Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom’s Macroglobulinemia: Emphasis on Asymptomatic WM
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Cytokine Measurement
2.3. Statistical Analysis
2.4. Study Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dimopoulos, M.A.; Kastritis, E. How I Treat Waldenström Macroglobulinemia. Blood 2019, 134, 2022–2035. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Johnson, A.C.; Okolo, O.N.; Arnold, S.J.; McBride, A.; Zhang, L.; Baz, R.C.; Anwer, F. Waldenström Macroglobulinemia: Review of Pathogenesis and Management. Clin. Lymphoma Myeloma Leuk. 2017, 17, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Cingam, S.; Sidana, S. Differential Diagnosis of Waldenström’s Macroglobulinemia and Early Management: Perspectives from Clinical Practice. Blood Lymphat. Cancer 2022, 12, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Kyle, R.A.; Benson, J.T.; Larson, D.R.; Therneau, T.M.; Dispenzieri, A.; Kumar, S.; Melton, L.J.; Rajkumar, S.V. Progression in Smoldering Waldenström Macroglobulinemia: Long-Term Results. Blood 2012, 119, 4462–4466. [Google Scholar] [CrossRef] [PubMed]
- Ocio, E.M.; Del Carpio, D.; Caballero, Á.; Alonso, J.; Paiva, B.; Pesoa, R.; Villaescusa, T.; López-Anglada, L.; Vidriales, B.; García-Sanz, R. Differential Diagnosis of IgM MGUS and WM According to B-Lymphoid Infiltration by Morphology and Flow Cytometry. Clin. Lymphoma Myeloma Leuk. 2011, 11, 93–95. [Google Scholar] [CrossRef]
- Kyle, R.A.; Treon, S.P.; Alexanian, R.; Barlogie, B.; Björkholm, M.; Dhodapkar, M.; Lister, T.A.; Merlini, G.; Morel, P.; Stone, M.; et al. Prognostic Markers and Criteria to Initiate Therapy in Waldenstrom’s Macroglobulinemia: Consensus Panel Recommendations from the Second International Workshop on Waldenstrom’s Macroglobulinemia. Semin. Oncol. 2003, 30, 116–120. [Google Scholar] [CrossRef]
- Kyle, R.A.; Benson, J.; Larson, D.; Therneau, T.; Dispenzieri, A.; Melton, L.J., III; Rajkumar, S.V. IgM Monoclonal Gammopathy of Undetermined Significance and Smoldering Waldenström’s Macroglobulinemia. Clin. Lymphoma Myeloma Leuk. 2009, 9, 17–18. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-Associated Macrophages in Tumor Immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef]
- Noy, R.; Pollard, J.W. Tumor-Associated Macrophages: From Mechanisms to Therapy. Immunity 2014, 41, 49–61. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y. Tumor-Associated Macrophages: From Basic Research to Clinical Application. J. Hematol. Oncol. 2017, 10, 58. [Google Scholar] [CrossRef]
- Zhou, J.; Tang, Z.; Gao, S.; Li, C.; Feng, Y.; Zhou, X. Tumor-Associated Macrophages: Recent Insights and Therapies. Front. Oncol. 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Cao, X. The Origin and Function of Tumor-Associated Macrophages. Cell. Mol. Immunol. 2015, 12, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Møller, H.J. Soluble CD163. Scand. J. Clin. Lab. Investig. 2012, 72, 1–13. [Google Scholar] [CrossRef]
- Etzerodt, A.; Moestrup, S.K. CD163 and Inflammation: Biological, Diagnostic, and Therapeutic Aspects. Antioxid. Redox Signal. 2013, 18, 2352–2363. [Google Scholar] [CrossRef]
