Papacciuoli, V.; Pinna, M.A.; Mela, A.; Secchi, G.; Galleri, G.; Manetti, R.; et al. Intrahepatic bile duct primary cilia in biliary atresia. Hepatol. Res. 2018, 48, 664–674. [Google Scholar] [CrossRef]
- Karjoo, S.; Hand, N.J.; Loarca, L.; Russo, P.A.; Friedman, J.R.; Wells, R.G. Extrahepatic cholangiocyte cilia are abnormal in biliary atresia. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 96–101. [Google Scholar] [CrossRef]
- Huang, B.Q.; Masyuk, T.V.; Muff, M.A.; Tietz, P.S.; Masyuk, A.I.; Larusso, N.F. Isolation and characterization of cholangiocyte primary cilia. Am. J. Physiology. Gastrointest. Liver Physiol. 2006, 291, G500–G509. [Google Scholar] [CrossRef]
- Mansini, A.P.; Peixoto, E.; Thelen, K.M.; Gaspari, C.; Jin, S.; Gradilone, S.A. The cholangiocyte primary cilium in health and disease. Biochim Biophys Acta Mol Basis Dis. 2018, 1864 Pt B, 1245–1253. [Google Scholar] [CrossRef]
- Hu, C.J.; Wang, L.Y.; Chodosh, L.A.; Keith, B.; Simon, M.C. Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol. Cell. Biol. 2003, 23, 9361–9374. [Google Scholar] [CrossRef]
- Depping, R.; Steinhoff, A.; Schindler, S.G.; Friedrich, B.; Fagerlund, R.; Metzen, E.; Hartmann, E.; Köhler, M. Nuclear translocation of hypoxia-inducible factors (HIFs): Involvement of the classical importin alpha/beta pathway. Biochim. Biophys. Acta 2008, 1783, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Sutter, C.H.; Laughner, E.; Semenza, G.L. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA 2000, 97, 4748–4753. [Google Scholar] [CrossRef]
- Semenza, G.L. Hydroxylation of HIF-1: Oxygen sensing at the molecular level. Physiology 2004, 19, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Strikic, A.; Kokeza, J.; Ogorevc, M.; Kelam, N.; Vukoja, M.; Dolonga, P.; Tomas, S.Z. Differential expression of HIF1A and its downstream target VEGFA in the main subtypes of renal cell carcinoma and their impact on patient survival. Front. Oncol. 2023, 13, 1287239. [Google Scholar] [CrossRef] [PubMed]
- Cummins, E.P.; Taylor, C.T. Hypoxia-responsive transcription factors. Pflug. Arch. Eur. J. Physiol. 2005, 450, 363–371. [Google Scholar] [CrossRef]
- Deeks, E.D. Belzutifan: First Approval. Drugs 2021, 81, 1921–1927. [Google Scholar] [CrossRef]
- Proulx-Bonneau, S.; Annabi, B. The primary cilium as a biomarker in the hypoxic adaptation of bone marrow-derived mesenchymal stromal cells: A role for the secreted frizzled-related proteins. Biomark Insights 2011, 6, 107–118. [Google Scholar] [CrossRef]
- Makino, Y.; Cao, R.; Svensson, K.; Bertilsson, G.; Asman, M.; Tanaka, H.; Cao, Y.; Berkenstam, A.; Poellinger, L. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 2001, 414, 550–554. [Google Scholar] [CrossRef]
- Resnick, A. HIF Stabilization Weakens Primary Cilia. PLoS ONE 2016, 11, e0165907. [Google Scholar] [CrossRef]
- Lavagnino, M.; Oslapas, A.N.; Gardner, K.L.; Arnoczky, S.P. Hypoxia inhibits primary cilia formation and reduces cell-mediated contraction in stress-deprived rat tail tendon fascicles. Muscles Ligaments Tendons J. 2016, 6, 193–197. [Google Scholar] [CrossRef]
- Shamloo, K.; Chen, J.; Sardar, J.; Sherpa, R.T.; Pala, R.; Atkinson, K.F.; Pearce, W.J.; Zhang, L.; Nauli, S.M. Chronic Hypobaric Hypoxia Modulates Primary Cilia Differently in Adult and Fetal Ovine Kidneys. Front. Physiol. 2017, 8, 677. [Google Scholar] [CrossRef]
- Yang, Q.; Zhou, Y.; Cai, P.; Fu, W.; Wang, J.; Wei, Q.; Li, X. Up-regulated HIF-2α contributes to the Osteoarthritis development through mediating the primary cilia loss. Int. Immunopharmacol. 2019, 75, 105762. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, M.F.; Groot, A.P.; Oduro, J.P.; Franken, R.J.; Schoenmakers, S.; Peppelenbosch, M.P.; Spek, C.A. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J. Cell. Mol. Med. 2009, 13, 2053–2060. [Google Scholar] [CrossRef] [PubMed]
- Ma, M. Cilia and polycystic kidney disease. Semin. Cell Dev. Biol. 2021, 110, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Jiang, Y. Reciprocal Regulation between Primary Cilia and mTORC1. Genes 2020, 11, 711. [Google Scholar] [CrossRef]
- Horani, A.; Ferkol, T.W. Understanding Primary Ciliary Dyskinesia and Other Ciliopathies. J. Pediatr. 2021, 230, 15–22.e1. [Google Scholar] [CrossRef]
- Mirvis, M.; Stearns, T.; James Nelson, W. Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem. J. 2018, 475, 2329–2353. [Google Scholar] [CrossRef]
- Verhey, K.J.; Dishinger, J.; Kee, H.L. Kinesin motors and primary cilia. Biochem. Soc. Trans. 2011, 39, 1120–1125. [Google Scholar] [CrossRef]
- Ott, C.M. Primary Cilia. In The Liver—Biology and Pathobiology, 6th ed.; Arias, I.M., Alter, H.J., Boyer, J.L., Cohen, D.E., Shafritz, D.A., Thorgeirsson, S.S., Wolkoff, A.W., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 50–61. [Google Scholar]
