Pathological and Molecular Insights into the Early Stage of Multiple System Atrophy
Abstract
1. Introduction
2. MSA
3. α-Syn Aggregation Processes in GCIs
4. Clinical Features in the Early Stage of MSA
5. Pathological and Molecular Alterations in the Early Stage of MSA
5.1. Preclinical MSA
5.2. Early-Stage MSA
5.3. “Minimal Change” MSA
6. In Vitro and In Vivo Models of Early-Stage MSA
6.1. Induced Pluripotent Stem (iPS) Cell Models
6.1.1. Oligodendrocytes
6.1.2. Neural Progenitor Cells
6.1.3. Dopaminergic Neurones
6.1.4. Striatal GABAergic Medium-Sized Spiny Neurones
6.2. Animal Models of MSA
6.2.1. Adult-Onset Proteolipid Protein (PLP) α-Syn Mouse Model of MSA
6.2.2. Adeno-Associated Virus (AAV) Models
6.2.3. Inoculation Models
6.3. Other Models
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wenning, G.K.; Stankovic, I.; Vignatelli, L.; Fanciulli, A.; Calandra-Buonaura, G.; Seppi, K.; Palma, J.A.; Meissner, W.G.; Krismer, F.; Berg, D.; et al. The Movement Disorder Society Criteria for the Diagnosis of Multiple System Atrophy. Mov. Disord. 2022, 37, 1131–1148. [Google Scholar] [CrossRef]
- Schrag, A.; Wenning, G.K.; Quinn, N.; Ben-Shlomo, Y. Survival in multiple system atrophy. Mov. Disord. 2008, 23, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Kollensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.Y.; Saunders, E.; Pavey, S.; Rushton, E.; Quinn, N.; Houlden, H.; Chelban, V. Multiple system atrophy. Pract. Neurol. 2023, 23, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Gilman, S.; Low, P.A.; Quinn, N.; Albanese, A.; Ben-Shlomo, Y.; Fowler, C.J.; Kaufmann, H.; Klockgether, T.; Lang, A.E.; Lantos, P.L.; et al. Consensus statement on the diagnosis of multiple system atrophy. J. Neurol. Sci. 1999, 163, 94–98. [Google Scholar] [CrossRef]
- Low, P.A.; Reich, S.G.; Jankovic, J.; Shults, C.W.; Stern, M.B.; Novak, P.; Tanner, C.M.; Gilman, S.; Marshall, F.J.; Wooten, F.; et al. Natural history of multiple system atrophy in the USA: A prospective cohort study. Lancet Neurol. 2015, 14, 710–719. [Google Scholar] [CrossRef]
- Yabe, I.; Soma, H.; Takei, A.; Fujiki, N.; Yanagihara, T.; Sasaki, H. MSA-C is the predominant clinical phenotype of MSA in Japan: Analysis of 142 patients with probable MSA. J. Neurol. Sci. 2006, 249, 115–121. [Google Scholar] [CrossRef]
- Seo, J.H.; Yong, S.W.; Song, S.K.; Lee, J.E.; Sohn, Y.H.; Lee, P.H. A case-control study of multiple system atrophy in Korean patients. Mov. Disord. 2010, 25, 1953–1959. [Google Scholar] [CrossRef]
- Gatto, E.; Rodriguez-Violante, M.; Cosentino, C.; Chana-Cuevas, P.; Miranda, M.; Gallin, E.; Etcheverry, J.L.; Nunez, Y.; Parisi, V.; Persi, G.; et al. Pan-American Consortium of Multiple System Atrophy (PANMSA). A Pan-American multicentre cohort study of multiple system atrophy. J. Parkinsons Dis. 2014, 4, 693–698. [Google Scholar] [CrossRef]
- Koga, S.; Aoki, N.; Uitti, R.J.; van Gerpen, J.A.; Cheshire, W.P.; Josephs, K.A.; Wszolek, Z.K.; Langston, J.W.; Dickson, D.W. When DLB, PD, and PSP masquerade as MSA. Neurology 2015, 85, 404–412. [Google Scholar] [CrossRef]
- Miki, Y.; Foti, S.C.; Hansen, D.; Strand, K.M.; Asi, Y.T.; Tsushima, E.; Jaunmuktane, Z.; Lees, A.J.; Warner, T.T.; Quinn, N.; et al. Hippocampal alpha-synuclein pathology correlates with memory impairment in multiple system atrophy. Brain 2020, 143, 1798–1810. [Google Scholar] [CrossRef] [PubMed]
- Sulzer, D.; Edwards, R.H. The physiological role of alpha-synuclein and its relationship to Parkinson’s Disease. J. Neurochem. 2019, 150, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Fanning, S.; Selkoe, D.; Dettmer, U. Vesicle trafficking and lipid metabolism in synucleinopathy. Acta Neuropathol. 2021, 141, 491–510. [Google Scholar] [CrossRef]
- Wong, Y.C.; Krainc, D. α-synuclein toxicity in neurodegeneration: Mechanism and therapeutic strategies. Nat. Med. 2017, 23, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Tanji, K.; Shinnai, K.; Tanaka, M.T.; Altay, F.; Foti, S.C.; Strand, C.; Sasaki, T.; Kon, T.; Shimoyama, S.; et al. Pathological substrate of memory impairment in multiple system atrophy. Neuropathol. Appl. Neurobiol. 2022, 48, e12844. [Google Scholar] [CrossRef]
- Rockenstein, E.; Nuber, S.; Overk, C.R.; Ubhi, K.; Mante, M.; Patrick, C.; Adame, A.; Trejo-Morales, M.; Gerez, J.; Picotti, P.; et al. Accumulation of oligomer-prone alpha-synuclein exacerbates synaptic and neuronal degeneration in vivo. Brain 2014, 137, 1496–1513. [Google Scholar] [CrossRef]
- Alam, P.; Bousset, L.; Melki, R.; Otzen, D.E. α-synuclein oligomers and fibrils: A spectrum of species, a spectrum of toxicities. J. Neurochem. 2019, 150, 522–534. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Yashimoto, M.; Tsuji, S.; Takahashi, H. α-Synuclein immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neurosci. Lett. 1998, 249, 180–182. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Miki, Y.; Tanji, K.; Mori, F. Neuropathology of Multiple System Atrophy, a Glioneuronal Degenerative Disease. Cerebellum 2024, 23, 2–12. [Google Scholar] [CrossRef]
