Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity
Abstract
:1. Introduction
2. Material and Methods
2.1. Primary Neuronal Cultures
2.2. Cell Viability Assay
2.3. Protein Extraction and Immunoblotting
2.4. RNA Extraction, cDNA Conversion, and RT-PCR
2.5. Transient Transfection with NAD Biosensors
2.6. Immunocytochemistry and Cell Imaging Analysis
2.7. Metabolic Assay
2.8. Mitochondrial Morphology and Dynamic Assay
2.9. Mitochondrial Membrane Potential Assay
2.10. Statistical Analysis
3. Results
3.1. Expression of NAD Biosynthetic Pathway Enzymes Is Altered in Response to Glutamate-Induced Excitotoxicity
3.2. Mitochondrial NAD Levels Decrease Following Glutamate-Induced Excitotoxicity
3.3. NAD Rescues the Decrease in MMP Promoted by Glutamate-Induced Excitotoxicity
3.4. Glutamate Excitotoxicity Alters Mitochondrial Dynamics in Cortical Neurons
3.5. NAD and NAD Biosynthetic Pathway Precursors Preserve the Metabolic Functions of Neurons Against Glutamate Excitotoxicity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neves, D.; Salazar, I.L.; Almeida, R.D.; Silva, R.M. Molecular Mechanisms of Ischemia and Glutamate Excitotoxicity. Life Sci. 2023, 328, 121814. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.; Zong, N.; Hu, Y.; Chen, Y.; Xu, Y. Neuronal Death Mechanisms and Therapeutic Strategy in Ischemic Stroke. Neurosci. Bull. 2022, 38, 1229–1247. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Xiang, M.; Chen, C.; Ding, F.; Wang, Y.; Shang, C.; Xin, L.; Zhang, Y.; Cui, X. Glutamate Excitotoxicity: Potential Therapeutic Target for Ischemic Stroke. Biomed. Pharmacother. 2022, 151, 113125. [Google Scholar] [CrossRef] [PubMed]
- Carvajal, F.J.; Mattison, H.A.; Cerpa, W. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies. Neural Plast. 2016, 2016, 1–20. [Google Scholar] [CrossRef]
- Deep, S.N.; Mitra, S.; Rajagopal, S.; Paul, S.; Poddar, R. GluN2A-NMDA Receptor–Mediated Sustained Ca2+ Influx Leads to Homocysteine-Induced Neuronal Cell Death. J. Biol. Chem. 2019, 294, 11154–11165. [Google Scholar] [CrossRef]
- Verma, M.; Lizama, B.N.; Chu, C.T. Excitotoxicity, Calcium and Mitochondria: A Triad in Synaptic Neurodegeneration. Transl. Neurodegener. 2022, 11, 3. [Google Scholar] [CrossRef]
- Alano, C.C.; Garnier, P.; Ying, W.; Higashi, Y.; Kauppinen, T.M.; Swanson, R.A. NAD+ Depletion Is Necessary and Sufficient ForPoly(ADP-Ribose) Polymerase-1-Mediated Neuronal Death. J. Neurosci. 2010, 30, 2967–2978. [Google Scholar] [CrossRef]
- Liu, D.; Gharavi, R.; Pitta, M.; Gleichmann, M.; Mattson, M.P. Nicotinamide Prevents NAD+ Depletion and Protects Neurons against Excitotoxicity and Cerebral Ischemia: NAD+ Consumption by SIRT1 May Endanger Energetically Compromised Neurons. Neuromol. Med. 2009, 11, 28–42. [Google Scholar] [CrossRef]
- Liu, D.; Pitta, M.; Mattson, M.P. Preventing NAD(+) Depletion Protects Neurons against Excitotoxicity: Bioenergetic Effects of Mild Mitochondrial Uncoupling and Caloric Restriction. Ann. N. Y. Acad. Sci. 2008, 1147, 275–282. [Google Scholar] [CrossRef]
- Vaur, P.; Brugg, B.; Mericskay, M.; Li, Z.; Schmidt, M.S.; Vivien, D.; Orset, C.; Jacotot, E.; Brenner, C.; Duplus, E. Nicotinamide Riboside, a Form of Vitamin B(3), Protects against Excitotoxicity-Induced Axonal Degeneration. FASEB J. 2017, 31, 5440–5452. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Ding, S. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity. Int. J. Mol. Sci. 2014, 15, 20449–20468. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, H.; Ding, S. Pre-B-Cell Colony-Enhancing Factor Protects against Apoptotic Neuronal Death and Mitochondrial Damage in Ischemia. Sci. Rep. 2016, 6, 32416. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.J.; Pedro, J.R.; Costa, R.O.; Almeida, R.D. Visualizing K48 Ubiquitination during Presynaptic Formation by Ubiquitination-Induced Fluorescence Complementation (UiFC). Front. Mol. Neurosci. 2016, 9. [Google Scholar] [CrossRef] [PubMed]
- Vitória, J.J.M.; de Paula, V.; da Cruz e Silva, O.A.B.; Trigo, D. Optimized Automated Analysis of Live Neuronal Mitochondria Homeostasis Modulation by Isoform-Specific Retinoic Acid Receptors. J. Vis. Exp. 2023, 197, e65452. [Google Scholar] [CrossRef]
- Lefebvre, A.E.Y.T.; Ma, D.; Kessenbrock, K.; Lawson, D.A.; Digman, M.A. Author Correction: Automated Segmentation and Tracking of Mitochondria in Live-Cell Time-Lapse Images. Nat. Methods 2022, 19, 770. [Google Scholar] [CrossRef]
- Cambronne, X.A.; Stewart, M.L.; Kim, D.; Jones-Brunette, A.M.; Morgan, R.K.; Farrens, D.L.; Cohen, M.S.; Goodman, R.H. Biosensor Reveals Multiple Sources for Mitochondrial NAD+. Science 2016, 352, 1474–1477. [Google Scholar] [CrossRef]
- Ryu, K.W.; Nandu, T.; Kim, J.; Challa, S.; DeBerardinis, R.J.; Kraus, W.L. Metabolic Regulation of Transcription through Compartmentalized NAD+ Biosynthesis. Science 2018, 360, eaan5780. [Google Scholar] [CrossRef]
- Moutinho, M.; Puntambekar, S.S.; Tsai, A.P.; Coronel, I.; Lin, P.B.; Casali, B.T.; Martinez, P.; Oblak, A.L.; Lasagna-Reeves, C.A.; Lamb, B.T.; et al. The Niacin Receptor HCAR2 Modulates Microglial Response and Limits Disease Progression in a Mouse Model of Alzheimer’s Disease. Sci. Transl. Med. 2022, 14, eabl7634. [Google Scholar] [CrossRef]
- Moutinho, M.; Tsai, A.P.; Puntambekar, S.S.; Patel, J.; Lin, P.B.; Jadhav, V.; Williams, R.Y.; Shekhar, A.; Landreth, G.E. Therapeutic Potential of Niacin in Alzheimer’s Disease. Alzheimer’s Dement. 2020, 16, e040679. [Google Scholar] [CrossRef]
- Kharechkina, E.; Nikiforova, A.; Kruglov, A. NAD(H) Regulates the Permeability Transition Pore in Mitochondria through an External Site. Int. J. Mol. Sci. 2021, 22, 8560. [Google Scholar] [CrossRef]
- Long, A.; Park, J.H.; Klimova, N.; Fowler, C.; Loane, D.J.; Kristian, T. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation. Neurochem. Res. 2017, 42, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.J.; Lam, C.M.C.; Lee, H.C. The Membrane-Bound Enzyme CD38 Exists in Two Opposing Orientations. Sci. Signal 2012, 5, ra67. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Zhang, N.; Li, H.; Zhang, L.; Baines, C.P.; Ding, S. Subcellular NAMPT-Mediated NAD(+) Salvage Pathways and Their Roles in Bioenergetics and Neuronal Protection after Ischemic Injury. J. Neurochem. 2019, 151, 732–748. [Google Scholar] [CrossRef] [PubMed]
- Davila, A.; Liu, L.; Chellappa, K.; Redpath, P.; Nakamaru-Ogiso, E.; Paolella, L.M.; Zhang, Z.; Migaud, M.E.; Rabinowitz, J.D.; Baur, J.A. Nicotinamide Adenine Dinucleotide Is Transported into Mammalian Mitochondria. elife 2018, 7, e33246. [Google Scholar] [CrossRef]
- Kory, N.; uit de Bos, J.; van der Rijt, S.; Jankovic, N.; Güra, M.; Arp, N.; Pena, I.A.; Prakash, G.; Chan, S.H.; Kunchok, T.; et al. MCART1/SLC25A51 Is Required for Mitochondrial NAD Transport. Sci. Adv. 2022, 6, eabe5310. [Google Scholar] [CrossRef]
- Luongo, T.S.; Eller, J.M.; Lu, M.-J.; Niere, M.; Raith, F.; Perry, C.; Bornstein, M.R.; Oliphint, P.; Wang, L.; McReynolds, M.R.; et al. SLC25A51 Is a Mammalian Mitochondrial NAD+ Transporter. Nature 2020, 588, 174–179. [Google Scholar] [CrossRef]
- Nikiforov, A.; Dölle, C.; Niere, M.; Ziegler, M. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells: From Entry of Extracellular Precursors to Mitochondrial NAD Generation. J. Biol. Chem. 2011, 286, 21767–21778. [Google Scholar] [CrossRef]
- Galindo, R.; Banks Greenberg, M.; Araki, T.; Sasaki, Y.; Mehta, N.; Milbrandt, J.; Holtzman, D.M. NMNAT3 Is Protective against the Effects of Neonatal Cerebral Hypoxia-Ischemia. Ann. Clin. Transl. Neurol. 2017, 4, 722–738. [Google Scholar] [CrossRef]
- Roh, E.; Park, J.W.; Kang, G.M.; Lee, C.H.; Dugu, H.; Gil, S.Y.; Song, D.K.; Kim, H.J.; Son, G.H.; Yu, R.; et al. Exogenous Nicotinamide Adenine Dinucleotide Regulates Energy Metabolism via Hypothalamic Connexin 43. Metabolism 2018, 88, 51–60. [Google Scholar] [CrossRef]
- Gasparrini, M.; Sorci, L.; Raffaelli, N. Enzymology of Extracellular NAD Metabolism. Cell. Mol. Life Sci. 2021, 78, 3317–3331. [Google Scholar] [CrossRef]
- Bi, J.; Li, H.; Ye, S.Q.; Ding, S. Pre-B-Cell Colony-Enhancing Factor Exerts a Neuronal Protection through Its Enzymatic Activity and the Reduction of Mitochondrial Dysfunction in in Vitro Ischemic Models. J. Neurochem. 2012, 120, 334–346. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paiva, B.S.; Neves, D.; Tomé, D.; Costa, F.J.; Bruno, I.C.; Trigo, D.; Silva, R.M.; Almeida, R.D. Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity. Cells 2025, 14, 582. https://doi.org/10.3390/cells14080582
Paiva BS, Neves D, Tomé D, Costa FJ, Bruno IC, Trigo D, Silva RM, Almeida RD. Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity. Cells. 2025; 14(8):582. https://doi.org/10.3390/cells14080582
Chicago/Turabian StylePaiva, Bruna S., Diogo Neves, Diogo Tomé, Filipa J. Costa, Inês C. Bruno, Diogo Trigo, Raquel M. Silva, and Ramiro D. Almeida. 2025. "Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity" Cells 14, no. 8: 582. https://doi.org/10.3390/cells14080582
APA StylePaiva, B. S., Neves, D., Tomé, D., Costa, F. J., Bruno, I. C., Trigo, D., Silva, R. M., & Almeida, R. D. (2025). Neuroprotection by Mitochondrial NAD Against Glutamate-Induced Excitotoxicity. Cells, 14(8), 582. https://doi.org/10.3390/cells14080582