- de Jong, I.E.M.; Overi, D.; Carpino, G.; Gouw, A.S.H.; van den Heuvel, M.C.; van Kempen, L.C.; Mancone, C.; Onori, P.; Cardinale, V.; Casadei, L.; et al. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology 2022, 75, 814–830. [Google Scholar] [CrossRef]
- DiPaola, F.; Shivakumar, P.; Pfister, J.; Walters, S.; Sabla, G.; Bezerra, J.A. Identification of intramural epithelial networks linked to peribiliary glands that express progenitor cell markers and proliferate after injury in mice. Hepatology 2013, 58, 1486–1496. [Google Scholar] [CrossRef]
- Banales, J.M.; Huebert, R.C.; Karlsen, T.; Strazzabosco, M.; LaRusso, N.F.; Gores, G.J. Cholangiocyte pathobiology. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Almeida, H.; Cerski, C.T.; Silveira, T.R. Histopathological diagnosis of intra- and extrahepatic neonatal cholestasis. Braz. J. Med. Biol. Res. = Rev. Bras. Pesqui. Medicas Biol. 1998, 31, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.L.; Kieling, C.F.; Meurer, L.; Vieira, S.; Ferreira, C.T.; Lorentz, A.; Silveira, T.R. The extent of biliary proliferation in liver biopsies from patients with biliary atresia at portoenterostomy is associated with the postoperative prognosis. J. Pediatr. Surg. 2009, 44, 695–701. [Google Scholar] [CrossRef] [PubMed]
- De Alwis, N.; Hudson, G.; Burt, A.D.; Day, C.P.; Chinnery, P.F. Human liver stem cells originate from the canals of Hering. Hepatology 2009, 50, 992–993. [Google Scholar] [CrossRef]
- Williams, M.J.; Clouston, A.D.; Forbes, S.J. Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 2014, 146, 349–356. [Google Scholar] [CrossRef]
- Roskams, T.A.; Theise, N.D.; Balabaud, C.; Bhagat, G.; Bhathal, P.S.; Bioulac-Sage, P.; Brunt, E.M.; Crawford, J.M.; Crosby, H.A.; Desmet, V.; et al. Nomenclature of the finer branches of the biliary tree: Canals, ductules, and ductular reactions in human livers. Hepatology 2004, 39, 1739–1745. [Google Scholar] [CrossRef]
- Sirica, A.E. Ductular hepatocytes. Histol. Histopathol. 1995, 10, 433–456. [Google Scholar]
- Zhao, R.; Duncan, S.A. Embryonic development of the liver. Hepatology 2005, 41, 956–967. [Google Scholar] [CrossRef]
- Kopp, J.L.; Grompe, M.; Sander, M. Stem cells versus plasticity in liver and pancreas regeneration. Nat. Cell Biol. 2016, 18, 238–245. [Google Scholar] [CrossRef]
- Schaub, J.R.; Malato, Y.; Gormond, C.; Willenbring, H. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 2014, 8, 933–939. [Google Scholar] [CrossRef]
- Lu, W.Y.; Bird, T.G.; Boulter, L.; Tsuchiya, A.; Cole, A.M.; Hay, T.; Guest, R.V.; Wojtacha, D.; Man, T.Y.; Mackinnon, A.; et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat. Cell Biol. 2015, 17, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Mansini, A.P.; Peixoto, E.; Jin, S.; Richard, S.; Gradilone, S.A. The Chemosensory Function of Primary Cilia Regulates Cholangiocyte Migration, Invasion, and Tumor Growth. Hepatology 2019, 69, 1582–1598. [Google Scholar] [CrossRef] [PubMed]
- Masyuk, A.I.; Gradilone, S.A.; Banales, J.M.; Huang, B.Q.; Masyuk, T.V.; Lee, S.O.; Splinter, P.L.; Stroope, A.J.; Larusso, N.F. Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 295, G725–G734. [Google Scholar] [CrossRef] [PubMed]
- Masyuk, A.I.; Masyuk, T.V.; LaRusso, N.F. Cholangiocyte primary cilia in liver health and disease. Dev. Dyn. 2008, 237, 2007–2012. [Google Scholar] [CrossRef]
- Anvarian, Z.; Mykytyn, K.; Mukhopadhyay, S.; Pedersen, L.B.; Christensen, S.T. Cellular signalling by primary cilia in development, organ function and disease. Nat. Rev. Nephrol. 2019, 15, 199–219. [Google Scholar] [CrossRef]
- Bangs, F.; Anderson, K.V. Primary Cilia and Mammalian Hedgehog Signaling. Cold Spring Harb. Perspect. Biol. 2017, 9, a028175. [Google Scholar] [CrossRef]
- Lee, K.H. Involvement of Wnt signaling in primary cilia assembly and disassembly. FEBS J. 2020, 287, 5027–5038. [Google Scholar] [CrossRef]
- Liu, B.; Wei, J.; Li, M.; Jiang, J.; Zhang, H.; Yang, L.; Wu, H.; Zhou, Q. Association of common genetic variants in VEGFA with biliary atresia susceptibility in Northwestern Han Chinese. Gene 2017, 628, 87–92. [Google Scholar] [CrossRef]
- Gradilone, S.A.; Masyuk, A.I.; Splinter, P.L.; Banales, J.M.; Huang, B.Q.; Tietz, P.S.; Masyuk, T.V.; Larusso, N.F. Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc. Natl. Acad. Sci. USA 2007, 104, 19138–19143. [Google Scholar] [CrossRef]
- Masyuk, A.I.; Masyuk, T.V.; Splinter, P.L.; Huang, B.Q.; Stroope, A.J.; LaRusso, N.F. Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2+ and cAMP signaling. Gastroenterology 2006, 131, 911–920. [Google Scholar] [CrossRef]
