Plant-Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming in Cancer
Abstract
1. Introduction
2. Redox Biology in Cancer
2.1. ROS Activity on Cancer
2.2. ROS Activity as Anticancer
2.3. This Dynamic Creates the “Redox Paradox” of Cancer
3. Epigenetic Reprogramming in Cancer
3.1. DNA Methylation: Silencing of Tumor Suppressors
3.2. Histone Modifications: Acetylation/Methylation Imbalance
3.3. Non-Coding RNAs (miRNAs, lncRNAs) in Redox Regulation
3.3.1. MicroRNAs (miRNAs)
3.3.2. Long Non-Coding RNAs (lncRNAs)
3.3.3. Feedback Loops Between ROS and ncRNAs
3.4. ROS as Drivers of Epigenetic Alterations
3.4.1. Direct Epigenetic Modifications by ROS
3.4.2. Indirect Regulation via Epigenetic Enzymes
3.4.3. ROS-Epigenetics Feedback in the Development of Tumors
4. Plant-Derived Antioxidants as Redox Modulators in Cancer
4.1. Polyphenols
| Compound | Source (Plant/Food) | Redox Modulation Mechanism | Epigenetic Regulation | Cancer-Related Outcomes | References |
|---|---|---|---|---|---|
| Curcumin | Turmeric (Curcuma longa) | Anti-inflammatory and antioxidant properties. | Reduced expression of DNMT1; hypomethylation of the RASSF1 promoter; hypomethylation of the RARβ promoter; and hypomethylation of the Nrf2 promoter. | Tumor suppressor gene reactivation, reduced tumor size in mammary carcinoma, and prevention of lung cancer progression Acute myeloid leukemia impact; decreased development of prostate cancer. | [109] |
| Genistein | Soy and other plant-based legumes | Anti-inflammatory, antioxidant, and prognostic properties. | Reduced DNMT1 expression results in ERα reactivation; downregulation of DNMT3 results in CDH5 promoter hypomethylation. | Reduced tumor growth in neuroblastoma; inhibition of DNA methyltransferase activity; and reactivation of the estrogen receptor in breast cancer. | [109,110] |
| Quercetin | Apple, leafy vegetables, and onions | Antioxidant in healthy cells, pro-oxidant in cancer cells. | regulates histone acetylation and modifies PDCD4 and miR-21. | prevents invasion and metastasis and triggers apoptosis. | [111] |
| EGCG Epigallocatechin-3-gallate (green tea) | Green tea | eliminates ROS and controls the Nrf2/KEAP1 pathway. | Histone acetylation, DNMT inhibition, and TSG reactivation. | Reversal of drug resistance, apoptosis, and cell cycle arrest. | [112] |
| Resveratrol | Grapes, red wine | Inhibits pro-inflammatory cytokines (TNF-α, IL-17); affects fatty acid oxidation, mitochondrial biogenesis, and gluconeogenesis; suppresses NF-κB activity; inhibits cytochrome P450 and cyclooxygenase; and modulates ROS. | Histone acetylation, DNMT inhibition, and ncRNA modulation. | Potential anticancer effects include inhibiting the NF-κB pathway linked to cancer, suppressing pro-inflammatory cytokines, and inducing apoptosis in activated T cells; these measures may stop tumor growth and inflammation-induced carcinogenesis. | [113,114] |
| Berberine | Traditional Chinese herbal remedies, such as those made from Berberis species | reduces oxidative stress in healthy cells and produces ROS in tumor cells. | inhibits topoisomerase and telomerase and can bind to oligonucleotides to stabilize DNA triplexes or G-quadruplexes. | inhibits the growth, carcinogenesis, and metastasis of tumors; inhibits the growth of several tumor types by blocking cancer pathways such as NF-κB and MAPK. | [113] |