- Andersen, M.N.; Abildgaard, N.; Maniecki, M.B.; Møller, H.J.; Andersen, N.F. Monocyte/Macrophage-Derived Soluble CD163: A Novel Biomarker in Multiple Myeloma. Eur. J. Haematol. 2014, 93, 41–47. [Google Scholar] [CrossRef]
- Zhang, J.; Patel, L.; Pienta, K.J. CC Chemokine Ligand 2 (CCL2) Promotes Prostate Cancer Tumorigenesis and Metastasis. Cytokine Growth Factor Rev. 2010, 21, 41–48. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, M.; Deng, J.; Lv, X.; Liu, J.; Xiao, Y.; Yang, W.; Zhang, Y.; Li, C. Chemokine Signaling Pathway Involved in CCL2 Expression in Patients with Rheumatoid Arthritis. Yonsei Med. J. 2015, 56, 1134–1142. [Google Scholar] [CrossRef]
- Jin, J.; Lin, J.; Xu, A.; Lou, J.; Qian, C.; Li, X.; Wang, Y.; Yu, W.; Tao, H. CCL2: An Important Mediator Between Tumor Cells and Host Cells in Tumor Microenvironment. Front. Oncol. 2021, 11, 722916. [Google Scholar] [CrossRef]
- Crusio, W.E.; Lambris, J.D.; Radeke, H.H. Tumor Microenvironment the Role of Chemokines—Part A; Springer: Cham, Switzerland, 2020. [Google Scholar]
- De la Fuente López, M.; Landskron, G.; Parada, D.; Dubois-Camacho, K.; Simian, D.; Martinez, M.; Romero, D.; Roa, J.C.; Chahuán, I.; Gutiérrez, R.; et al. The Relationship between Chemokines CCL2, CCL3, and CCL4 with the Tumor Microenvironment and Tumor-Associated Macrophage Markers in Colorectal Cancer. Tumor Biol. 2018, 40, 1010428318810059. [Google Scholar] [CrossRef]
- Dhodapkar, M.V.; Hoering, A.; Gertz, M.A.; Rivkin, S.; Szymonifka, J.; Crowley, J.; Barlogie, B. Long-Term Survival in Waldenstrom Macroglobulinemia: 10-Year Follow-up of Southwest Oncology Group Directed Intergroup Trial S9003. Blood 2009, 113, 793–796. [Google Scholar] [CrossRef]
- Cho, J.H.; Shim, J.H.; Yoon, S.E.; Kim, H.J.; Kim, S.H.; Ko, Y.H.; Lee, S.T.; Kim, K.; Kim, W.S.; Kim, S.J. Real-World Data on the Survival Outcome of Patients with Newly Diagnosed Waldenström Macroglobulinemia. Korean J. Intern. Med. 2021, 36, 668–678. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Kastritis, E.; Delimpassi, S.; Zomas, A.; Kyrtsonis, M.C.; Zervas, K. The International Prognostic Scoring System for Waldenström’s Macroglobulinemia Is Applicable in Patients Treated with Rituximab-Based Regimens. Haematologica 2008, 93, 1420–1422. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Kyrtsonis, M.C.; Hatjiharissi, E.; Symeonidis, A.; Michalis, E.; Repoussis, P.; Tsatalas, K.; Michael, M.; Sioni, A.; Kartasis, Z.; et al. No Significant Improvement in the Outcome of Patients with Waldenström’s Macroglobulinemia Treated over the Last 25 Years. Am. J. Hematol. 2011, 86, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Kyrtsonis, M.C.; Vassilakopoulos, T.; Angelopoulou, M.; Siakantaris, M.; Kontopidou, F.; Dimopoulou, M.; Boussiotis, V.; Gribabis, D.; Konstantopoulos, K.; Vaiopoulos, G.; et al. Waldenström Macroglobulinemia: Clinical Course and Prognostic Factors in 60 Patients. Experience from a Single Hematology Unit. Ann. Hematol. 2001, 80, 722–727. [Google Scholar] [CrossRef]
- Kvorning, S.L.; Nielsen, M.C.; Andersen, N.F.; Hokland, M.; Andersen, M.N.; Møller, H.J. Circulating extracellular vesicle-associated CD163 and CD206 in multiple myeloma. Eur. J. Haematol. 2020, 104, 409–419. [Google Scholar] [CrossRef]
- Wang, H.; Hu, W.M.; Xia, Z.J.; Liang, Y.; Lu, Y.; Lin, S.X.; Tang, H. High Numbers of CD163+ Tumor-Associated Macrophages Correlate with Poor Prognosis in Multiple Myeloma Patients Receiving Bortezomib-Based Regimens. J. Cancer 2019, 10, 3239–3245. [Google Scholar] [CrossRef]
- Steidl, C.; Lee, T.; Shah, S.P.; Farinha, P.; Han, G.; Nayar, T.; Delaney, A.; Jones, S.J.; Iqbal, J.; Weisenburger, D.D.; et al. Tumor-Associated Macrophages and Survival in Classic Hodgkin’s Lymphoma. N. Engl. J. Med. 2010, 362, 875–885. [Google Scholar] [CrossRef]
- Jones, K.; Vari, F.; Keane, C.; Crooks, P.; Nourse, J.P.; Seymour, L.A.; Gottlieb, D.; Ritchie, D.; Gill, D.; Gandhi, M.K. Serum CD163 and TARC as Disease Response Biomarkers in Classical Hodgkin Lymphoma. Clin. Cancer Res. 2013, 19, 731–742. [Google Scholar] [CrossRef]
- Nederby, L.; Roug, A.S.; Knudsen, S.S.; Skovbo, A.; Kjeldsen, E.; Moller, H.J.; Hokland, M. Soluble CD163 as a Prognostic Biomarker in B-Cell Chronic Lymphocytic Leukemia. Leuk. Lymphoma 2015, 56, 3219–3221. [Google Scholar] [CrossRef]
- Vajavaara, H.; Ekeblad, F.; Holte, H.; Jørgensen, J.; Leivonen, S.K.; Berglund, M.; Kamper, P.; Møller, H.J.; d’Amore, F.; Molin, D.; et al. Prognostic Impact of Soluble Cd163 in Patients with Diffuse Large B-Cell Lymphoma. Haematologica 2021, 106, 2502–2506. [Google Scholar] [CrossRef]
- Koudouna, A.; Gkioka, A.I.; Gkiokas, A.; Tryfou, T.M.; Papadatou, M.; Alexandropoulos, A.; Bartzi, V.; Kafasi, N.; Kyrtsonis, M.C. Serum-Soluble CD163 Levels as a Prognostic Biomarker in Patients with Diffuse Large B-Cell Lymphoma Treated with Chemoimmunotherapy. Int. J. Mol. Sci. 2024, 25, 2862. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, Y.D.; Zhan, Y.T.; Zhu, Y.H.; Li, Y.; Xie, D.; Guan, X.Y. High Levels of CCL2 or CCL4 in the Tumor Microenvironment Predict Unfavorable Survival in Lung Adenocarcinoma. Thorac. Cancer 2018, 9, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Kyrtsonis, M.C.; Levidou, G.; Korkolopoulou, P.; Koulieris, E.; Bartzi, V.; Maltezas, D.; Pangalis, G.A.; Kalpadakis, C.; Dimou, M.; Georgiou, G.; et al. CD138 Expression Helps Distinguishing Waldenström’s Macroglobulinemia (WM) from Splenic Marginal Zone Lymphoma (SMZL). Clin. Lymphoma Myeloma Leuk. 2011, 11, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Navetta-Modrov, B.; Yao, Q. Macroglobulinemia and Autoinflammatory Disease. Rheumatol. Immunol. Res. 2021, 2, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Matissek, S.J.; Jackson, D.A.; Sklavanitis, B.; Elsawa, S.F. Targeting IL-6 Receptor Reduces IgM Levels and Tumor Growth in Waldenström Macroglobulinemia. Oncotarget 2019, 10, 3400–3407. [Google Scholar] [CrossRef]
- Elsawa, S.F.; Novak, A.J.; Ziesmer, S.C.; Almada, L.L.; Hodge, L.S.; Grote, D.M.; Witzig, T.E.; Fernandez-Zapico, M.E.; Ansell, S.M. Comprehensive Analysis of Tumor Microenvironment Cytokines in Waldenstrom Macroglobulinemia Identifies CCL5 as a Novel Modulator of IL-6 Activity. Blood 2011, 118, 5540–5549. [Google Scholar] [CrossRef]
Clinical and Laboratory Parameters | Patients | Patients with Available Serum at Diagnosis |
---|---|---|
Total | 204 | 75 |
Median age | 66.5 years (range, 33–92 years) | 64 (33–92) |
Gender | ||
Female | 44% | 48% |
Male | 56% | 52% |
Diagnosis | ||
WM | 40% | 37% |
AWM | 43% | 44% |
IgM-MGUS | 7% | 11% |
LPL | 10% | 8% |
Free-light chain type | n = 158 | n = 67 |
IgM-kappa | 120 | 76 |
IgM-lamda | 34 | 19.5 |
Biclonal | 4 | 4.5 |
Median BM infiltration | n = 177 | n = 68 |
40% (range: 0–40) | 37.5% (range: 5–90) | |
Median IgM (mg/dL) | n = 187 | n = 72 |
2088 (range: 38–12,300) | 1365 (range: 38.2–11,040) | |
Presence of Lymphadenopathy | n = 179 | n = 65 |
21.20% | 13.80% | |
Presence of Organomegaly | n = 171 | n = 62 |
16.40% | 11.30% | |
Median β2-microglobulin (mg/dL) | n = 117 | n = 63 |
3.29 (range: 0.59–16.7) | 3 (range: 0.59–16.3) | |
Median Erythrocyte sedimentation rate (ESR) (mm/h) | n = 116 | n = 52 |
86.5 (range: 5–150) | 68 (range: 10–150) | |
Median Platelet count (K/μL) | n = 194 | n = 73 |
215 (range: 4–489) | 214 (range: 16–490) | |
Median Albumin (g/dL) | n = 195 | n = 74 |
4 (range: 1.5–4.5) | 4.2 (range: 2–4.5) | |
Median Total protein (g/dL) | n = 151 | n = 67 |
8.1 (range: 4.86–12.3) | 7.9 (range: 5.7–11.9) | |
Median Hemoglobin (g/dL) | n = 194 | n = 73 |
11.3 (range: 4.9–15.4) | 11.7 (range: 5.7–15.2) | |
Median White Blood Leucocytes absolute count (K/μL) | n = 193 | n = 73 |
6.7 (range: 2.2–52.7) | 6.7 (range: 2.02–23) | |
Median Lymphocyte absolute count (K/μL) | n = 193 | n = 73 |
2.0 (range: 0.66–40.6) | 2.0 (range: 0.22–19.3) | |
Median Monocyte absolute count (K/μL) | n = 117 | n = 53 |
0.49 (range: 0.05–5.2) | 0.47 (range: 0.05–2.17) | |
Median LDH (IU/L) | n = 174 | n = 71 |
290.5 (range: 3–1150) | 289 (range: 73–1150) |
Number of Patients | Median Value | Range | |
---|---|---|---|
sCD163 | n = 75 | 28,163 pg/mL | 16,696–97,286 pg/mL |
CCL2 | n = 64 | 497.45 pg/mL | 6.64–1713.11 pg/mL |
CCL4 | n = 65 | 278.61 pg/mL | 0–2462 pg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkiokas, A.; Papadatou-Gigante, M.; Gkioka, A.I.; Koudouna, A.; Tryfou, T.M.; Alexandropoulos, A.; Bartzi, V.; Kafasi, N.; Kyrtsonis, M.-C. Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom’s Macroglobulinemia: Emphasis on Asymptomatic WM. Cells 2025, 14, 275. https://doi.org/10.3390/cells14040275
Gkiokas A, Papadatou-Gigante M, Gkioka AI, Koudouna A, Tryfou TM, Alexandropoulos A, Bartzi V, Kafasi N, Kyrtsonis M-C. Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom’s Macroglobulinemia: Emphasis on Asymptomatic WM. Cells. 2025; 14(4):275. https://doi.org/10.3390/cells14040275
Chicago/Turabian StyleGkiokas, Alexandros, Mavra Papadatou-Gigante, Annita Ioanna Gkioka, Aspasia Koudouna, Thomai M. Tryfou, Alexandros Alexandropoulos, Vassiliki Bartzi, Nikolitsa Kafasi, and Marie-Christine Kyrtsonis. 2025. "Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom’s Macroglobulinemia: Emphasis on Asymptomatic WM" Cells 14, no. 4: 275. https://doi.org/10.3390/cells14040275
APA StyleGkiokas, A., Papadatou-Gigante, M., Gkioka, A. I., Koudouna, A., Tryfou, T. M., Alexandropoulos, A., Bartzi, V., Kafasi, N., & Kyrtsonis, M.-C. (2025). Tumor-Associated Macrophage (TAM)-Related Cytokines, sCD163, CCL2, and CCL4, as Novel Biomarkers for Overall Survival and Time to Treatment in Waldenstrom’s Macroglobulinemia: Emphasis on Asymptomatic WM. Cells, 14(4), 275. https://doi.org/10.3390/cells14040275