- Gunay-Aygun, M. Liver and kidney disease in ciliopathies. Am. J. Med. Genet. Part C Semin. Med. Genet. 2009, 151c, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Rock, N.; McLin, V. Liver involvement in children with ciliopathies. Clin Res Hepatol Gastroenterol 2014, 38, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.Y.; Whitney-Miller, C.L.; Liao, X. Congenital hepatic fibrosis and its mimics: A clinicopathologic study of 19 cases at a single institution. Diagn. Pathol. 2021, 16, 81. [Google Scholar] [CrossRef]
- Wills, E.S.; Roepman, R.; Drenth, J.P. Polycystic liver disease: Ductal plate malformation and the primary cilium. Trends Mol. Med. 2014, 20, 261–270. [Google Scholar] [CrossRef]
- Lanser, H.C.; Puckett, Y. Biliary Duct Hamartoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cornec-Le Gall, E.; Torres, V.E.; Harris, P.C. Genetic Complexity of Autosomal Dominant Polycystic Kidney and Liver Diseases. J. Am. Soc. Nephrol. JASN 2018, 29, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Sieben, C.J.; Schauer, R.S.; Harris, P.C. Genetic Spectrum of Polycystic Kidney and Liver Diseases and the Resulting Phenotypes. Adv. Kidney Dis. Health 2023, 30, 397–406. [Google Scholar] [CrossRef]
- Goggolidou, P.; Richards, T. The genetics of Autosomal Recessive Polycystic Kidney Disease (ARPKD). Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166348. [Google Scholar] [CrossRef]
- Wang, S.; Luo, Y.; Wilson, P.D.; Witman, G.B.; Zhou, J. The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J. Am. Soc. Nephrol. JASN 2004, 15, 592–602. [Google Scholar] [CrossRef]
- Girard, M.; Bizet, A.A.; Lachaux, A.; Gonzales, E.; Filhol, E.; Collardeau-Frachon, S.; Jeanpierre, C.; Henry, C.; Fabre, M.; Viremouneix, L.; et al. DCDC2 Mutations Cause Neonatal Sclerosing Cholangitis. Hum. Mutat. 2016, 37, 1025–1029. [Google Scholar] [CrossRef]
- Grammatikopoulos, T.; Sambrotta, M.; Strautnieks, S.; Foskett, P.; Knisely, A.S.; Wagner, B.; Deheragoda, M.; Starling, C.; Mieli-Vergani, G.; Smith, J.; et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J. Hepatol. 2016, 65, 1179–1187. [Google Scholar] [CrossRef]
- Álvarez-Satta, M.; Lago-Docampo, M.; Bea-Mascato, B.; Solarat, C.; Castro-Sánchez, S.; Christensen, S.T.; Valverde, D. ALMS1 Regulates TGF-β Signaling and Morphology of Primary Cilia. Front. Cell Dev. Biol. 2021, 9, 623829. [Google Scholar] [CrossRef] [PubMed]
- Hearn, T. ALMS1 and Alström syndrome: A recessive form of metabolic, neurosensory and cardiac deficits. J. Mol. Med. 2019, 97, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Tsang, S.H.; Aycinena, A.R.P.; Sharma, T. Ciliopathy: Alström Syndrome. Adv. Exp. Med. Biol. 2018, 1085, 179–180. [Google Scholar] [CrossRef] [PubMed]
- Otto, E.A.; Trapp, M.L.; Schultheiss, U.T.; Helou, J.; Quarmby, L.M.; Hildebrandt, F. NEK8 mutations affect ciliary and centrosomal localization and may cause nephronophthisis. J. Am. Soc. Nephrol. JASN 2008, 19, 587–592. [Google Scholar] [CrossRef]
- Stokman, M.; Lilien, M.; Knoers, N. Nephronophthisis-Related Ciliopathies. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Wolf, M.T.F.; Bonsib, S.M.; Larsen, C.P.; Hildebrandt, F. Nephronophthisis: A pathological and genetic perspective. Pediatr. Nephrol. 2024, 39, 1977–2000. [Google Scholar] [CrossRef]
- Cui, C.; Chatterjee, B.; Francis, D.; Yu, Q.; SanAgustin, J.T.; Francis, R.; Tansey, T.; Henry, C.; Wang, B.; Lemley, B.; et al. Disruption of Mks1 localization to the mother centriole causes cilia defects and developmental malformations in Meckel-Gruber syndrome. Dis. Models Mech. 2011, 4, 43–56. [Google Scholar] [CrossRef]
- Dawe, H.R.; Smith, U.M.; Cullinane, A.R.; Gerrelli, D.; Cox, P.; Badano, J.L.; Blair-Reid, S.; Sriram, N.; Katsanis, N.; Attie-Bitach, T.; et al. The Meckel-Gruber Syndrome proteins MKS1 and meckelin interact and are required for primary cilium formation. Hum. Mol. Genet. 2007, 16, 173–186. [Google Scholar] [CrossRef]
- Dilan, T.; Ramamurthy, V. The Dynamic and Complex Role of the Joubert Syndrome-Associated Ciliary Protein, ADP-Ribosylation Factor-Like GTPase 13B (ARL13B) in Photoreceptor Development and Maintenance. Adv. Exp. Med. Biol. 2019, 1185, 501–505. [Google Scholar] [CrossRef]
- Goetz, S.C.; Bangs, F.; Barrington, C.L.; Katsanis, N.; Anderson, K.V. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling. PLoS ONE 2017, 12, e0173399. [Google Scholar] [CrossRef]
- Gana, S.; Serpieri, V.; Valente, E.M. Genotype-phenotype correlates in Joubert syndrome: A review. Am. J. Med. Genet. Part C Semin. Med. Genet. 2022, 190, 72–88. [Google Scholar] [CrossRef]