- Ozawa, T.; Paviour, D.; Quinn, N.P.; Josephs, K.A.; Sangha, H.; Kilford, L.; Healy, D.G.; Wood, N.W.; Lees, A.J.; Holton, J.L.; et al. The spectrum of pathological involvement of the striatonigral and olivopontocerebellar systems in multiple system atrophy: Clinicopathological correlations. Brain 2004, 127, 2657–2671. [Google Scholar] [CrossRef]
- Poewe, W.; Stankovic, I.; Halliday, G.; Meissner, W.G.; Wenning, G.K.; Pellecchia, M.T.; Seppi, K.; Palma, J.A.; Kaufmann, H. Multiple system atrophy. Nat. Rev. Dis. Primers 2022, 8, 56. [Google Scholar] [CrossRef]
- Miki, Y.; Shimoyama, S.; Tanaka, M.T.; Kushibiki, H.; Nakahara, A.; Wen, X.; Hijioka, M.; Kon, T.; Murthy, M.; Furukawa, T.; et al. Abnormal alpha-synuclein binds to synaptotagmin 13, impairing extracellular vesicle release in synucleinopathies. Transl. Neurodegener. 2025, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 2013, 369, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Yang, X.; Tian, S.; An, R.; Zheng, J.; Xu, Y. Association of the COQ2 V393A variant with risk of multiple system atrophy in East Asians: A case-control study and meta-analysis of the literature. Neurol. Sci. 2016, 37, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Tan, E.K.; Yang, C.C.; Yi, Z.; Wu, R.M. COQ2 gene variants associate with cerebellar subtype of multiple system atrophy in Chinese. Mov. Disord. 2015, 30, 436–437. [Google Scholar] [CrossRef]
- Schottlaender, L.V.; Houlden, H. Multiple-System Atrophy (MSA) Brain Bank Collaboration. Mutant COQ2 in Multiple-System Atrophy. N. Engl. J. Med. 2014, 371, 80–83. [Google Scholar] [CrossRef]
- Wen, X.D.; Li, H.F.; Wang, H.X.; Ni, W.; Dong, Y.; Wu, Z.Y. Mutation Analysis of COQ2 in Chinese Patients with Cerebellar Subtype of Multiple System Atrophy. CNS Neurosci. Ther. 2015, 21, 626–630. [Google Scholar] [CrossRef]
- Mitsui, J.; Matsukawa, T.; Sasaki, H.; Yabe, I.; Matsushima, M.; Durr, A.; Brice, A.; Takashima, H.; Kikuchi, A.; Aoki, M.; et al. Variants associated with Gaucher disease in multiple system atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 417–426. [Google Scholar] [CrossRef]
- Sklerov, M.; Kang, U.J.; Liong, C.; Clark, L.; Marder, K.; Pauciulo, M.; Nichols, W.C.; Chung, W.K.; Honig, L.S.; Cortes, E.; et al. Frequency of GBA variants in autopsy-proven multiple system atrophy. Mov. Disord. Clin. Pract. 2017, 4, 574–581. [Google Scholar] [CrossRef]
- Orimo, K.; Mitsui, J.; Matsukawa, T.; Tanaka, M.; Nomoto, J.; Ishiura, H.; Omae, Y.; Kawai, Y.; Tokunaga, K.; Consortium, N.C.W.; et al. Association study of GBA1 variants with MSA based on comprehensive sequence analysis -Pitfalls in short-read sequence analysis depending on the human reference genome. J. Hum. Genet. 2024, 69, 613–621. [Google Scholar] [CrossRef]
- Wernick, A.I.; Walton, R.L.; Koga, S.; Soto-Beasley, A.I.; Heckman, M.G.; Gan-Or, Z.; Ren, Y.; Rademakers, R.; Uitti, R.J.; Wszolek, Z.K.; et al. GBA variation and susceptibility to multiple system atrophy. Park. Relat. Disord. 2020, 77, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Zhao, B.; Cao, B.; Song, W.; Guo, X.; Wei, Q.Q.; Yang, Y.; Yuan, L.X.; Shang, H.F. Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol. Aging 2015, 36, 1222.e7–1222.e11. [Google Scholar] [CrossRef] [PubMed]
- Ogaki, K.; Fujioka, S.; Heckman, M.G.; Rayaprolu, S.; Soto-Ortolaza, A.I.; Labbé, C.; Walton, R.L.; Lorenzo-Betancor, O.; Wang, X.; Asmann, Y.; et al. Analysis of COQ2 gene in multiple system atrophy. Mol. Neurodegener. 2014, 9, 44. [Google Scholar] [CrossRef]
- Ronchi, D.; Di Biase, E.; Franco, G.; Melzi, V.; Del Sorbo, F.; Elia, A.; Barzaghi, C.; Garavaglia, B.; Bergamini, C.; Fato, R.; et al. Mutational analysis of COQ2 in patients with MSA in Italy. Neurobiol. Aging 2016, 45, 213.e1–213.e2. [Google Scholar] [CrossRef] [PubMed]
- Srulijes, K.; Hauser, A.K.; Guella, I.; Asselta, R.; Brockmann, K.; Schulte, C.; Solda, G.; Cilia, R.; Maetzler, W.; Schols, L.; et al. No association of GBA mutations and multiple system atrophy. Eur. J. Neurol. 2013, 20, e61–e62. [Google Scholar] [CrossRef]
- Chia, R.; Ray, A.; Shah, Z.; Ding, J.; Ruffo, P.; Fujita, M.; Menon, V.; Saez-Atienzar, S.; Reho, P.; Kaivola, K.; et al. Genome sequence analyses identify novel risk loci for multiple system atrophy. Neuron 2024, 112, 2142–2156.e5. [Google Scholar] [CrossRef]
- Sailer, A.; Scholz, S.W.; Nalls, M.A.; Schulte, C.; Federoff, M.; Price, T.R.; Lees, A.; Ross, O.A.; Dickson, D.W.; Mok, K.; et al. A genome-wide association study in multiple system atrophy. Neurology 2016, 87, 1591–1598. [Google Scholar] [CrossRef]
- Federoff, M.; Price, T.R.; Sailer, A.; Scholz, S.; Hernandez, D.; Nicolas, A.; Singleton, A.B.; Nalls, M.; Houlden, H. Genome-wide estimate of the heritability of Multiple System Atrophy. Park. Relat. Disord. 2016, 22, 35–41. [Google Scholar] [CrossRef]