| Sulforaphane, | Broccoli, cruciferous vegetables | Dual redox function: causes ROS in cancer cells and activates Nrf2 in healthy cells. | DNA methylation modulation, miRNA regulation, and HDAC inhibition. | Reactivation of tumor suppressors and induction of apoptosis. | [115,116] |
EGCG Epigallocatechin-3-Gallate (Green Tea)
4.2. Flavonoids
4.3. Alkaloids and Terpenoids
5. Synergistic Role with Conventional Therapies
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| Akt | Protein Kinase B |
| BCL2 | B-cell lymphoma 2 |
| ceRNA | Competing endogenous RNA |
| CpG | Cytosine-phosphate-Guanine |
| DNMT | DNA Methyltransferase |
| DNMT1 | DNA Methyltransferase 1 |
| DNMT3A | DNA Methyltransferase 3A |
| DNMT3B | DNA Methyltransferase 3B |
| EMT | Epithelial–Mesenchymal Transition |
| EGCG | Epigallocatechin Gallate |
| ERK1/2 | Extracellular Signal-Regulated Kinase 1/2 |
| GPX | Glutathione Peroxidase |
| HAT | Histone Acetyltransferase |
| HCC | Hepatocellular Carcinoma |
| HDAC | Histone Deacetylase |
| HDACs | Histone Deacetylases |
| HIF-1α | Hypoxia-Inducible Factor 1 Alpha |
| HMT | Histone Methyltransferase |
| JNK | c-Jun N-terminal Kinase |
| lncRNA | Long Non-Coding RNA |
| MAPK | Mitogen-Activated Protein Kinase |
| MeCP2 | Methyl CpG Binding Protein 2 |
| miRNA | MicroRNA |
| miR | MicroRNA (prefix for specific miRNAs, e.g., miR-21, miR-34a) |
| MMP | Matrix Metalloproteinase |
| mRNA | Messenger RNA |
| ncRNA | Non-Coding RNA |
| NETosis | Neutrophil Extracellular Trap Cell Death |
| NF-κB | Nuclear Factor kappa-light-chain-enhancer of Activated B Cells |
| NRF2 | Nuclear Factor Erythroid 2–Related Factor 2 |
| Nrf2 | Nuclear factor (erythroid-derived 2)-like 2 (alternate form) |
| PI3K | Phosphoinositide 3-Kinase |
| PDCD4 | Programmed Cell Death 4 |
| PTEN | Phosphatase and Tensin Homolog |
| ROS | Reactive Oxygen Species |
| SCC | Squamous Cell Carcinoma |
| SIRT1 | Sirtuin 1 |
| SOD | Superoxide Dismutase |
| SOD2 | Superoxide Dismutase 2 |
| SOD3 | Superoxide Dismutase 3 |
| TET | Ten-Eleven Translocation (enzymes) |
| TNFα | Tumor Necrosis Factor Alpha |
| TSG | Tumor Suppressor Gene |
| UTR | Untranslated Region |
| VEGF | Vascular Endothelial Growth Factor |
| VEGF-A | Vascular Endothelial Growth Factor A |
References
- Wilson, C.; Tobin, S.; Young, R. The exploding worldwide cancer burden: The impact of cancer on women. Int. J. Gynecol. Cancer 2004, 14, 1–11. [Google Scholar] [CrossRef]
- McCubrey, J.A.; LaHair, M.M.; Franklin, R.A. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid. Redox Signal. 2006, 8, 1775–1789. [Google Scholar] [CrossRef]
- Nigam, M.; Punia, B.; Dimri, D.B.; Mishra, A.P.; Radu, A.-F.; Bungau, G. Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics. Cells 2025, 14, 1207. [Google Scholar] [CrossRef]
- Zhao, Y.; Ye, X.; Xiong, Z.; Ihsan, A.; Ares, I.; Martínez, M.; Lopez-Torres, B.; Martínez-Larrañaga, M.-R.; Anadón, A.; Wang, X. Cancer metabolism: The role of ROS in DNA damage and induction of apoptosis in cancer cells. Metabolites 2023, 13, 796. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, D.; Huang, L.; Wang, S.; Jin, Y. Targeting reactive oxygen species capacity of tumor cells with repurposed drug as an anticancer therapy. Oxidative Med. Cell. Longev. 2021, 2021, 8532940. [Google Scholar] [CrossRef]
- Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis 2010, 31, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bag, A.; Bag, N. Tea polyphenols and prevention of epigenetic aberrations in cancer. J. Nat. Sci. Biol. Med. 2018, 9, 2. [Google Scholar] [CrossRef]
- Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef]
- Marengo, B.; Nitti, M.; Furfaro, A.L.; Colla, R.; Ciucis, C.D.; Marinari, U.M.; Pronzato, M.A.; Traverso, N.; Domenicotti, C. Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxidative Med. Cell. Longev. 2016, 2016, 6235641. [Google Scholar] [CrossRef]
- Kumari, S.; Badana, A.K.; Murali Mohan, G.; Shailender, G.; Malla, R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights 2018, 13, 1177271918755391. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Yu, W.; Liu, J.; Tang, D.; Yang, L.; Chen, X. Oxidative cell death in cancer: Mechanisms and therapeutic opportunities. Cell Death Dis. 2024, 15, 556. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Zidane, L. Plant-derived natural products: A source for drug discovery and development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Hannan, M.A.; Sohag, A.A.M.; Dash, R.; Haque, M.N.; Mohibbullah, M.; Oktaviani, D.F.; Hossain, M.T.; Choi, H.J.; Moon, I.S. Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine 2020, 69, 153201. [Google Scholar] [CrossRef]
- Lee, J.H.; Khor, T.O.; Shu, L.; Su, Z.-Y.; Fuentes, F.; Kong, A.-N.T. Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression. Pharmacol. Ther. 2013, 137, 153–171. [Google Scholar] [CrossRef]
- Roy, S.; Deka, D.; Kondaveeti, S.B.; Ayyadurai, P.; Siripragada, S.; Philip, N.; Pathak, S.; Duttaroy, A.K.; Banerjee, A. An overview of potential of natural compounds to regulate epigenetic modifications in colorectal cancer: A recent update. Epigenetics 2025, 20, 2491316. [Google Scholar] [CrossRef]
- Fiard, G.; Stavrinides, V.; Chambers, E.S.; Heavey, S.; Freeman, A.; Ball, R.; Akbar, A.N.; Emberton, M. Cellular senescence as a possible link between prostate diseases of the ageing male. Nat. Rev. Urol. 2021, 18, 597–610. [Google Scholar] [CrossRef]
- Kuang, S.; Swamynathan, M.M.; Trotman, L.C. Cancer mortality and senescence: Is redox therapy an option? Genes Dev. 2025, 39, 914–916. [Google Scholar] [CrossRef]
- Guha, D.; Banerjee, S.; Mukherjee, S.; Dutta, A.; Das, T. Reactive oxygen species: Friends or foes of lung cancer? In Oxidative Stress in Lung Diseases: Volume 2; Springer: Singapore, 2019; pp. 331–352. [Google Scholar]
- Kashyap, D.; Tuli, H.S.; Sak, K.; Garg, V.K.; Goel, N.; Punia, S.; Chaudhary, A. Role of reactive oxygen species in cancer progression. Curr. Pharmacol. Rep. 2019, 5, 79–86. [Google Scholar] [CrossRef]
- Bailly, C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci. 2020, 246, 117403. [Google Scholar] [CrossRef]
- Drobot, L.; Samoylenko, A.; Vorotnikov, A.; Tyurin-Kuzmin, P.; Bazalii, A.; Kietzmann, T.; Tkachuk, V.; Komisarenko, S. Reactive oxygen species in signal transduction. Ukr. Biochem. J. 2013, 85, 209–217. [Google Scholar] [CrossRef][Green Version]
- Barzegar Behrooz, A.; Talaie, Z.; Jusheghani, F.; Łos, M.J.; Klonisch, T.; Ghavami, S. Wnt and PI3K/Akt/mTOR survival pathways as therapeutic targets in glioblastoma. Int. J. Mol. Sci. 2022, 23, 1353. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Loeb, L.A. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2001, 477, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Ozougwu, J.C. The role of reactive oxygen species and antioxidants in oxidative stress. Int. J. Res. 2016, 3, 1–8. [Google Scholar]