- Foerster, P.; Daclin, M.; Asm, S.; Faucourt, M.; Boletta, A.; Genovesio, A.; Spassky, N. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development 2017, 144, 201–210. [Google Scholar] [CrossRef]
- Prosseda, P.P.; Dannewitz Prosseda, S.; Tran, M.; Liton, P.B.; Sun, Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr. Top. Dev. Biol. 2023, 155, 1–37. [Google Scholar] [CrossRef] [PubMed]
- So, J.; Ningappa, M.; Glessner, J.; Min, J.; Ashokkumar, C.; Ranganathan, S.; Higgs, B.W.; Li, D.; Sun, Q.; Schmitt, L.; et al. Biliary-Atresia-Associated Mannosidase-1-Alpha-2 Gene Regulates Biliary and Ciliary Morphogenesis and Laterality. Front. Physiol. 2020, 11, 538701. [Google Scholar] [CrossRef] [PubMed]
- Lam, W.Y.; Tang, C.S.; So, M.T.; Yue, H.; Hsu, J.S.; Chung, P.H.; Nicholls, J.M.; Yeung, F.; Lee, C.D.; Ngo, D.N.; et al. Identification of a wide spectrum of ciliary gene mutations in nonsyndromic biliary atresia patients implicates ciliary dysfunction as a novel disease mechanism. eBioMedicine 2021, 71, 103530. [Google Scholar] [CrossRef]
- Hartley, J.L.; O’Callaghan, C.; Rossetti, S.; Consugar, M.; Ward, C.J.; Kelly, D.A.; Harris, P.C. Investigation of primary cilia in the pathogenesis of biliary atresia. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 485–488. [Google Scholar] [CrossRef]
- Hellen, D.J.; Bennett, A.; Malla, S.; Klindt, C.; Rao, A.; Dawson, P.A.; Karpen, S.J. Liver-restricted deletion of the biliary atresia candidate gene Pkd1l1 causes bile duct dysmorphogenesis and ciliopathy. Hepatology 2023, 77, 1274–1286. [Google Scholar] [CrossRef] [PubMed]
- Ali, R.Q.; Meyer-Miner, A.; David-Rachel, M.; Lee, F.J.H.; Wilkins, B.J.; Karpen, S.J.; Ciruna, B.; Ghanekar, A.; Kamath, B.M. Loss of zebrafish pkd1l1 causes biliary defects that have implications for biliary atresia splenic malformation. Dis. Models Mech. 2023, 16, dmm049326. [Google Scholar] [CrossRef]
- Lendahl, U.; Lui, V.C.H.; Chung, P.H.Y.; Tam, P.K.H. Biliary Atresia—Emerging diagnostic and therapy opportunities. eBioMedicine 2021, 74, 103689. [Google Scholar] [CrossRef]
- Lim, Y.Z.; Zhu, M.; Wang, Y.; Sharma, T.; Kelley, S.; Oertling, E.; Zhu, H.; Corbitt, N. Pkd1l1-deficiency drives biliary atresia through ciliary dysfunction in biliary epithelial cells. J. Hepatol. 2024, 81, 62–75. [Google Scholar] [CrossRef]
- Wu, L.N.; Zhu, Z.J.; Sun, L.Y. Genetic Factors and Their Role in the Pathogenesis of Biliary Atresia. Front. Pediatr. 2022, 10, 912154. [Google Scholar] [CrossRef]
- Glessner, J.T.; Ningappa, M.B.; Ngo, K.A.; Zahid, M.; So, J.; Higgs, B.W.; Sleiman, P.M.A.; Narayanan, T.; Ranganathan, S.; March, M.; et al. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J. Hepatol. 2023, 79, 1385–1395. [Google Scholar] [CrossRef] [PubMed]
- Hai-Bing, Y.; Sivasankaran, M.S.; Ottakandathil, B.R.; Zhong-Luan, W.; Man-Ting, S.; Ho-Yu, C.; Kak-Yuen, W.; Kwong-Hang, T.; Chi-Hang, L. Environmental Toxin Biliatresone-Induced Biliary Atresia-like Abnormal Cilia and Bile Duct Cell Development of Human Liver Organoids. Toxins 2024, 16, 144. [Google Scholar] [CrossRef] [PubMed]
- Lorent, K.; Gong, W.; Koo, K.A.; Waisbourd-Zinman, O.; Karjoo, S.; Zhao, X.; Sealy, I.; Kettleborough, R.N.; Stemple, D.L.; Windsor, P.A.; et al. Identification of a plant isoflavonoid that causes biliary atresia. Sci. Transl. Med. 2015, 7, 286ra267. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Ayyanar, P.; Mahalik, S.K.; Patra, S.; Purkait, S.; Satapathy, A.K. Diminution of the Primary Cilia From the Intrahepatic Cholangiocytes in a Pediatric Choledochal Cyst. Appl. Immunohistochem. Mol. Morphol. AIMM 2021, 29, 773–780. [Google Scholar] [CrossRef]
- Sinha, C.K.; Davenport, M. Biliary atresia. J. Indian Assoc. Pediatr. Surg. 2008, 13, 49–56. [Google Scholar] [CrossRef]
- He, L.; Chung, P.H.Y.; Lui, V.C.H.; Tang, C.S.M.; Tam, P.K.H. Current Understanding in the Clinical Characteristics and Molecular Mechanisms in Different Subtypes of Biliary Atresia. Int. J. Mol. Sci. 2022, 23, 4841. [Google Scholar] [CrossRef]
- dos Santos, J.L.; da Silveira, T.R.; da Silva, V.D.; Cerski, C.T.; Wagner, M.B. Medial thickening of hepatic artery branches in biliary atresia. A morphometric study. J. Pediatr. Surg. 2005, 40, 637–642. [Google Scholar] [CrossRef]
- Uflacker, R.; Pariente, D.M. Angiographic findings in biliary atresia. Cardiovasc. Interv. Radiol. 2004, 27, 486–490. [Google Scholar] [CrossRef]
- Pascher, A.; Neuhaus, P. Bile duct complications after liver transplantation. Transpl. Int. 2005, 18, 627–642. [Google Scholar] [CrossRef]
- Goria, O.; Archambeaud, I.; Lemaitre, C.; Dutheil, D.; Plessier, A.; Rautou, P.-E.; Hernandez-Gea, V.; Valla, D. Ischemic cholangiopathy: An update. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 486–490. [Google Scholar] [CrossRef]
- Alabdulghani, F.; Healy, G.M.; Cantwell, C.P. Radiological findings in ischaemic cholangiopathy. Clin. Radiol. 2020, 75, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Glaser, S.S.; Gaudio, E.; Rao, A.; Pierce, L.M.; Onori, P.; Franchitto, A.; Francis, H.L.; Dostal, D.E.; Venter, J.K.; DeMorrow, S.; et al. Morphological and functional heterogeneity of the mouse intrahepatic biliary epithelium. Lab. Investig. J. Tech. Methods Pathol. 2009, 89, 456–469. [Google Scholar] [CrossRef] [PubMed]
- Cursio, R.; Gugenheim, J. Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation. J. Transplant. 2012, 2012, 164329. [Google Scholar] [CrossRef] [PubMed]
- Bernhardt, G.A.; Zollner, G.; Cerwenka, H.; Kornprat, P.; Fickert, P.; Bacher, H.; Werkgartner, G.; Müller, G.; Zatloukal, K.; Mischinger, H.J.; et al. Hepatobiliary transporter expression and post-operative jaundice in patients undergoing partial hepatectomy. Liver Int. 2012, 32, 119–127. [Google Scholar] [CrossRef]
- Fouassier, L.; Beaussier, M.; Schiffer, E.; Rey, C.; Barbu, V.; Mergey, M.; Wendum, D.; Callard, P.; Scoazec, J.Y.; Lasnier, E.; et al. Hypoxia-induced changes in the expression of rat hepatobiliary transporter genes. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 293, G25–G35. [Google Scholar] [CrossRef]
- Hansen, T.; Hollemann, D.; Pitton, M.B.; Heise, M.; Hoppe-Lotichius, M.; Schuchmann, M.; Kirkpatrick, C.J.; Otto, G. Histological examination and evaluation of donor bile ducts received during orthotopic liver transplantation--a morphological clue to ischemic-type biliary lesion? Virchows Arch. Int. J. Pathol. 2012, 461, 41–48. [Google Scholar] [CrossRef]
- de Jong, I.E.M.; Wells, R.G. In Utero Extrahepatic Bile Duct Damage and Repair: Implications for Biliary Atresia. Pediatr. Dev. Pathol. 2024, 27, 291–310. [Google Scholar] [CrossRef]
- Rosmorduc, O.; Wendum, D.; Corpechot, C.; Galy, B.; Sebbagh, N.; Raleigh, J.; Housset, C.; Poupon, R. Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. Am. J. Pathol. 1999, 155, 1065–1073. [Google Scholar] [CrossRef]
- Grezzana Filho, T.J.M.; Longo, L.; Santos, J.L.D.; Gabiatti, G.; Boffil, C.; Santos, E.B.D.; Cerski, C.T.S.; Chedid, M.F.; Corso, C.O. Induction of selective liver hypothermia prevents significant ischemia/reperfusion injury in Wistar rats after 24 hours. Acta Cir. Bras. 2020, 35, e202000205. [Google Scholar] [CrossRef]
- Longo, L.; Sinigaglia-Fratta, L.X.; Weber, G.R.; Janz-Moreira, A.; Kretzmann, N.A.; Grezzana-Filho Tde, J.; Possa-Marroni, N.; Corso, C.O.; Schmidt-Cerski, C.T.; Reverbel-da-Silveira, T.; et al. Hypothermia is better than ischemic preconditioning for preventing early hepatic ischemia/reperfusion in rats. Ann. Hepatol. 2016, 15, 110–120. [Google Scholar] [CrossRef]
- Fraisl, P.; Mazzone, M.; Schmidt, T.; Carmeliet, P. Regulation of angiogenesis by oxygen and metabolism. Dev. Cell 2009, 16, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.; Szabo, G. Hypoxia and hypoxia inducible factors: Diverse roles in liver diseases. Hepatology 2012, 55, 622–633. [Google Scholar] [CrossRef]
- Doctor, R.B.; Dahl, R.H.; Salter, K.D.; Fitz, J.G. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology 1999, 29, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Esser, H.; Kilpatrick, A.M.; Man, T.Y.; Aird, R.; Rodrigo-Torres, D.; Buch, M.L.; Boulter, L.; Walmsley, S.; Oniscu, G.C.; Schneeberger, S.; et al. Primary cilia as a targetable node between biliary injury, senescence and regeneration in liver transplantation. J. Hepatol. 2024, 81, 1005–1022. [Google Scholar] [CrossRef]
- Brown, J.M.; Fine, N.A.; Pandiyan, G.; Thazhath, R.; Gaertig, J. Hypoxia regulates assembly of cilia in suppressors of Tetrahymena lacking an intraflagellar transport subunit gene. Mol. Biol. Cell 2003, 14, 3192–3207. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.S.; Burk, R.D. Primary cilium formation requires von hippel-lindau gene function in renal-derived cells. Cancer Res. 2006, 66, 6903–6907. [Google Scholar] [CrossRef]
- Troilo, A.; Alexander, I.; Muehl, S.; Jaramillo, D.; Knobeloch, K.P.; Krek, W. HIF1α deubiquitination by USP8 is essential for ciliogenesis in normoxia. EMBO Rep. 2014, 15, 77–85. [Google Scholar] [CrossRef]
- Dere, R.; Perkins, A.L.; Bawa-Khalfe, T.; Jonasch, D.; Walker, C.L. β-catenin links von Hippel-Lindau to aurora kinase A and loss of primary cilia in renal cell carcinoma. J. Am. Soc. Nephrol. JASN 2015, 26, 553–564. [Google Scholar] [CrossRef]
- Xu, J.; Li, H.; Wang, B.; Xu, Y.; Yang, J.; Zhang, X.; Harten, S.K.; Shukla, D.; Maxwell, P.H.; Pei, D.; et al. VHL inactivation induces HEF1 and Aurora kinase A. J. Am. Soc. Nephrol. JASN 2010, 21, 2041–2046. [Google Scholar] [CrossRef]
- Fabbri, L.; Dufies, M.; Lacas-Gervais, S.; Gardie, B.; Gad-Lapiteau, S.; Parola, J.; Nottet, N.; Meyenberg Cunha de Padua, M.; Contenti, J.; Borchiellini, D.; et al. Identification of a new aggressive axis driven by ciliogenesis and absence of VDAC1-ΔC in clear cell Renal Cell Carcinoma patients. Theranostics 2020, 10, 2696–2713. [Google Scholar] [CrossRef]
- Zhong, B.; Sun, S.; Tan, K.S.; Ong, H.H.; Du, J.; Liu, F.; Liu, Y.; Liu, S.; Ba, L.; Li, J.; et al. Hypoxia-inducible factor 1α activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J. Allergy Clin. Immunol. 2023, 152, 1444–1459.e14. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Cho, J.Y.; Thuy, P.X.; Moon, E.Y. HeLa Cervical Cancer Cells Are Maintained by Nephronophthisis 3-Associated Primary Cilium Formation via ROS-Induced ERK and HIF-1α Activation under Serum-Deprived Normoxic Condition. Int. J. Mol. Sci. 2022, 23, 14500. [Google Scholar] [CrossRef] [PubMed]
- Leu, T.; Denda, J.; Wrobeln, A.; Fandrey, J. Hypoxia-Inducible Factor-2alpha Affects the MEK/ERK Signaling Pathway via Primary Cilia in Connection with the Intraflagellar Transport Protein 88 Homolog. Mol. Cell. Biol. 2023, 43, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.N.; Tsingas, M.; Ain, R.; Barve, R.A.; Risbud, M.V. Increased HIF-2α activity in the nucleus pulposus causes intervertebral disc degeneration in the aging mouse spine. Front. Cell Dev. Biol. 2024, 12, 1360376. [Google Scholar] [CrossRef]
- Wann, A.K.; Thompson, C.L.; Chapple, J.P.; Knight, M.M. Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium. Cilia 2013, 2, 17. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, Z.; Bunikyte, R.; Chen, X.; Jin, S.; Qi, X.; Cai, D.; Feng, S. Cobalt chloride-simulated hypoxia elongates primary cilia in immortalized human retina pigment epithelial-1 cells. Biochem. Biophys. Res. Commun. 2021, 555, 190–195. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef]
- Larsen, L.J.; Møller, L.B. Crosstalk of Hedgehog and mTORC1 Pathways. Cells 2020, 9, 2316. [Google Scholar] [CrossRef]
- Wang, S.; Livingston, M.J.; Su, Y.; Dong, Z. Reciprocal regulation of cilia and autophagy via the MTOR and proteasome pathways. Autophagy 2015, 11, 607–616. [Google Scholar] [CrossRef]
- Morleo, M.; Vieira, H.L.A.; Pennekamp, P.; Palma, A.; Bento-Lopes, L.; Omran, H.; Lopes, S.S.; Barral, D.C.; Franco, B. Crosstalk between cilia and autophagy: Implication for human diseases. Autophagy 2023, 19, 24–43. [Google Scholar] [CrossRef]
- Sang, L.; Miller, J.J.; Corbit, K.C.; Giles, R.H.; Brauer, M.J.; Otto, E.A.; Baye, L.M.; Wen, X.; Scales, S.J.; Kwong, M.; et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011, 145, 513–528. [Google Scholar] [CrossRef]
- Garcia-Gonzalo, F.R.; Corbit, K.C.; Sirerol-Piquer, M.S.; Ramaswami, G.; Otto, E.A.; Noriega, T.R.; Seol, A.D.; Robinson, J.F.; Bennett, C.L.; Josifova, D.J.; et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat. Genet. 2011, 43, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Finetti, F.; Cassioli, C.; Cianfanelli, V.; Onnis, A.; Paccagnini, E.; Kabanova, A.; Baldari, C.T. The intraflagellar transport protein IFT20 controls lysosome biogenesis by regulating the post-Golgi transport of acid hydrolases. Cell Death Differ. 2020, 27, 310–328. [Google Scholar] [CrossRef]
- Morleo, M.; Franco, B. The Autophagy-Cilia Axis: An Intricate Relationship. Cells 2019, 8, 905. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Weng, J.S.; Hara, T.; Yoshino, S.; Kozuka-Hata, H.; Oyama, M.; Seiki, M. Hypoxia-inducible factor 1 regulation through cross talk between mTOR and MT1-MMP. Mol. Cell. Biol. 2014, 34, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Chiles, K.; Feldser, D.; Laughner, E.; Hanrahan, C.; Georgescu, M.M.; Simons, J.W.; Semenza, G.L. Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: Implications for tumor angiogenesis and therapeutics. Cancer Res. 2000, 60, 1541–1545. [Google Scholar]
- Land, S.C.; Tee, A.R. Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J. Biol. Chem. 2007, 282, 20534–20543. [Google Scholar] [CrossRef]
- Dodd, K.M.; Yang, J.; Shen, M.H.; Sampson, J.R.; Tee, A.R. mTORC1 drives HIF-1α and VEGF-A signalling via multiple mechanisms involving 4E-BP1, S6K1 and STAT3. Oncogene 2015, 34, 2239–2250. [Google Scholar] [CrossRef]
- Gosis, B.S.; Wada, S.; Thorsheim, C.; Li, K.; Jung, S.; Rhoades, J.H.; Yang, Y.; Brandimarto, J.; Li, L.; Uehara, K.; et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022, 376, eabf8271. [Google Scholar] [CrossRef]
- Nishimura, Y.; Saito, M.; Otsu, W.; Miyadera, K. Editorial: Primary cilia as therapeutic targets. Front. Mol. Biosci. 2023, 10, 1322873. [Google Scholar] [CrossRef]
- Masyuk, T.V.; Masyuk, A.I.; Torres, V.E.; Harris, P.C.; Larusso, N.F. Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate. Gastroenterology 2007, 132, 1104–1116. [Google Scholar] [CrossRef] [PubMed]
- Lager, D.J.; Qian, Q.; Bengal, R.J.; Ishibashi, M.; Torres, V.E. The pck rat: A new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int. 2001, 59, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Duong Phu, M.; Bross, S.; Burkhalter, M.D.; Philipp, M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol. Ther. 2021, 225, 107841. [Google Scholar] [CrossRef] [PubMed]
- Casteleijn, N.F.; Blais, J.D.; Chapman, A.B.; Czerwiec, F.S.; Devuyst, O.; Higashihara, E.; Leliveld, A.M.; Ouyang, J.; Perrone, R.D.; Torres, V.E.; et al. Tolvaptan and Kidney Pain in Patients With Autosomal Dominant Polycystic Kidney Disease: Secondary Analysis From a Randomized Controlled Trial. Am. J. Kidney Dis. 2017, 69, 210–219. [Google Scholar] [CrossRef]
- Poch, E.; Rodas, L.; Blasco, M.; Molina, A.; Quintana, L. An update on tolvaptan for autosomal dominant polycystic kidney disease. Drugs Today 2018, 54, 519–533. [Google Scholar] [CrossRef]
- Shao, L.; El-Jouni, W.; Kong, F.; Ramesh, J.; Kumar, R.S.; Shen, X.; Ren, J.; Devendra, S.; Dorschel, A.; Wu, M.; et al. Genetic reduction of cilium length by targeting intraflagellar transport 88 protein impedes kidney and liver cyst formation in mouse models of autosomal polycystic kidney disease. Kidney Int. 2020, 98, 1225–1241. [Google Scholar] [CrossRef]
- Walz, G.; Budde, K.; Mannaa, M.; Nürnberger, J.; Wanner, C.; Sommerer, C.; Kunzendorf, U.; Banas, B.; Hörl, W.H.; Obermüller, N.; et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med. 2010, 363, 830–840. [Google Scholar] [CrossRef]
- Saito, M.; Otsu, W.; Miyadera, K.; Nishimura, Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front. Mol. Biosci. 2023, 10, 1232188. [Google Scholar] [CrossRef]
- Takao, D.; Verhey, K.J. Gated entry into the ciliary compartment. Cell. Mol. Life Sci. CMLS 2016, 73, 119–127. [Google Scholar] [CrossRef]
- Zhao, H.; Khan, Z.; Westlake, C.J. Ciliogenesis membrane dynamics and organization. Semin. Cell Dev. Biol. 2023, 133, 20–31. [Google Scholar] [CrossRef]
- Peixoto, E.; Richard, S.; Pant, K.; Biswas, A.; Gradilone, S.A. The primary cilium: Its role as a tumor suppressor organelle. Biochem. Pharmacol. 2020, 175, 113906. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Kasahara, K.; Shiromizu, T.; Watanabe, M.; Inagaki, M. Primary Cilia as Signaling Hubs in Health and Disease. Adv. Sci. 2019, 6, 1801138. [Google Scholar] [CrossRef] [PubMed]
- Grzelak, C.A.; Martelotto, L.G.; Sigglekow, N.D.; Patkunanathan, B.; Ajami, K.; Calabro, S.R.; Dwyer, B.J.; Tirnitz-Parker, J.E.; Watkins, D.N.; Warner, F.J.; et al. The intrahepatic signalling niche of hedgehog is defined by primary cilia positive cells during chronic liver injury. J. Hepatol. 2014, 60, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Fraile, J.M.; Campos-Iglesias, D.; Rodríguez, F.; Español, Y.; Freije, J.M. The deubiquitinase USP54 is overexpressed in colorectal cancer stem cells and promotes intestinal tumorigenesis. Oncotarget 2016, 7, 74427–74434. [Google Scholar] [CrossRef]
- Guan, Y.T.; Zhang, C.; Zhang, H.Y.; Wei, W.L.; Yue, W.; Zhao, W.; Zhang, D.H. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J. Cell. Physiol. 2023, 238, 1788–1807. [Google Scholar] [CrossRef]
- Burness, C.B. Sonidegib: First Global Approval. Drugs 2015, 75, 1559–1566. [Google Scholar] [CrossRef]
- Keating, G.M. Vismodegib: In locally advanced or metastatic basal cell carcinoma. Drugs 2012, 72, 1535–1541. [Google Scholar] [CrossRef]
- Diagbouga, M.R.; Morel, S.; Cayron, A.F.; Haemmerli, J.; Georges, M.; Hierck, B.P.; Allémann, E.; Lemeille, S.; Bijlenga, P.; Kwak, B.R. Primary cilia control endothelial permeability by regulating expression and location of junction proteins. Cardiovasc. Res. 2022, 118, 1583–1596. [Google Scholar] [CrossRef]
Gene | Function | Disease | Impact of Pathogenic Variants | Refs. |
---|---|---|---|---|
PKD1 and PKD2 | Encode polycystin-1 and polycystin-2, which are involved in calcium signaling and maintaining the structure of primary cilia | Polycystic Liver Disease (PLD) and Autosomal Dominant Polycystic Kidney Disease (ADPKD) | Cyst formation in the liver and kidneys, causing cystic enlargement and disruption of organ function | [65,73,74] |
PKHD1 | Encodes fibrocystin/polyductin, important for maintaining the architecture of the bile ducts and renal tubules | Autosomal Recessive Polycystic Kidney Disease (ARPKD), Caroli Syndrome and Congenital Hepatic Fibrosis (CHF) | Ductal plate malformations formation, leading to fibrosis and cyst formation in the liver and kidneys | [59,73,75] |
DCDC2 | Encodes doublecortin domain-containing protein 2, involved in microtubule organization and ciliary function | Neonatal Sclerosing Cholangitis and Biliary Atresia | Disruption in bile duct development and function, leading to cholestasis and liver fibrosis | [77,78] |
IFT88 | Encodes a protein essential for intraflagellar transport, crucial for cilia formation and maintenance | Bardet-Biedl Syndrome (BBS) and Hepatic Fibrocystic Disease | Defective cilia lead to multi-organ fibrosis, including liver involvement, and other systemic manifestations | [73,74] |
ALMS1 | Encodes a protein involved in ciliary function and cellular signaling pathways | Alström Syndrome | Results in steatosis, with progressive liver fibrosis, along with retinal degeneration, cardiomyopathy, and other systemic features | [79,80] |
NEK8 | Encodes a serine/threonine kinase involved in ciliary function and cell cycle regulation | Nephronophthisis and Hepatic Fibrosis | Cystic kidney disease and liver fibrosis, indicating a shared pathogenesis involving ciliary dysfunction | [82,83,84] |
ARL13B | Encodes a GTPase required for normal ciliary function and signaling | Joubert Syndrome and Hepatic Fibrosis | Ciliary signaling disruption, leading to cerebellar and hepatic fibrosis, and other systemic anomalies | [85] |
MKS1 | Encodes a protein involved in ciliogenesis and centrosome function | Meckel-Gruber Syndrome and Hepatic Fibrosis | Lethal multi-organ fibrosis, including hepatic and renal cysts, and other developmental anomalies | [86,87,88] |
mTORC1 | Influence the process of ciliogenesis by regulating the synthesis of proteins and lipids required for cilia assembly. It coordinates the cellular growth signals that are necessary for the formation of the ciliary membrane and axoneme | Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) | Alterations in nutrient sensing, autophagy regulation and cellular stress response affecting ciliary function | [95] |
MAN1A2 | Involved in the processing of N-linked oligosaccharides during glycoprotein biosynthesis | Biliary Atresia | Knockdown of MAN1A2 results in poor biliary network formation and ciliary dysgenesis | [92] |
KIF3B | Part of the kinesin-2 motor protein complex, which is essential for the anterograde transport of molecular cargoes along microtubules in cilia | Variants in KIF3B can impair ciliary assembly and maintenance, potentially leading to defects in ciliary signaling pathways | [93] | |
TTC17 | Involved in the organization of ciliary and centrosomal structures. It plays a role in the assembly and stability of ciliary axonemes | Defects in TTC17 can lead to ciliary dysfunction and impaired signaling | [93] | |
PCNT | Encodes a protein that is a key component of the centrosome and is involved in microtubule organization. It plays a critical role in the formation and function of primary cilia by anchoring and stabilizing the microtubules at the base of the cilium | Variants in PCNT can cause structural and functional defects in cilia, leading to various ciliopathies | [93] | |
PKD1L1 | Encodes a protein that forms part of a ciliary calcium channel complex with PKD2L1. This complex is involved in mechanosensation and signal transduction within cilia | Variants in PKD1L1 have been found in patients with Biliary Atresia Splenic Malformation (BASM) syndrome, indicating a link between ciliary dysfunction and BA. The disruption of PKD1L1 can affect hepatobiliary development | [91,96,97] | |
Planar polarity genes | Essential for positioning cells in 3D networks to establish the proper morphogenesis, structure, and function of organs during embryonic development | BA is closely linked to polygenic susceptibility involving 102 genes related to ciliogenesis and planar polarity effectors. Functional data point to issues in ciliary development, abnormal biliary epithelial cell formation, and disrupted vasculogenesis | [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quelhas, P.; Morgado, D.; Santos, J.d. Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells 2025, 14, 596. https://doi.org/10.3390/cells14080596
Quelhas P, Morgado D, Santos Jd. Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells. 2025; 14(8):596. https://doi.org/10.3390/cells14080596
Chicago/Turabian StyleQuelhas, Patrícia, Diogo Morgado, and Jorge dos Santos. 2025. "Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia" Cells 14, no. 8: 596. https://doi.org/10.3390/cells14080596
APA StyleQuelhas, P., Morgado, D., & Santos, J. d. (2025). Primary Cilia, Hypoxia, and Liver Dysfunction: A New Perspective on Biliary Atresia. Cells, 14(8), 596. https://doi.org/10.3390/cells14080596