- Chelban, V.; Pellerin, D.; Vijiaratnam, N.; Lee, H.; Goh, Y.Y.; Brown, L.; Sambin, S.; Seilhean, D.; Lehericy, S.; Iruzubieta, P.; et al. Intronic FGF14 GAA repeat expansions impact progression and survival in multiple system atrophy. Brain 2025, 148, 3252–3265. [Google Scholar] [CrossRef]
- Miller, D.W.; Johnson, J.M.; Solano, S.M.; Hollingsworth, Z.R.; Standaert, D.G.; Young, A.B. Absence of alpha-synuclein mRNA expression in normal and multiple system atrophy oligodendroglia. J. Neural. Transm. 2005, 112, 1613–1624. [Google Scholar] [CrossRef]
- Reyes, J.F.; Rey, N.L.; Bousset, L.; Melki, R.; Brundin, P.; Angot, E. Alpha-synuclein transfers from neurons to oligodendrocytes. Glia 2014, 62, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Rockenstein, E.; Ubhi, K.; Inglis, C.; Mante, M.; Patrick, C.; Adame, A.; Masliah, E. Neuronal to oligodendroglial alpha-synuclein redistribution in a double transgenic model of multiple system atrophy. Neuroreport 2012, 23, 259–264. [Google Scholar] [CrossRef]
- Asi, Y.T.; Simpson, J.E.; Heath, P.R.; Wharton, S.B.; Lees, A.J.; Revesz, T.; Houlden, H.; Holton, J.L. Alpha-synuclein mRNA expression in oligodendrocytes in MSA. Glia 2014, 62, 964–970. [Google Scholar] [CrossRef] [PubMed]
- Kon, T.; Forrest, S.L.; Lee, S.; Martinez-Valbuena, I.; Li, J.; Nassir, N.; Uddin, M.J.; Lang, A.E.; Kovacs, G.G. Neuronal SNCA transcription during Lewy body formation. Acta Neuropathol. Commun. 2023, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Tanji, K.; Yoshimoto, M.; Takahashi, H.; Wakabayashi, K. Demonstration of alpha-synuclein immunoreactivity in neuronal and glial cytoplasm in normal human brain tissue using proteinase K and formic acid pretreatment. Exp. Neurol. 2002, 176, 98–104. [Google Scholar] [CrossRef]
- Mavroeidi, P.; Arvanitaki, F.; Karakitsou, A.K.; Vetsi, M.; Kloukina, I.; Zweckstetter, M.; Giller, K.; Becker, S.; Sorrentino, Z.A.; Giasson, B.I.; et al. Endogenous oligodendroglial alpha-synuclein and TPPP/p25alpha orchestrate alpha-synuclein pathology in experimental multiple system atrophy models. Acta Neuropathol. 2019, 138, 415–441. [Google Scholar] [CrossRef]
- Burger, D.; Kashyrina, M.; van den Heuvel, L.; de La Seigliere, H.; Lewis, A.J.; De Nuccio, F.; Mohammed, I.; Verchere, J.; Feuillie, C.; Berbon, M.; et al. Synthetic α-synuclein fibrils replicate in mice causing MSA-like pathology. Nature 2025. [Google Scholar] [CrossRef]
- Acevedo, K.; Li, R.; Soo, P.; Suryadinata, R.; Sarcevic, B.; Valova, V.A.; Graham, M.E.; Robinson, P.J.; Bernard, O. The phosphorylation of p25/TPPP by LIM kinase 1 inhibits its ability to assemble microtubules. Exp. Cell Res. 2007, 313, 4091–4106. [Google Scholar] [CrossRef]
- Hoftberger, R.; Fink, S.; Aboul-Enein, F.; Botond, G.; Olah, J.; Berki, T.; Ovadi, J.; Lassmann, H.; Budka, H.; Kovacs, G.G. Tubulin polymerization promoting protein (TPPP/p25) as a marker for oligodendroglial changes in multiple sclerosis. Glia 2010, 58, 1847–1857. [Google Scholar] [CrossRef]
- Kovacs, G.G.; Laszlo, L.; Kovacs, J.; Jensen, P.H.; Lindersson, E.; Botond, G.; Molnar, T.; Perczel, A.; Hudecz, F.; Mezo, G.; et al. Natively unfolded tubulin polymerization promoting protein TPPP/p25 is a common marker of alpha-synucleinopathies. Neurobiol. Dis. 2004, 17, 155–162. [Google Scholar] [CrossRef]
- Skjoerringe, T.; Lundvig, D.M.; Jensen, P.H.; Moos, T. P25alpha/Tubulin polymerization promoting protein expression by myelinating oligodendrocytes of the developing rat brain. J. Neurochem. 2006, 99, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Olah, J.; Tokesi, N.; Vincze, O.; Horvath, I.; Lehotzky, A.; Erdei, A.; Szajli, E.; Medzihradszky, K.F.; Orosz, F.; Kovacs, G.G.; et al. Interaction of TPPP/p25 protein with glyceraldehyde-3-phosphate dehydrogenase and their co-localization in Lewy bodies. FEBS Lett. 2006, 580, 5807–5814. [Google Scholar] [CrossRef] [PubMed]
- Hlavanda, E.; Kovács, J.; Oláh, J.; Orosz, F.; Medzihradszky, K.F.; Ovádi, J. Brain-Specific p25 Protein Binds to Tubulin and Microtubules and Induces Aberrant Microtubule Assemblies at Substoichiometric Concentrations. Biochemistry 2002, 41, 8657–8664. [Google Scholar] [CrossRef]
- Tirián, L.; Hlavanda, E.; Oláh, J.; Horváth, I.; Orosz, F.; Szabó, B.; Kovács, J.; Szabad, J.; Ovádi, J. TPPP_p25 promotes tubulin assemblies and blocks mitotic spindle formation. Proc. Natl. Acad. Sci. USA 2003, 100, 13976–13981. [Google Scholar] [CrossRef]
- Lindersson, E.; Lundvig, D.; Petersen, C.; Madsen, P.; Nyengaard, J.R.; Hojrup, P.; Moos, T.; Otzen, D.; Gai, W.P.; Blumbergs, P.C.; et al. p25alpha Stimulates alpha-synuclein aggregation and is co-localized with aggregated alpha-synuclein in alpha-synucleinopathies. J. Biol. Chem. 2005, 280, 5703–5715. [Google Scholar] [CrossRef] [PubMed]
- Ota, K.; Obayashi, M.; Ozaki, K.; Ichinose, S.; Kakita, A.; Tada, M.; Takahashi, H.; Ando, N.; Eishi, Y.; Mizusawa, H.; et al. Relocation of p25α/tubulin polymerization promoting protein from the nucleus to the perinuclear cytoplasm in the oligodendroglia of sporadic and COQ2 mutant multiple system atrophy. Acta Neuropathol. Commun. 2014, 2, 136. [Google Scholar] [CrossRef]
- Song, Y.J.; Lundvig, D.M.; Huang, Y.; Gai, W.P.; Blumbergs, P.C.; Hojrup, P.; Otzen, D.; Halliday, G.M.; Jensen, P.H. p25alpha relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am. J. Pathol. 2007, 171, 1291–1303. [Google Scholar] [CrossRef]
- Kon, T.; Forrest, S.L.; Lee, S.; Li, J.; Chasiotis, H.; Nassir, N.; Uddin, M.J.; Lang, A.E.; Kovacs, G.G. SNCA and TPPP transcripts increase in oligodendroglial cytoplasmic inclusions in multiple system atrophy. Neurobiol. Dis. 2024, 198, 106551. [Google Scholar] [CrossRef]
- Sekiya, H.; Kowa, H.; Koga, H.; Takata, M.; Satake, W.; Futamura, N.; Funakawa, I.; Jinnai, K.; Takahashi, M.; Kondo, T.; et al. Wide distribution of alpha-synuclein oligomers in multiple system atrophy brain detected by proximity ligation. Acta Neuropathol. 2019, 137, 455–466. [Google Scholar] [CrossRef]
- Wenning, G.K.; Scherfler, C.; Granata, R.; Bösch, S.; Verny, M.; Chaudhuri, K.R.; Jellinger, K.; Poewe, W.; Litvan, I. Time course of symptomatic orthostatic hypotension and urinary incontinence in patients with postmortem confirmed parkinsonian syndromes: A clinicopathological study. J. Neurol. Neurosurg. Psychiatry 1999, 67, 620–623. [Google Scholar] [CrossRef]
- Chelban, V.; Catereniuc, D.; Aftene, D.; Gasnas, A.; Vichayanrat, E.; Iodice, V.; Groppa, S.; Houlden, H. An update on MSA: Premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J. Neurol. 2020, 267, 2754–2770. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.J.; Kim, H.J.; Yoo, D.; Choi, J.H.; Im, J.H.; Yang, H.J.; Jeon, B. Various Motor and Non-Motor Symptoms in Early Multiple System Atrophy. Neurodegener. Dis. 2019, 19, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Wilkens, I.; Bebermeier, S.; Heine, J.; Ruf, V.C.; Compta, Y.; Molina Porcel, L.; Troakes, C.; Vamanu, A.; Downes, S.; Irwin, D.J.; et al. Multiple System Atrophy Without Dysautonomia: An Autopsy-Confirmed Study. Neurology 2025, 105, e214316. [Google Scholar] [CrossRef]
- Miki, Y.; Foti, S.C.; Asi, Y.T.; Tsushima, E.; Quinn, N.; Ling, H.; Holton, J.L. Improving diagnostic accuracy of multiple system atrophy: A clinicopathological study. Brain 2019, 142, 2813–2827. [Google Scholar] [CrossRef] [PubMed]
- Miki, Y.; Tsushima, E.; Foti, S.C.; Strand, K.M.; Asi, Y.T.; Yamamoto, A.K.; Bettencourt, C.; Oliveira, M.C.B.; De Pablo-Fernandez, E.; Jaunmuktane, Z.; et al. Identification of multiple system atrophy mimicking Parkinson’s disease or progressive supranuclear palsy. Brain 2021, 144, 1138–1151. [Google Scholar] [CrossRef]
- Barone, D.A. Secondary RBD: Not just neurodegeneration. Sleep Med. Rev. 2024, 76, 101938. [Google Scholar] [CrossRef]
- Baldelli, L.; Calandra-Buonaura, G. Shedding light in REM sleep behavior disorder in progressive supranuclear palsy: Window into neurodegeneration or diagnostic challenge? Neurology 2025, 104, e213449. [Google Scholar] [CrossRef]
- Okada, K.; Hata, Y.; Ichimata, S.; Yoshida, K.; Nishida, N. Pathological Appearance of a Case of Preclinical Multiple System Atrophy: A Comparison with Advanced Cases. J. Neuropathol. Exp. Neurol. 2022, 81, 965–974. [Google Scholar] [CrossRef]
- Fujishiro, H.; Ahn, T.B.; Frigerio, R.; DelleDonne, A.; Josephs, K.A.; Parisi, J.E.; Eric Ahlskog, J.; Dickson, D.W. Glial cytoplasmic inclusions in neurologically normal elderly: Prodromal multiple system atrophy? Acta Neuropathol. 2008, 116, 269–275. [Google Scholar] [CrossRef]
- Parkkinen, L.; Hartikainen, P.; Alafuzoff, I. Abundant glial alpha-synuclein pathology in a case without overt clinical symptoms. Clin. Neuropathol. 2007, 26, 276–283. [Google Scholar] [CrossRef]
- Kon, T.; Mori, F.; Tanji, K.; Miki, Y.; Wakabayashi, K. An autopsy case of preclinical multiple system atrophy (MSA-C). Neuropathology 2013, 33, 667–672. [Google Scholar] [CrossRef]
- Rodriguez-Diehl, R.; Rey, M.J.; Gironell, A.; Martinez-Saez, E.; Ferrer, I.; Sanchez-Valle, R.; Jague, J.; Nos, C.; Gelpi, E. “Preclinical” MSA in definite Creutzfeldt-Jakob disease. Neuropathology 2012, 32, 158–163. [Google Scholar] [CrossRef]
- Wiseman, J.A.; Halliday, G.M.; Dieriks, B.V. Neuronal alpha-synuclein toxicity is the key driver of neurodegeneration in multiple system atrophy. Brain 2025, 148, 2306–2319. [Google Scholar] [CrossRef] [PubMed]
- Endo, H.; Ono, M.; Takado, Y.; Matsuoka, K.; Takahashi, M.; Tagai, K.; Kataoka, Y.; Hirata, K.; Takahata, K.; Seki, C.; et al. Imaging alpha-synuclein pathologies in animal models and patients with Parkinson’s and related diseases. Neuron 2024, 112, 2540–2557.e8. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y.; Li, C.; Wei, Q.; Ou, R.; Liu, K.; Lin, J.; Yang, T.; Xiao, Y.; Jiang, Q.; et al. Longitudinal evolution of sleep disturbances in early multiple system atrophy: A 2-year prospective cohort study. BMC Med. 2023, 21, 454. [Google Scholar] [CrossRef]
- Lyoo, C.H.; Jeong, Y.; Ryu, Y.H.; Lee, S.Y.; Song, T.J.; Lee, J.H.; Rinne, J.O.; Lee, M.S. Effects of disease duration on the clinical features and brain glucose metabolism in patients with mixed type multiple system atrophy. Brain 2008, 131, 438–446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hou, Y.; Cao, B.; Wei, Q.; Ou, R.; Liu, K.; Lin, J.; Yang, T.; Xiao, Y.; Chen, Y.; et al. Longitudinal evolution of motor and non-motor symptoms in early-stage multiple system atrophy: A 2-year prospective cohort study. BMC Med. 2022, 20, 446. [Google Scholar] [CrossRef] [PubMed]
- Herbert, M.K.; Eeftens, J.M.; Aerts, M.B.; Esselink, R.A.; Bloem, B.R.; Kuiperij, H.B.; Verbeek, M.M. CSF levels of DJ-1 and tau distinguish MSA patients from PD patients and controls. Park. Relat. Disord. 2014, 20, 112–115. [Google Scholar] [CrossRef]
- Jakobsson, P.; Nilsson, J.; Nygren, M.; Zetterberg, H.; Blennow, K.; Constantinescu, R.; Constantinescu, J.; Brinkmalm, A.; Backstrom, D. Low synaptic and neurosecretory proteins in cerebrospinal fluid in early parkinsonian disease. J. Neurol. Sci. 2025, 478, 123683. [Google Scholar] [CrossRef]
- Santaella, A.; Kuiperij, H.B.; van Rumund, A.; Esselink, R.A.J.; Bloem, B.R.; Verbeek, M.M. Cerebrospinal fluid myelin basic protein is elevated in multiple system atrophy. Park. Relat. Disord. 2020, 76, 80–84. [Google Scholar] [CrossRef]
- Yamasaki, R.; Yamaguchi, H.; Matsushita, T.; Fujii, T.; Hiwatashi, A.; Kira, J.I. Early strong intrathecal inflammation in cerebellar type multiple system atrophy by cerebrospinal fluid cytokine/chemokine profiles: A case control study. J. Neuroinflammation 2017, 14, 89. [Google Scholar] [CrossRef]
- Marques, T.M.; Kuiperij, H.B.; Bruinsma, I.B.; van Rumund, A.; Aerts, M.B.; Esselink, R.A.J.; Bloem, B.R.; Verbeek, M.M. MicroRNAs in Cerebrospinal Fluid as Potential Biomarkers for Parkinson’s Disease and Multiple System Atrophy. Mol. Neurobiol. 2017, 54, 7736–7745. [Google Scholar] [CrossRef] [PubMed]
- Uwatoko, H.; Hama, Y.; Iwata, I.T.; Shirai, S.; Matsushima, M.; Yabe, I.; Utsumi, J.; Sasaki, H. Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson’s disease. Mol. Brain 2019, 12, 49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Shi, C.; Mao, C.; Song, B.; Hou, H.; Wu, J.; Liu, X.; Luo, H.; Sun, S.; Xu, Y. Plasma Homocysteine, Vitamin B12 and Folate Levels in Multiple System Atrophy: A Case-Control Study. PLoS ONE 2015, 10, e0136468. [Google Scholar] [CrossRef] [PubMed]
- Kou, W.; Li, S.; Yan, R.; Zhang, J.; Wan, Z.; Feng, T. Cerebrospinal fluid and blood neurofilament light chain in Parkinson’s disease and atypical parkinsonian syndromes: A systematic review and Bayesian network meta-analysis. J. Neurol. 2025, 272, 311. [Google Scholar] [CrossRef]
- Kang, M.J.; Park, S.Y.; Han, J.S. MicroRNA-24-3p regulates neuronal differentiation by controlling hippocalcin expression. Cell Mol. Life Sci. 2019, 76, 4569–4580. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T.; Shan, G. miR-148b Regulates Proliferation and Differentiation of Neural Stem Cells via Wnt/beta-Catenin Signaling in Rat Ischemic Stroke Model. Front. Cell Neurosci. 2017, 11, 329. [Google Scholar] [CrossRef]
- Deng, L.; Guo, Y.; Liu, J.; Wang, X.; Chen, S.; Wang, Q.; Rao, J.; Wang, Y.; Zuo, T.; Hu, Q.; et al. miR-671-5p Attenuates Neuroinflammation via Suppressing NF-kappaB Expression in an Acute Ischemic Stroke Model. Neurochem. Res. 2021, 46, 1801–1813. [Google Scholar] [CrossRef]
- Hao, Z.; Dang, W.; Zhu, Q.; Xu, J. Long non-coding RNA UCA1 regulates MPP(+)-induced neuronal damage through the miR-671-5p/KPNA4 pathway in SK-N-SH cells. Metab. Brain Dis. 2023, 38, 961–972. [Google Scholar] [CrossRef]
- Kruman, I.I.; Culmsee, C.; Chan, S.L.; Kruman, Y.; Guo, Z.; Penix, L.; Mattson, M.P. Homocysteine Elicits a DNA Damage Response in Neurons That Promotes Apoptosis and Hypersensitivity to Excitotoxicity. J. Neurosci. 2000, 20, 6920–6926. [Google Scholar] [CrossRef]
- Ho, P.I.; Ortiz, D.; Rogers, E.; Shea, T.B. Multiple aspects of homocysteine neurotoxicity: Glutamate excitotoxicity, kinase hyperactivation and DNA damage. J. Neurosci. Res. 2002, 70, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Kim, W. S-nitrosation ameliorates homocysteine-induced neurotoxicity and calcium responses in primary culture of rat cortical neurons. Neurosci. Lett. 1999, 265, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, E.; Miki, Y.; Tanaka, M.T.; Ueno, T.; Shimoyama, S.; Tatara, Y.; Nishijima, H.; Arai, A.; Suzuki, C.; Mori, F.; et al. Cerebrospinal fluid-driven extracellular vesicle as a potential diagnostic biomarker for multiple system atrophy. J. Neurol. Sci. 2025, in press. [Google Scholar] [CrossRef] [PubMed]
- Wenning, G.K.; Seppi, K.; Tison, F.; Jellinger, K. A novel grading scale for striatonigral degeneration (multiple system atrophy). J. Neural. Transm. 2002, 109, 307–320. [Google Scholar] [CrossRef]
- Jellinger, K.A.; Seppi, K.; Wenning, G.K. Grading of neuropathology in multiple system atrophy: Proposal for a novel scale. Mov. Disord. 2005, 20, S29–S36. [Google Scholar] [CrossRef]
- Tu, P.H.; Galvin, J.E.; Baba, M.; Giasson, B.; Tomita, T.; Leight, S.; Nakajo, S.; Iwatsubo, T.; Trojanowski, J.Q.; Lee, V.M. Glial cytoplasmic inclusions in white matter oligodendrocytes of multiple system atrophy brains contain insoluble alpha-synuclein. Ann. Neurol. 1998, 44, 415–422. [Google Scholar] [CrossRef]
- Valera, E.; Masliah, E. The neuropathology of multiple system atrophy and its therapeutic implications. Auton. Neurosci. 2018, 211, 1–6. [Google Scholar] [CrossRef]
- Koga, S.; Dickson, D.W. “Minimal change” multiple system atrophy with limbic-predominant alpha-synuclein pathology. Acta Neuropathol. 2019, 137, 167–169. [Google Scholar] [CrossRef]
- Ling, H.; Asi, Y.T.; Petrovic, I.N.; Ahmed, Z.; Prashanth, L.K.; Hazrati, L.N.; Nishizawa, M.; Ozawa, T.; Lang, A.; Lees, A.J.; et al. Minimal change multiple system atrophy: An aggressive variant? Mov. Disord. 2015, 30, 960–967. [Google Scholar] [CrossRef]
- Wakabayashi, K.; Mori, F.; Nishie, M.; Oyama, Y.; Kurihara, A.; Yoshimoto, M.; Kuroda, N. An autopsy case of early (“minimal change”) olivopontocerebellar atrophy (multiple system atrophy-cerebellar). Acta Neuropathol. 2005, 110, 185–190. [Google Scholar] [CrossRef]
- Huang, Y.; Garrick, R.; Cook, R.; O’Sullivan, D.; Morris, J.; Halliday, G.M. Pallidal stimulation reduces treatment-induced dyskinesias in “minimal-change” multiple system atrophy. Mov. Disord. 2005, 20, 1042–1047. [Google Scholar] [CrossRef]
- Wenning, G.K.; Quinn, N.; Magalhăes, M.; Mathias, C.; Daniel, S.E. “Minimal change” multiple system atrophy. Mov. Disord. 1994, 9, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Djelloul, M.; Holmqvist, S.; Boza-Serrano, A.; Azevedo, C.; Yeung, M.S.; Goldwurm, S.; Frisen, J.; Deierborg, T.; Roybon, L. Alpha-Synuclein Expression in the Oligodendrocyte Lineage: An In Vitro and In Vivo Study Using Rodent and Human Models. Stem Cell Rep. 2015, 5, 174–184. [Google Scholar] [CrossRef]
- Azevedo, C.; Teku, G.; Pomeshchik, Y.; Reyes, J.F.; Chumarina, M.; Russ, K.; Savchenko, E.; Hammarberg, A.; Lamas, N.J.; Collin, A.; et al. Parkinson’s disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc. Natl. Acad. Sci. USA 2022, 119, e2111405119. [Google Scholar] [CrossRef]
- Herrera-Vaquero, M.; Heras-Garvin, A.; Krismer, F.; Deleanu, R.; Boesch, S.; Wenning, G.K.; Stefanova, N. Signs of early cellular dysfunction in multiple system atrophy. Neuropathol. Appl. Neurobiol. 2021, 47, 268–282. [Google Scholar] [CrossRef] [PubMed]
- Compagnoni, G.M.; Kleiner, G.; Samarani, M.; Aureli, M.; Faustini, G.; Bellucci, A.; Ronchi, D.; Bordoni, A.; Garbellini, M.; Salani, S.; et al. Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy. Stem Cell Rep. 2018, 11, 1185–1198. [Google Scholar] [CrossRef]
- Henkel, L.M.; Kankowski, S.; Moellenkamp, T.M.; Smandzich, N.J.; Schwarz, S.; Di Fonzo, A.; Gohring, G.; Hoglinger, G.; Wegner, F. iPSC-Derived Striatal Medium Spiny Neurons from Patients with Multiple System Atrophy Show Hypoexcitability and Elevated alpha-Synuclein Release. Cells 2023, 12, 223. [Google Scholar] [CrossRef]
- Smandzich, N.J.; Pich, A.; Gschwendtberger, T.; Greten, S.; Ye, L.; Klietz, M.; Di Fonzo, A.; Henkel, L.M.; Wegner, F. Proteomics of Patient-Derived Striatal Medium Spiny Neurons in Multiple System Atrophy. Cells 2025, 14, 1394. [Google Scholar] [CrossRef]
- Tanji, K.; Miki, Y.; Mori, F.; Nikaido, Y.; Narita, H.; Kakita, A.; Takahashi, H.; Wakabayashi, K. A mouse model of adult-onset multiple system atrophy. Neurobiol. Dis. 2019, 127, 339–349. [Google Scholar] [CrossRef]
- Tanaka, M.T.; Miki, Y.; Mori, F.; Kon, T.; Furukawa, T.; Shimoyama, S.; Tatara, Y.; Ozaki, T.; Bettencourt, C.; Warner, T.T.; et al. Intranasal administration of trehalose reduces alpha-synuclein oligomers and accelerates alpha-synuclein aggregation. Brain Commun. 2024, 6, fcae193. [Google Scholar] [CrossRef]
- Kimura, K.; Tanaka, M.T.; Miki, Y.; Furukawa, T.; Kasai, S.; Ozaki, T.; Mori, F.; Shibuya, E.; Wakabayashi, K. Intranasal administration of ergothioneine improves memory in a mouse model of multiple system atrophy. Biochem. Biophys. Res. Commun. 2025, 756, 151550. [Google Scholar] [CrossRef]
- Williams, G.P.; Marmion, D.J.; Schonhoff, A.M.; Jurkuvenaite, A.; Won, W.J.; Standaert, D.G.; Kordower, J.H.; Harms, A.S. T cell infiltration in both human multiple system atrophy and a novel mouse model of the disease. Acta Neuropathol. 2020, 139, 855–874. [Google Scholar] [CrossRef]
- Corbin-Stein, N.J.; Childers, G.M.; Webster, J.M.; Zane, A.; Yang, Y.T.; Mudium, N.; Gupta, R.; Manfredsson, F.P.; Kordower, J.H.; Harms, A.S. IFNgamma drives neuroinflammation, demyelination, and neurodegeneration in a mouse model of multiple system atrophy. Acta Neuropathol. Commun. 2024, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Mandel, R.J.; Marmion, D.J.; Kirik, D.; Chu, Y.; Heindel, C.; McCown, T.; Gray, S.J.; Kordower, J.H. Novel oligodendroglial alpha synuclein viral vector models of multiple system atrophy: Studies in rodents and nonhuman primates. Acta Neuropathol. Commun. 2017, 5, 47. [Google Scholar] [CrossRef]
- Bassil, F.; Guerin, P.A.; Dutheil, N.; Li, Q.; Klugmann, M.; Meissner, W.G.; Bezard, E.; Fernagut, P.O. Viral-mediated oligodendroglial alpha-synuclein expression models multiple system atrophy. Mov. Disord. 2017, 32, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Marmion, D.J.; Rutkowski, A.A.; Chatterjee, D.; Hiller, B.M.; Werner, M.H.; Bezard, E.; Kirik, D.; McCown, T.; Gray, S.J.; Kordower, J.H. Viral-based rodent and nonhuman primate models of multiple system atrophy: Fidelity to the human disease. Neurobiol. Dis. 2021, 148, 105184. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.C.; Giles, K.; Oehler, A.; Middleton, L.; Dexter, D.T.; Gentleman, S.M.; DeArmond, S.J.; Prusiner, S.B. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl. Acad. Sci. USA 2013, 110, 19555–19560. [Google Scholar] [CrossRef]
- Prusiner, S.B.; Woerman, A.L.; Mordes, D.A.; Watts, J.C.; Rampersaud, R.; Berry, D.B.; Patel, S.; Oehler, A.; Lowe, J.K.; Kravitz, S.N.; et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 2015, 112, E5308–E5317. [Google Scholar] [CrossRef]
- Bernis, M.E.; Babila, J.T.; Breid, S.; Wusten, K.A.; Wullner, U.; Tamguney, G. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol. Commun. 2015, 3, 75. [Google Scholar] [CrossRef]
- De Nuccio, F.; Kashyrina, M.; Serinelli, F.; Laferriere, F.; Lofrumento, D.D.; De Giorgi, F.; Ichas, F. Oligodendrocytes Prune Axons Containing alpha-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy? Biomolecules 2023, 13, 269. [Google Scholar] [CrossRef]
- De Giorgi, F.; Laferriere, F.; Zinghirino, F.; Faggiani, E.; Lends, A.; Bertoni, M.; Yu, X.; Grélard, A.; Morvan, E.; Habenstein, B.; et al. Novel self-replicating α-synuclein polymorphs that escape ThT monitoring can spontaneously emerge and acutely spread in neurons. Sci. Adv. 2020, 6, eabc4364. [Google Scholar] [CrossRef]
- Schweighauser, M.; Shi, Y.; Tarutani, A.; Kametani, F.; Murzin, A.G.; Ghetti, B.; Matsubara, T.; Tomita, T.; Ando, T.; Hasegawa, K.; et al. Structures of alpha-synuclein filaments from multiple system atrophy. Nature 2020, 585, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Kahle, P.J.; Neumann, M.; Ozmen, L.; Muller, V.; Jacobsen, H.; Spooren, W.; Fuss, B.; Mallon, B.; Macklin, W.B.; Fujiwara, H.; et al. Hyperphosphorylation and insolubility of α-synuclein in transgenic mouse oligodendrocytes. EMBO Rep. 2002, 3, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Shults, C.W.; Rockenstein, E.; Crews, L.; Adame, A.; Mante, M.; Larrea, G.; Hashimoto, M.; Song, D.; Iwatsubo, T.; Tsuboi, K.; et al. Neurological and neurodegenerative alterations in a transgenic mouse model expressing human alpha-synuclein under oligodendrocyte promoter: Implications for multiple system atrophy. J. Neurosci. 2005, 25, 10689–10699. [Google Scholar] [CrossRef] [PubMed]
- Yazawa, I.; Giasson, B.I.; Sasaki, R.; Zhang, B.; Joyce, S.; Uryu, K.; Trojanowski, J.Q.; Lee, V.M. Mouse model of multiple system atrophy alpha-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron 2005, 45, 847–859. [Google Scholar] [CrossRef]
- Refolo, V.; Bez, F.; Polissidis, A.; Kuzdas-Wood, D.; Sturm, E.; Kamaratou, M.; Poewe, W.; Stefanis, L.; Angela Cenci, M.; Romero-Ramos, M.; et al. Progressive striatonigral degeneration in a transgenic mouse model of multiple system atrophy: Translational implications for interventional therapies. Acta Neuropathol. Commun. 2018, 6, 2. [Google Scholar] [CrossRef]
- Fernagut, P.O.; Meissner, W.G.; Biran, M.; Fantin, M.; Bassil, F.; Franconi, J.M.; Tison, F. Age-related motor dysfunction and neuropathology in a transgenic mouse model of multiple system atrophy. Synapse 2014, 68, 98–106. [Google Scholar] [CrossRef]
- Shukla, J.J.; Stefanova, N.; Bush, A.I.; McColl, G.; Finkelstein, D.I.; McAllum, E.J. Therapeutic potential of iron modulating drugs in a mouse model of multiple system atrophy. Neurobiol. Dis. 2021, 159, 105509. [Google Scholar] [CrossRef]
- Flabeau, O.; Meissner, W.G.; Ozier, A.; Berger, P.; Tison, F.; Fernagut, P.O. Breathing variability and brainstem serotonergic loss in a genetic model of multiple system atrophy. Mov. Disord. 2014, 29, 388–395. [Google Scholar] [CrossRef]
- Hartner, L.; Keil, T.W.; Kreuzer, M.; Fritz, E.M.; Wenning, G.K.; Stefanova, N.; Fenzl, T. Distinct Parameters in the EEG of the PLP alpha-SYN Mouse Model for Multiple System Atrophy Reinforce Face Validity. Front. Behav. Neurosci. 2016, 10, 252. [Google Scholar] [CrossRef]
- Boudes, M.; Uvin, P.; Pinto, S.; Voets, T.; Fowler, C.J.; Wenning, G.K.; De Ridder, D.; Stefanova, N. Bladder dysfunction in a transgenic mouse model of multiple system atrophy. Mov. Disord. 2013, 28, 347–355. [Google Scholar] [CrossRef]
- Kuzdas, D.; Stemberger, S.; Gaburro, S.; Stefanova, N.; Singewald, N.; Wenning, G.K. Oligodendroglial alpha-synucleinopathy and MSA-like cardiovascular autonomic failure: Experimental evidence. Exp. Neurol. 2013, 247, 531–536. [Google Scholar] [CrossRef]
- Vidal-Martinez, G.; Segura-Ulate, I.; Yang, B.; Diaz-Pacheco, V.; Barragan, J.A.; De-Leon Esquivel, J.; Chaparro, S.A.; Vargas-Medrano, J.; Perez, R.G. FTY720-Mitoxy reduces synucleinopathy and neuroinflammation, restores behavior and mitochondria function, and increases GDNF expression in Multiple System Atrophy mouse models. Exp. Neurol. 2020, 325, 113120. [Google Scholar] [CrossRef]



| Disease | N | Sex (Male:Female) | Age, Mean (Years) | Disease Duration, Mean (Years) | Sample | Alterations in Early-Stage MSA | Reference |
|---|---|---|---|---|---|---|---|
| MSA | 23 | 14:9 | 60.5 | 2.8 | CSF | Proteins
| [78] |
| PD | 43 | 29:14 | 58.9 | 3.12 | |||
| Non-neurological cont | 30 | 22:13 | 57.0 | NA | |||
| MSA | 21 | 11:10 | 69.2 | 2.9 | CSF | Proteins
| [79] |
| PD | 36 | 18:18 | 71.3 | 2.2 | |||
| PSP | 20 | 10:10 | 73.2 | 2 | |||
| Non-neurological cont | 30 | 16:14 | 69.6 | NA | |||
| MSA | 22 | 15:7 | 60.7 | 2.83 | CSF | Proteins
| [80] |
| PD | 55 | 38:17 | 57.1 | 2.85 | |||
| Non-neurological cont | 118 | 66:52 | 55.9 | NA | |||
| MSA-C | 20 | 10:10 | 61.3 | 2.1 | CSF | Proteins
| [81] |
| MSA | 17 | 13:4 | 62.5 | 2.14 | CSF | Transcripts
| [82] |
| MSA (discovery cohort) | 13 | 6:7 | 62.6 | 2.67 | plasma | Transcripts
| [83] |
| Healthy cont (discovery cohort) | 6 | 3:3 | 60.7 | NA | |||
| MSA-P (validation cohort) | 30 | 13:17 | 68.1 | 3.01 | |||
| MSA-C (validation cohort) | 31 | 15:16 | 60.7 | 3.09 | |||
| Healthy cont (validation cohort) | 28 | 15:13 | 63.2 | NA | |||
| MSA | 161 | 82:79 | 58 | 2.35 | plasma | Metabolite
| [84] |
| Healthy cont | 161 | 78:83 | 57.3 | NA | |||
| MSA-P | 16 | 4:12 | 66.4 | 2.4 | CSF | Transcripts
| [93] |
| PD | 16 | 9:7 | 71.8 | 5.4 | |||
| ALS | 16 | 12:4 | 68.3 | 1.06 |
| Sample | Cell Type | Characteristics/Alterations | Studies |
|---|---|---|---|
| MSA-P | Oligodendrocytes | Transcript
| [103,104] |
| MSA-C | |||
| HC | |||
| MSA-P | Neural progenitor cells | Protein
| [105] |
| HC | |||
| MSA-P | Dopaminergic neuron | Protein (MSA vs. HC)
| [106] |
| MSA-C | |||
| HC | |||
| MSA-P | Striatal GABAergic medium-sized spiny neurons | Protein
| [107,108] |
| HC |
| Sample | Animal Species | Methods for α-Syn Expression | Characteristics/Alterations | Studies |
|---|---|---|---|---|
| Human α-Syn expressed Tg mouse | Mouse | Proteolipid protein promoter with cre recombinase−loxP system | Pathology
| [15,109,110,111] |
| Tg mouse without α-Syn expression | ||||
| AAV-α-Syn mouse | Mouse | Oligotrophic AAV vector encoding human α-Syn | Pathology
| [112,113] |
| AAV-GFP mouse | ||||
| AAV-α-Syn rat | Rat | Chimeric AAV1/2 vector carrying human α-Syn under myelin basic protein promoter | Pathology
| [115] |
| AAV-GFP rat | ||||
| AAV-α-Syn rat | Rat | Oligotrophic AAV vector encoding human α-Syn | Pathology
| [116] |
| AAV-GFP rat | ||||
| AAV-α-Syn monkey | Monkey (rhesus macaques) | Oligotrophic AAV vector encoding human α-Syn | Pathology
| [114] |
| AAV-GFP monkey | ||||
| AAV-α-Syn monkey | Monkey (cynomolgus macaques) | Oligotrophic AAV vector encoding human α-Syn | Pathology
| [116] |
| AAV-GFP monkey |
| Sample | Animal Species | Inoculated α-Syn | Characteristics/Alterations | Studies |
|---|---|---|---|---|
| A53T Tg mouse with inoculation | Mouse | MSA brain homogenates | Pathology
| [117,118] |
| A53T Tg mouse without inoculation | ||||
| Tg(SNCA)1Nbm/J mouse with inoculation | Mouse | MSA brain homogenates | Pathology
| [119] |
| Tg(SNCA)1Nbm/J mouse without inoculation | ||||
| Wild-type mouse with inoculation | Mouse | Synthetic, thioflavin T-negative α-Syn fibril strain (1B fibril) | Pathology
| [47,120] |
| Wild-type mouse without inoculation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, M.T.; Miki, Y.; Kon, T.; Mori, F.; Wakabayashi, K. Pathological and Molecular Insights into the Early Stage of Multiple System Atrophy. Cells 2025, 14, 1966. https://doi.org/10.3390/cells14241966
Tanaka MT, Miki Y, Kon T, Mori F, Wakabayashi K. Pathological and Molecular Insights into the Early Stage of Multiple System Atrophy. Cells. 2025; 14(24):1966. https://doi.org/10.3390/cells14241966
Chicago/Turabian StyleTanaka, Makoto T., Yasuo Miki, Tomoya Kon, Fumiaki Mori, and Koichi Wakabayashi. 2025. "Pathological and Molecular Insights into the Early Stage of Multiple System Atrophy" Cells 14, no. 24: 1966. https://doi.org/10.3390/cells14241966
APA StyleTanaka, M. T., Miki, Y., Kon, T., Mori, F., & Wakabayashi, K. (2025). Pathological and Molecular Insights into the Early Stage of Multiple System Atrophy. Cells, 14(24), 1966. https://doi.org/10.3390/cells14241966