- Cui, H.; Kong, Y.; Zhang, H. Oxidative stress, mitochondrial dysfunction, and aging. J. Signal Transduct. 2012, 2012, 646354. [Google Scholar] [CrossRef]
- Su, L.-J.; Zhang, J.-H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.-Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef]
- Huang, X.; Nepovimova, E.; Adam, V.; Sivak, L.; Heger, Z.; Valko, M.; Wu, Q.; Kuca, K. Neutrophils in Cancer immunotherapy: Friends or foes? Mol. Cancer 2024, 23, 107. [Google Scholar] [CrossRef]
- Buettner, G.R. Superoxide dismutase in redox biology: The roles of superoxide and hydrogen peroxide. Anti-Cancer Agents Med. Chem. 2011, 11, 341–346. [Google Scholar] [CrossRef]
- Leukaszewicz-Hussain, A.; Moniuszko-Jakoniuk, J. Liver catalase, glutathione peroxidase and reductase activity, reduced glutathione and hydrogen peroxide levels in acute intoxication with chlorfenvinphos, an organophosphate insecticide. Pol. J. Environ. Stud. 2004, 13, 303–309. [Google Scholar]
- Telman, W.; Liebthal, M.; Dietz, K.-J. Redox regulation by peroxiredoxins is linked to their thioredoxin-dependent oxidase function. Photosynth. Res. 2020, 145, 31–41. [Google Scholar] [CrossRef]
- Sajadimajd, S.; Khazaei, M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets 2018, 18, 538–557. [Google Scholar] [CrossRef]
- Zou, Z.; Chang, H.; Li, H.; Wang, S. Induction of reactive oxygen species: An emerging approach for cancer therapy. Apoptosis 2017, 22, 1321–1335. [Google Scholar] [CrossRef]
- Semenza, G.L. Hypoxia-inducible factors in physiology and medicine. Cell 2012, 148, 399–408. [Google Scholar] [CrossRef]
- Manuelli, V.; Pecorari, C.; Filomeni, G.; Zito, E. Regulation of redox signaling in HIF-1-dependent tumor angiogenesis. FEBS J. 2022, 289, 5413–5425. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Tomar, S.; Pathak, S. Epigenetics and cancer: A comprehensive review. Asian Pac. J. Cancer Biol. 2023, 8, 75–89. [Google Scholar] [CrossRef]
- Jorgenson, T.C.; Zhong, W.; Oberley, T.D. Redox imbalance and biochemical changes in cancer. Cancer Res. 2013, 73, 6118–6123. [Google Scholar] [CrossRef] [PubMed]
- Peng, P.; Qin, S.; Li, L.; He, Z.; Li, B.; Nice, E.C.; Zhou, L.; Lei, Y. Epigenetic remodeling under oxidative stress: Mechanisms driving tumor metastasis. MedComm–Oncol. 2024, 3, e70000. [Google Scholar] [CrossRef]
- Edwards, J.R.; Yarychkivska, O.; Boulard, M.; Bestor, T.H. DNA methylation and DNA methyltransferases. Epigenet. Chromatin 2017, 10, 23. [Google Scholar] [CrossRef]
- Garinis, G.A.; Patrinos, G.P.; Spanakis, N.E.; Menounos, P.G. DNA hypermethylation: When tumour suppressor genes go silent. Hum. Genet. 2002, 111, 115–127. [Google Scholar] [CrossRef]
- Wu, Q.; Ni, X. ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr. Drug Targets 2015, 16, 13–19. [Google Scholar] [CrossRef]
- Afanas’ev, I. New nucleophilic mechanisms of ros-dependent epigenetic modifications: Comparison of aging and cancer. Aging Dis. 2013, 5, 52. [Google Scholar] [CrossRef]
- Vurusaner, B.; Poli, G.; Basaga, H. Tumor suppressor genes and ROS: Complex networks of interactions. Free Radic. Biol. Med. 2012, 52, 7–18. [Google Scholar] [CrossRef]
- Sadakierska-Chudy, A.; Filip, M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox. Res. 2015, 27, 172–197. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-J.; Lee, D.; Kim, A. Acetylation of Histones in Chromatin and Its Functions in Gene Transcription. Biomed. Sci. Lett. 2024, 30, 199–208. [Google Scholar] [CrossRef]
- Ping, L.; Zhu, L.; Chen, N.; Liu, X.; Zhong, J.; Sun, X.; Tang, H.; Zhang, K. Endocrine Resistance Score Based on Three Key Genes Predicts Prognosis and Reveals Potential Therapeutic Targets for ER+HER2− Breast Cancer. Cell Prolif. 2025, e70100. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; DesMarais, T.L.; Tong, Z.; Yao, Y.; Costa, M. Oxidative stress alters global histone modification and DNA methylation. Free Radic. Biol. Med. 2015, 82, 22–28. [Google Scholar] [CrossRef]
- Ozyerli-Goknar, E.; Bagci-Onder, T. Epigenetic deregulation of apoptosis in cancers. Cancers 2021, 13, 3210. [Google Scholar] [CrossRef]
- Lettieri-Barbato, D.; Aquilano, K.; Punziano, C.; Minopoli, G.; Faraonio, R. MicroRNAs, long non-coding RNAs, and circular RNAs in the redox control of cell senescence. Antioxidants 2022, 11, 480. [Google Scholar] [CrossRef]
- Pierouli, K.; Papakonstantinou, E.; Papageorgiou, L.; Diakou, I.; Mitsis, T.; Dragoumani, K.; Spandidos, D.A.; Bacopoulou, F.; Chrousos, G.P.; Goulielmos, G.N. Long non-coding RNAs and microRNAs as regulators of stress in cancer. Mol. Med. Rep. 2022, 26, 361. [Google Scholar] [CrossRef]
- Sellitto, A.; Pecoraro, G.; Giurato, G.; Nassa, G.; Rizzo, F.; Saggese, P.; Martinez, C.A.; Scafoglio, C.; Tarallo, R. Regulation of metabolic reprogramming by long non-coding RNAs in cancer. Cancers 2021, 13, 3485. [Google Scholar] [CrossRef]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in cancer: Rationale and strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef]
- Hussain, S. Gene Environment-Interaction and Cardiovascular Phenotype in Obesity and Diabetes. Ph.D. Thesis, Karolinska Institutet, Stockholm, Sweden, 2019. [Google Scholar]
- Qian, B.; Katsaros, D.; Lu, L.; Preti, M.; Durando, A.; Arisio, R.; Mu, L.; Yu, H. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Res. Treat. 2009, 117, 131–140. [Google Scholar] [CrossRef]
- Gao, J.; Li, N.; Dong, Y.; Li, S.; Xu, L.; Li, X.; Li, Y.; Li, Z.; Ng, S.; Sung, J. miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene 2015, 34, 4142–4152. [Google Scholar] [CrossRef]
- Zhang, K.; Sun, X.; Zhou, X.; Han, L.; Chen, L.; Shi, Z.; Zhang, A.; Ye, M.; Wang, Q.; Liu, C. Long non-coding RNA HOTAIR promotes glioblastoma cell cycle progression in an EZH2 dependent manner. Oncotarget 2014, 6, 537. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mei, Z.; Hu, H.B.; Zhang, X. The lncRNA MALAT1 contributes to non-small cell lung cancer development via modulating miR-124/STAT3 axis. J. Cell. Physiol. 2018, 233, 6679–6688. [Google Scholar] [CrossRef] [PubMed]
- Zare, E.; Yaghoubi, S.; Khoshnazar, M.; Jafari Dargahlou, S.; Machhar, J.; Zheng, Z.; Duijf, P.; Mansoori, B. MicroRNAs in Cancer Immunology: Master Regulators of the Tumor Microenvironment and Immune Evasion, with Therapeutic Potential. Cancers 2025, 17, 2172. [Google Scholar] [CrossRef] [PubMed]
- Sacco, L.D.; Masotti, A. Recent insights and novel bioinformatics tools to understand the role of microRNAs binding to 5′untranslated region. Int. J. Mol. Sci. 2013, 14, 480–495. [Google Scholar] [CrossRef]
- Klinge, C.M. Non-coding RNAs: Long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr. Relat. Cancer 2018, 25, R259–R282. [Google Scholar] [CrossRef]
- Ebrahimi, S.O.; Reiisi, S.; Shareef, S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J. Cell. Physiol. 2020, 235, 8812–8825. [Google Scholar] [CrossRef]
- Zhang, X.; Ng, W.-L.; Wang, P.; Tian, L.; Werner, E.; Wang, H.; Doetsch, P.; Wang, Y. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNF α. Cancer Res. 2012, 72, 4707–4713. [Google Scholar] [CrossRef]
- Arghiani, N.; Matin, M.M. MiR-21: A key small molecule with great effects in combination cancer therapy. Nucleic Acid Ther. 2021, 31, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yuan, L.; Luo, J.; Gao, J.; Guo, J.; Xie, X. MiR-34a inhibits proliferation and migration of breast cancer through down-regulation of Bcl-2 and SIRT1. Clin. Exp. Med. 2013, 13, 109–117. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, L.C.; Mishra, S.; Chakraborty, A.; Shekher, A.; Sharma, A.; Gupta, S.C. Oxidative stress and cancer development: Are noncoding RNAs the missing links? Antioxid. Redox Signal. 2020, 33, 1209–1229. [Google Scholar] [CrossRef] [PubMed]
- Sebastian-delaCruz, M.; Gonzalez-Moro, I.; Olazagoitia-Garmendia, A.; Castellanos-Rubio, A.; Santin, I. The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-Coding RNA 2021, 7, 3. [Google Scholar] [CrossRef]
- Leisegang, M.S.; Schröder, K.; Brandes, R.P. Redox regulation and noncoding RNAs. Antioxid. Redox Signal. 2018, 29, 793–812. [Google Scholar] [CrossRef]
- Amicone, L.; Marchetti, A.; Cicchini, C. The lncRNA HOTAIR: A pleiotropic regulator of epithelial cell plasticity. J. Exp. Clin. Cancer Res. 2023, 42, 147. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, Y.; Wu, H.; Ouyang, S.; Kuang, W.L. LncRNA H19 promotes glioma angiogenesis through miR-138/HIF-1α/VEGF axis. Neoplasma 2020, 67, 111. [Google Scholar] [CrossRef]
- Hou, Z.-H.; Xu, X.-W.; Fu, X.-Y.; Zhou, L.-D.; Liu, S.-P.; Tan, D.-M. Long non-coding RNA MALAT1 promotes angiogenesis and immunosuppressive properties of HCC cells by sponging miR-140. Am. J. Physiol.-Cell Physiol. 2020, 318, C649–C663. [Google Scholar] [CrossRef]
- Shah, V.; Lam, H.Y.; Leong, C.H.-M.; Sakaizawa, R.; Shah, J.S.; Kumar, A.P. Epigenetic Control of Redox Pathways in Cancer Progression. Antioxid. Redox Signal. 2025, 42, 848–867. [Google Scholar] [CrossRef]
- Gu, X.; Mu, C.; Zheng, R.; Zhang, Z.; Zhang, Q.; Liang, T. The cancer antioxidant regulation system in therapeutic resistance. Antioxidants 2024, 13, 778. [Google Scholar] [CrossRef]
- Kinoshita, C.; Aoyama, K. The role of non-coding RNAs in the neuroprotective effects of glutathione. Int. J. Mol. Sci. 2021, 22, 4245. [Google Scholar] [CrossRef]
- Fuschi, P.; Maimone, B.; Gaetano, C.; Martelli, F. Noncoding RNAs in the vascular system response to oxidative stress. Antioxid. Redox Signal. 2019, 30, 992–1010. [Google Scholar] [CrossRef]
- Liu, J.; Yang, M.; Zhou, B. Epigenetic and Epitranscriptomic Regulation of Cardiac Metabolism in Aging and Disease. J. Cardiovasc. Aging 2025, 5, 15. [Google Scholar] [CrossRef]
- Balihodzic, A.; Prinz, F.; Dengler, M.A.; Calin, G.A.; Jost, P.J.; Pichler, M. Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ. 2022, 29, 1094–1106. [Google Scholar] [CrossRef] [PubMed]
- Park, M.N.; Kim, M.; Lee, S.; Kang, S.; Ahn, C.-H.; Tallei, T.E.; Kim, W.; Kim, B. Targeting Redox Signaling Through Exosomal MicroRNA: Insights into Tumor Microenvironment and Precision Oncology. Antioxidants 2025, 14, 501. [Google Scholar] [CrossRef] [PubMed]
- Al-Awar, A.; Hussain, S. Interplay of reactive oxygen species (ROS) and epigenetic Remodelling in Cardiovascular diseases pathogenesis: A Contemporary perspective. Front. Biosci. Landmark 2024, 29, 398. [Google Scholar] [CrossRef]
- Borrego, S.; Vazquez, A.; Dasí, F.; Cerdá, C.; Iradi, A.; Tormos, C.; Sánchez, J.M.; Bagán, L.; Boix, J.; Zaragoza, C. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7′8-dihydro-2′-deoxyguanosine (8-oxo-dG) as a possible tumor marker. Int. J. Mol. Sci. 2013, 14, 3467–3486. [Google Scholar] [CrossRef]
- Pejhan, S.; Rastegar, M. Role of DNA methyl-CpG-binding protein MeCP2 in Rett syndrome pathobiology and mechanism of disease. Biomolecules 2021, 11, 75. [Google Scholar] [CrossRef]
- Maksimovic, I.; David, Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends Biochem. Sci. 2021, 46, 718–730. [Google Scholar] [CrossRef]
- Kreuz, S.; Fischle, W. Oxidative stress signaling to chromatin in health and disease. Epigenomics 2016, 8, 843–862. [Google Scholar] [CrossRef]
- Azzouz, D.; Palaniyar, N. How do ROS induce NETosis? Oxidative DNA damage, DNA repair, and chromatin decondensation. Biomolecules 2024, 14, 1307. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxidative Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef]
- Franco, R.; Schoneveld, O.; Georgakilas, A.G.; Panayiotidis, M.I. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008, 266, 6–11. [Google Scholar] [CrossRef]
- Bhagat, S.D.; Singh, U.; Mishra, R.K.; Srivastava, A. An Endogenous Reactive Oxygen Species (ROS)-Activated Histone Deacetylase Inhibitor Prodrug for Cancer Chemotherapy. ChemMedChem 2018, 13, 2073–2079. [Google Scholar] [CrossRef]
- Chervona, Y.; Costa, M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic. Biol. Med. 2012, 53, 1041–1047. [Google Scholar] [CrossRef]
- Kaya, C.; Adamakis, I.-D.S. Redox-Epigenetic Crosstalk in Plant Stress Responses: The Roles of Reactive Oxygen and Nitrogen Species in Modulating Chromatin Dynamics. Int. J. Mol. Sci. 2025, 26, 7167. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.; Cui, D. Chiral Antioxidant-based Gold Nanoclusters Reprogram DNA epigenetic patterns. Sci. Rep. 2016, 6, 33436. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, J.; Collignon, E.; Fuks, F. Portraits of TET-mediated DNA hydroxymethylation in cancer. Curr. Opin. Genet. Dev. 2016, 36, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Ziech, D.; Franco, R.; Pappa, A.; Panayiotidis, M.I. Reactive Oxygen Species (ROS)––Induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2011, 711, 167–173. [Google Scholar] [CrossRef]
- Tomas, M.; Wen, Y.; Liao, W.; Zhang, L.; Zhao, C.; McClements, D.J.; Nemli, E.; Bener, M.; Apak, R.; Capanoglu, E. Recent progress in promoting the bioavailability of polyphenols in plant-based foods. Crit. Rev. Food Sci. Nutr. 2025, 65, 2343–2364. [Google Scholar] [CrossRef]
- Yahfoufi, N.; Alsadi, N.; Jambi, M.; Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018, 10, 1618. [Google Scholar] [CrossRef] [PubMed]
- Mileo, A.M.; Miccadei, S. Polyphenols as modulator of oxidative stress in cancer disease: New therapeutic strategies. Oxidative Med. Cell. Longev. 2016, 2016, 6475624. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jin, P.; Guan, Y.; Luo, M.; Wang, Y.; He, B.; Li, B.; He, K.; Cao, J.; Huang, C. Exploiting polyphenol-mediated redox reorientation in cancer therapy. Pharmaceuticals 2022, 15, 1540. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Swargiary, G.; Ralph, S.J. Targeting the redox imbalance in mitochondria: A novel mode for cancer therapy. Mitochondrion 2022, 62, 50–73. [Google Scholar] [CrossRef]
- Cheung, E.C.; DeNicola, G.M.; Nixon, C.; Blyth, K.; Labuschagne, C.F.; Tuveson, D.A.; Vousden, K.H. Dynamic ROS control by TIGAR regulates the initiation and progression of pancreatic cancer. Cancer Cell 2020, 37, 168–182.e4. [Google Scholar] [CrossRef]
- Reczek, C.R.; Birsoy, K.; Kong, H.; Martínez-Reyes, I.; Wang, T.; Gao, P.; Sabatini, D.M.; Chandel, N.S. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat. Chem. Biol. 2017, 13, 1274–1279. [Google Scholar] [CrossRef]
- Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin. Cancer Biol. 2021, 73, 196–218. [Google Scholar] [CrossRef]
- Rahaiee, S.; Assadpour, E.; Esfanjani, A.F.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [Google Scholar] [CrossRef]
- Upadhyay, S.; Dixit, M. Role of polyphenols and other phytochemicals on molecular signaling. Oxidative Med. Cell. Longev. 2015, 2015, 504253. [Google Scholar] [CrossRef]
- Rahman, I. Dietary polyphenols mediated regulation of oxidative stress and chromatin remodeling in inflammation. Nutr. Rev. 2008, 66, S42–S45. [Google Scholar] [CrossRef]
- Rahman, I. Oxidative stress, chromatin remodeling and gene transcription in inflammation and chronic lung diseases. J. Biochem. Mol. Biol. 2003, 36, 95–109. [Google Scholar] [CrossRef]
- Cheng, A.L.; Hsu, C.H.; Lin, J.K.; Hsu, M.M.; Ho, Y.F.; Shen, T.S.; Ko, J.Y.; Lin, J.T.; Lin, B.R.; Ming-Shiang, W.; et al. Phase I clinical trial of curcumin, a chemopreventive agent in patients with high-risk or pre-malignant lesions. Anticancer Res. 2001, 21, 2895–2900. [Google Scholar] [PubMed]
- Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica 1998, 64, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, X.; Li, S.; Wang, Q.; Wang, H.; Xu, M.; An, Y. Tetrahydrocurcumin protects against sepsis-induced acute kidney injury via the SIRT1 pathway. Ren. Fail. 2021, 43, 1028–1040. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Peng, X.; Zhu, J.; Liu, G.; Chen, X.; Tang, C.; Liu, H.; Liu, F.; Peng, Y. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can. J. Physiol. Pharmacol. 2015, 93, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Sun, L.; Qian, S.; Ma, Y.; Ma, R.; Dong, Y.; Shi, Y.; Jiang, S.; Ye, H.; Shen, Z. Iron overload adversely effects bone marrow haematogenesis via SIRT-SOD2-mROS in a process ameliorated by curcumin. Cell. Mol. Biol. Lett. 2021, 26, 2. [Google Scholar] [CrossRef]
- Jasek, K.; Kubatka, P.; Samec, M.; Liskova, A.; Smejkal, K.; Vybohova, D.; Bugos, O.; Biskupska-Bodova, K.; Bielik, T.; Zubor, P. DNA methylation status in cancer disease: Modulations by plant-derived natural compounds and dietary interventions. Biomolecules 2019, 9, 289. [Google Scholar] [CrossRef]
- Li, H.; Xu, W.; Huang, Y.; Huang, X.; Xu, L.; Lv, Z. Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo. Int. J. Mol. Med. 2012, 30, 1081–1086. [Google Scholar] [CrossRef]
- Izzo, S.; Naponelli, V.; Bettuzzi, S. Flavonoids as epigenetic modulators for prostate cancer prevention. Nutrients 2020, 12, 1010. [Google Scholar] [CrossRef]
- Raina, R.; Bhatt, R.; Hussain, A.; Afroze, N.; Hussain, A. Polyphenols reverse ROS induced epigenetic alterations in the process of carcinogenesis. Epigenet. Commun. 2025, 5, 5. [Google Scholar] [CrossRef]
- