Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy
Abstract
:1. Introduction
2. Material and Methods
2.1. Isolation and Culture of PDLSCs
2.2. Colony-Forming Units (CFUs)
2.3. Flow Cytometric Analysis of MSCs Surface Markers
2.4. Multilineage Differentiation of PDLSCs
2.5. Inflammatory Medium
2.6. TLR Expression at Gene Level
2.7. TLR Expression at Protein Level
2.8. Null Hypothesis
2.9. Statistical Analysis
3. Results
3.1. Phase Contrast Inverted Microscopy and Colony Forming Units
3.2. Multilineage Differentiation Potential and PDLSCs Characterization
3.3. TLR Expression in PDLSCs and PDLSCs-i
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hajishengallis, G. Periodontitis: From microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 2015, 15, 30–44. [Google Scholar] [CrossRef] [PubMed]
- Han, N.; Liu, Y.; Du, J.; Xu, J.; Guo, L.; Liu, Y. Regulation of the Host Immune Microenvironment in Periodontitis and Periodontal Bone Remodeling. Int. J. Mol. Sci. 2023, 24, 3158. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, K.M.F.; Elahmady, M.; Adawi, Z.; Aboushadi, N.; Elnaggar, A.; Eid, M.; Hamdy, N.; Sanaa, D.; Dörfer, C.E. The periodontal stem/progenitor cell inflammatory-regenerative cross talk: A new perspective. J. Periodontal Res. 2018, 54, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Deng, M.; Hao, M.; Tang, J. Periodontal ligament stem cells in the periodontitis niche: Inseparable interactions and mechanisms. J. Leukoc. Biol. 2021, 110, 565–576. [Google Scholar] [CrossRef]
- You, J.; Zhang, Q.; Qian, L.; Shi, Z.; Wang, X.; Jia, L.; Xia, Y. Antibacterial periodontal ligament stem cells enhance periodontal regeneration and regulate the oral microbiome. Stem Cell Res. Ther. 2024, 15, 1–15. [Google Scholar] [CrossRef]
- Rakian, A.; Rakian, R.; Shay, A.; Serhan, C.; Van Dyke, T. Periodontal Stem Cells Synthesize Maresin Conjugate in Tissue Regeneration 3. J. Dent. Res. 2022, 101, 1205–1213. [Google Scholar] [CrossRef]
- Liu, J.; Chen, B.; Bao, J.; Zhang, Y.; Lei, L.; Yan, F. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration. Stem Cell Res. Ther. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Wen, S.; Zheng, X.; Yin, W.; Liu, Y.; Wang, R.; Zhao, Y.; Liu, Z.; Li, C.; Zeng, J.; Rong, M. Dental stem cell dynamics in periodontal ligament regeneration: From mechanism to application. Stem Cell Res. Ther. 2024, 15, 1–19. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. The roles of tlrs, rlrs and nlrs in pathogen recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef]
- Sameer, A.S.; Nissar, S. Toll-Like Receptors (TLRs): Structure, Functions, Signaling, and Role of Their Polymorphisms in Colorectal Cancer Susceptibility. BioMed Res. Int. 2021, 2021, 1157023. [Google Scholar] [CrossRef]
- Zhou, L.-L.; Liu, W.; Wu, Y.-M.; Sun, W.-L.; Dörfer, C.E.; El-Sayed, K.M.F. Oral Mesenchymal Stem/Progenitor Cells: The Immunomodulatory Masters. Stem Cells Int. 2020, 2020, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Dörfer, C.E.; Chen, L.; El-Sayed, K.M.F. Porphyromonas gingivalis lipopolysaccharides affect gingival stem/progenitor cells attributes through NF-κB, but not Wnt/β-catenin, pathway. J. Clin. Periodontol. 2017, 44, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, K.M.F.; Boeckler, J.; Dörfer, C.E. TLR expression profile of human alveolar bone proper-derived stem/progenitor cells and osteoblasts. J. Cranio-Maxillofacial Surg. 2017, 45, 2054–2060. [Google Scholar] [CrossRef]
- Fawzy-El-Sayed, K.M.; Klingebiel, P.; Dörfer, C.E. Toll-like Receptor Expression Profile of Human Dental Pulp Stem/Progenitor Cells. J. Endod. 2016, 42, 413–417. [Google Scholar] [CrossRef]
- Fawzy-El-Sayed, K.; Mekhemar, M.; Adam-Klages, S.; Kabelitz, D.; Dorfer, C. TlR expression profile of human gingival margin-derived stem progenitor cells. Med. Oral Patol. Oral Y Cirugia Bucal 2016, 21, e30–e38. [Google Scholar] [CrossRef]
- Fehrmann, C.; Dörfer, C.E.; El-Sayed, K.M.F. Toll-like Receptor Expression Profile of Human Stem/Progenitor Cells Form the Apical Papilla. J. Endod. 2020, 46, 1623–1630. [Google Scholar] [CrossRef]
- Andrukhova, O.; Özdemir, B.; Haririan, H.; Müller-Kern, M.; Moritz, A.; Rausch-Fan, X. Soluble CD14 Enhances the Response of Periodontal Ligament Stem Cells to P. gingivalis Lipopolysaccharide. PLoS ONE 2016, 11, e0160848. [Google Scholar] [CrossRef]
- Fawzy El-Sayed, K.M.; Dörfer, C.E. Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int. 2016, 2016, 7154327. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- El-Sayed, K.M.F.; Rudert, A.; Geiken, A.; Tölle, J.; Mekhemar, M.; Dörfer, C.E. Toll-like receptor expression profile of stem/progenitor cells from human exfoliated deciduous teeth. Int. J. Paediatr. Dent. 2023, 33, 607–614. [Google Scholar] [CrossRef]
- Mekhemar, M.; Tölle, J.; Dörfer, C.; El-Sayed, K.F. TLR3 ligation affects differentiation and stemness properties of gingival mesenchymal stem/progenitor cells. J. Clin. Periodontol. 2020, 47, 991–1005. [Google Scholar] [CrossRef] [PubMed]
- Raicevic, G.; Rouas, R.; Najar, M.; Stordeur, P.; Boufker, H.I.; Bron, D.; Martiat, P.; Goldman, M.; Nevessignsky, M.T.; Lagneaux, L. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Hum. Immunol. 2010, 71, 235–244. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, K.M.F.; Hein, D.; Dörfer, C.E. Retinol/inflammation affect stemness and differentiation potential of gingival stem/progenitor cells via Wnt/β-catenin. J. Periodontal Res. 2019, 54, 413–423. [Google Scholar] [CrossRef]
- Mekhemar, M.; Tölle, J.; Hassan, Y.; Dörfer, C.; El-Sayed, K.F. Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022, 11, 1452. [Google Scholar] [CrossRef]
- Mekhemar, M.K.; Adam-Klages, S.; Kabelitz, D.; Dörfer, C.E.; El-Sayed, K.M.F. TLR-induced immunomodulatory cytokine expression by human gingival stem/progenitor cells. Cell. Immunol. 2018, 326, 60–67. [Google Scholar] [CrossRef]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef]
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Isola, G.; Santonocito, S.; Lupi, S.M.; Polizzi, A.; Sclafani, R.; Patini, R.; Marchetti, E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediat. Inflamm. 2023, 2023, 1–19. [Google Scholar] [CrossRef]
- Entezami, S.; Sam, M.R. The role of mesenchymal stem cells-derived from oral and teeth in regenerative and reconstructive medicine. Tissue Cell 2025, 93, 102766. [Google Scholar] [CrossRef]
- Goriuc, A.; Foia, L.; Cojocaru, K.; Diaconu-Popa, D.; Sandu, D.; Luchian, I. The Role and Involvement of Stem Cells in Periodontology. Biomedicines 2023, 11, 387. [Google Scholar] [CrossRef]
- Iwayama, T.; Sakashita, H.; Takedachi, M.; Murakami, S. Periodontal tissue stem cells and mesenchymal stem cells in the periodontal ligament. Jpn. Dent. Sci. Rev. 2022, 58, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Behm, C.; Zhao, Z.; Andrukhov, O. Immunomodulatory Activities of Periodontal Ligament Stem Cells in Orthodontic Forces-Induced Inflammatory Processes: Current Views and Future Perspectives. Front. Oral Health 2022, 3, 877348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Deng, M.; Hao, M.; Tang, J. Stem Cell Therapy in Chronic Periodontitis: Host Limitations and Strategies. Front. Dent. Med. 2022, 2. [Google Scholar] [CrossRef]
- Lin, H.; Chen, H.; Zhao, X.; Chen, Z.; Zhang, P.; Tian, Y.; Wang, Y.; Ding, T.; Wang, L.; Shen, Y. Advances in mesenchymal stem cell conditioned medium-mediated periodontal tissue regeneration. J. Transl. Med. 2021, 19, 1–13. [Google Scholar] [CrossRef]
- Andrukhov, O. Toll-Like Receptors and Dental Mesenchymal Stromal Cells. Front. Oral Heal. 2021, 2, 648901. [Google Scholar] [CrossRef]
- Shirjang, S.; Mansoori, B.; Solali, S.; Hagh, M.F.; Shamsasenjan, K. Toll-like receptors as a key regulator of mesenchymal stem cell function: An up-to-date review. Cell. Immunol. 2017, 315, 1–10. [Google Scholar] [CrossRef]
- Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet. 2020, 21, 630–644. [Google Scholar] [CrossRef]
- Boo, S.H.; Kim, Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 2020, 52, 400–408. [Google Scholar] [CrossRef]
- Lee, E.-P.; Lin, M.-J.; Wu, H.-P. Time-serial expression of toll-like receptor 4 signaling during polymicrobial sepsis in rats. Int. J. Immunopathol. Pharmacol. 2022, 36. [Google Scholar] [CrossRef]
- Si, Y.; Zhang, Y.; Chen, Z.; Zhou, R.; Zhang, Y.; Hao, D.; Yan, D. Posttranslational modification control of inflammatory signaling. Adv. Exp. Med. Biol. 2017, 1024, 37–61. [Google Scholar]
- Lin, M.; Hu, Y.; Wang, Y.; Kawai, T.; Wang, Z.; Han, X. Different engagement of TLR2 and TLR4 in Porphyromonas gingivalis vs. ligature-induced periodontal bone loss. Braz. Oral Res. 2017, 31, e63. [Google Scholar] [CrossRef]
- Gu, Y.; Han, X. Toll-Like Receptor Signaling and Immune Regulatory Lymphocytes in Periodontal Disease. Int. J. Mol. Sci. 2020, 21, 3329. [Google Scholar] [CrossRef] [PubMed]
- Fore, F.; Indriputri, C.; Mamutse, J.; Nugraha, J. TLR10 and Its Unique Anti-Inflammatory Properties and Potential Use as a Target in Therapeutics. Immune Netw. 2020, 20, e21. [Google Scholar] [CrossRef]
- Su, S.; Tao, L.; Deng, Z.; Chen, W.; Qin, S.; Jiang, H. TLR10: Insights, controversies and potential utility as a therapeutic target. Scand. J. Immunol. 2020, 93, e12988. [Google Scholar] [CrossRef] [PubMed]
- Cekici, A.; Kantarci, A.; Hasturk, H.; Van Dyke, T.E. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontology 2000 2014, 64, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Karlis, G.D.; Schöningh, E.; Jansen, I.D.C.; Schoenmaker, T.; Hogervorst, J.M.A.; van Veen, H.A.; Moonen, C.G.J.; Łagosz-Ćwik, K.B.; Forouzanfar, T.; de Vries, T.J. Chronic Exposure of Gingival Fibroblasts to TLR2 or TLR4 Agonist Inhibits Osteoclastogenesis but Does Not Affect Osteogenesis. Front. Immunol. 2020, 11, 1693. [Google Scholar] [CrossRef]
- Wang, J.; Wu, S.; Li, Z.; Liu, L.; Pang, Y.; Wei, J. Inhibition of nuclear factor kappa B inducing kinase suppresses inflammatory responses and the symptoms of chronic periodontitis in a mouse model. Int. J. Biochem. Cell Biol. 2021, 139, 106052. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, Q.; Zhou, Y.; Li, W. TLR activation inhibits the osteogenic potential of human periodontal ligament stem cells through Akt signaling in a Myd88- or TRIF-dependent manner. J. Periodontol. 2018, 90, 400–415. [Google Scholar] [CrossRef]
- Bhuyan, R.; Bhuyan, S.K.; Mohanty, J.N.; Das, S.; Juliana, N.; Juliana, I.F. Periodontitis and Its Inflammatory Changes Linked to Various Systemic Diseases: A Review of Its Underlying Mechanisms. Biomedicines 2022, 10, 2659. [Google Scholar] [CrossRef]
- Song, B.; Zhang, Y.; Chen, L.; Zhou, T.; Huang, W.; Zhou, X.; Shao, L. The role of Toll-like receptors in periodontitis. Oral Dis. 2016, 23, 168–180. [Google Scholar] [CrossRef]
- Pan, L.; She, H.; Hu, Y.; Liu, L.; Wang, H.; Zhu, L. Toll-like receptor 4 deficiency affects the balance of osteoclastogenesis and osteoblastogenesis in periodontitis. Int. Immunopharmacol. 2024, 137, 112500. [Google Scholar] [CrossRef]
- Liu, Z.; He, Y.; Xu, C.; Li, J.; Zeng, S.; Yang, X.; Han, Q. The role of PHF8 and TLR4 in osteogenic differentiation of periodontal ligament cells in inflammatory environment. J. Periodontol. 2020, 92, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Tang, Y.; Zhang, R.; Wu, X.; Yan, L.; Chen, X.; Wu, Q.; Chen, Y.; Lv, Y.; Su, Y. Role of periodontal ligament fibroblasts in periodontitis: Pathological mechanisms and therapeutic potential. J. Transl. Med. 2024, 22, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Seubbuk, S.; Surarit, R.; Stephens, D.; Hasturk, H.; E Van Dyke, T.; Kantarci, A. TLR2 and TLR4 Differentially Regulate the Osteogenic Capacity of Human Periodontal Ligament Fibroblasts. J. Int. Acad. Periodontol. 2021, 23, 3–10. [Google Scholar] [PubMed]
- Chen, M.; Lin, X.; Zhang, L.; Hu, X. Effects of nuclear factor-κB signaling pathway on periodontal ligament stem cells under lipopolysaccharide-induced inflammation. Bioengineered 2022, 13, 7951–7961. [Google Scholar] [CrossRef]
- Mekhemar, M.; Hassan, Y.; Dörfer, C. Nigella sativa and Thymoquinone: A Natural Blessing for Periodontal Therapy. Antioxidants 2020, 9, 1260. [Google Scholar] [CrossRef]
- Azam, S.; Jakaria, M.; Kim, I.-S.; Kim, J.; Haque, M.E.; Choi, D.-K. Regulation of Toll-Like Receptor (TLR) Signaling Pathway by Polyphenols in the Treatment of Age-Linked Neurodegenerative Diseases: Focus on TLR4 Signaling. Front. Immunol. 2019, 10, 1000. [Google Scholar] [CrossRef]
- Ardila, C.M.; Pertuz, M.; Vivares-Builes, A.M. Clinical Efficacy of Platelet Derivatives in Periodontal Tissue Regeneration: An Umbrella Review. Int. J. Dent. 2023, 2023, 1–15. [Google Scholar] [CrossRef]
- Hurjui, I.; Delianu, C.; Hurjui, L.L.; Jipu, R.; Mitrea, M.; Balcoș, C.; Armencia, A.O.; Mârțu, M.A.; Grădinaru, I. Platelet derivatives with dental medicine applications. Rom. J. Oral Rehabil. 2020, 12, 142–152. [Google Scholar]
- Kim, S.Y.; Choi, Y.J.; Joung, S.M.; Lee, B.H.; Jung, Y.; Lee, J.Y. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor. Immunology 2010, 129, 516–524. [Google Scholar] [CrossRef]
- Chu, G.; Zhang, W.; Han, F.; Li, K.; Liu, C.; Wei, Q.; Wang, H.; Liu, Y.; Han, F.; Li, B. The role of microenvironment in stem cell-based regeneration of intervertebral disc. Front. Bioeng. Biotechnol. 2022, 10, 968862. [Google Scholar] [CrossRef]
- Romieu-Mourez, R.; François, M.; Boivin, M.-N.; Bouchentouf, M.; Spaner, D.E.; Galipeau, J. Cytokine Modulation of TLR Expression and Activation in Mesenchymal Stromal Cells Leads to a Proinflammatory Phenotype. J. Immunol. 2009, 182, 7963–7973. [Google Scholar] [CrossRef]
- Al-Mutairi, M.A.; Al-Salamah, L.; Nouri, L.A.; Al-Marshedy, B.S.; Al-Harbi, N.H.; Al-Harabi, E.A.; Al-Dosere, H.A.; Tashkandi, F.S.; Al-Shabib, Z.M.; Altalhi, A.M. Microbial Changes in the Periodontal Environment Due to Orthodontic Appliances: A Review. Cureus 2024, 16, e64396. [Google Scholar] [CrossRef]
Antibody or Isotype Control | Manufacturer | Catalog Number |
---|---|---|
AF488 conj. CTRL | Santa Cruz Biotechnology, Dallas, TX, USA | sc-3890 |
Anti PE Micro Beads | Miltenyi Biotec, Bergisch Gladbach, Germany | 139-048-801 |
Anti TLR1 PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | 12-9911-41 |
Anti TLR2 FITC | BioLegend, San Diego, CA, USA | 309705 |
Anti TLR3 PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | 12-9039-80 |
Anti TLR4 FITC | Enzo Life Sciences, Farmingdale, NY, USA | ALX-804-419FT100 |
Anti TLR5 AF488 | R&D, Minneapolis, MN, USA | FAB6704G |
Anti TLR6 PE | BioLegend, San Diego, CA, USA | 334707 |
Anti TLR7 PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | MA5-16249 |
Anti TLR8 PE | Enzo Life Sciences, Farmingdale, NY, USA | ALX-804-376R-C100 |
Anti TLR9 PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | 12-9099-82 |
Anti TLR10 PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | 12-2909-42 |
CD105 FITC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-112-327 |
CD14 FITC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-110-576 |
CD146 PE | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-097-939 |
CD34 PE | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-113-741 |
CD45 APC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-110-771 |
CD73 PE | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-112-060 |
CD90 FITC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-114-901 |
IgG1 PE | BD Biosciences, Franklin Lakes, NJ, USA | 349043 |
IgG2a APC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-091-836 |
IgG2a PE | BD Biosciences, Franklin Lakes, NJ, USA | 349053 |
IgM PE | Santa Cruz Biotechnology, Dallas, TX, USA | sc-2870 |
Mouse IgG1κ PE CTRL | BioLegend, San Diego, CA, USA | 400112 |
Mouse IgG1 PE | BD Biosciences, Franklin Lakes, NJ, USA | 345816 |
Mouse IgG2a FITC | BD Biosciences, Franklin Lakes, NJ, USA | 349051 |
Mouse IgG2a κ PE | BioLegend, San Diego, CA, USA | 400213 |
Rat IgG1k PE | eBioscience, Thermo Fisher Scientific, Waltham, MA, USA | 12-4301-82 |
REA Control FITC | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-113-437 |
REA Control PE | Miltenyi Biotec, Bergisch Gladbach, Germany | 130-113-438 |
STRO-1 PE | Santa Cruz Biotechnology, Dallas, TX, USA | sc-47733 |
Gene-Symbol | Assay-ID | Accession-ID | Species | Description |
---|---|---|---|---|
PGK1 | 102083 | ENST00000373316 | H. sapiens | Phosphoglycerate kinase 1 |
ALP | 103448 | ENST00000374840 | H. sapiens | Alkaline phosphatase |
RUNX2 | 113380 | ENST00000359524 | H. sapiens | Runt-related transcription factor 2 |
SPARC | 103218 | ENST00000231061 | H. sapiens | Osteonectin |
LPL | 113230 | ENST00000311322 | H. sapiens | Lipoprotein lipase |
PPARɣ | 110607 | ENST00000287820 | H. sapiens | Peroxisome proliferator-activated receptor gamma |
ACAN | 138057 | ENST00000439576 | H. sapiens | Aggrecan core protein |
TLR1 | 111000 | ENST00000308979 | H. sapiens | Toll-like receptor 1 |
TLR2 | 145617 | ENST00000260010 | H. sapiens | Toll-like receptor 2 |
TLR3 | 111008 | ENST00000296795 | H. sapiens | Toll-like receptor 3 |
TLR4 | 135752 | ENST00000355622 | H. sapiens | Toll-like receptor 4 |
TLR5 | 103674 | ENST00000366881 | H. sapiens | Toll-like receptor 5 |
TLR6 | 111018 | ENST00000381950 | H. sapiens | Toll-like receptor 6 |
TLR7 | 111012 | ENST00000380659 | H. sapiens | Toll-like receptor 7 |
TLR8 | 103816 | ENST00000218032 | H. sapiens | Toll-like receptor 8 |
TLR9 | 143252 | ENST00000360658 | H. sapiens | Toll-like receptor 9 |
TLR10 | 141065 | NM_001017388 | H. sapiens | Toll-like receptor 10 |
TLR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | References | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PDLSCs | b | + | + | + | + | + | - | + | + | + | + | Current study |
i | + | + | + | + | + | + | + | + | + | + | ||
G-MSCs | b | + | + | + | + | + | + | + | + | + | + | [15,25] |
i | + | + | + | + | + | + | + | - | - | + | ||
DPSCs | b | + | + | + | + | + | + | + | + | + | + | [14] |
i | + | + | + | + | + | + | + | + | + | + | ||
SCAP | b | + | + | + | + | + | + | + | + | + | + | [16] |
i | + | + | + | + | + | + | + | + | + | + | ||
SHEDs | b | + | + | + | + | + | + | + | + | + | + | [20] |
i | + | + | + | + | + | + | + | + | + | + | ||
AB-MSCs | b | + | + | + | + | + | + | + | + | + | + | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mekhemar, M.; Terheyden, I.; Dörfer, C.; Fawzy El-Sayed, K. Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells 2025, 14, 432. https://doi.org/10.3390/cells14060432
Mekhemar M, Terheyden I, Dörfer C, Fawzy El-Sayed K. Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells. 2025; 14(6):432. https://doi.org/10.3390/cells14060432
Chicago/Turabian StyleMekhemar, Mohamed, Immo Terheyden, Christof Dörfer, and Karim Fawzy El-Sayed. 2025. "Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy" Cells 14, no. 6: 432. https://doi.org/10.3390/cells14060432
APA StyleMekhemar, M., Terheyden, I., Dörfer, C., & Fawzy El-Sayed, K. (2025). Inflammatory Modulation of Toll-like Receptors in Periodontal Ligament Stem Cells: Implications for Periodontal Therapy. Cells, 14(6), 432. https://doi.org/10.3390/cells14060432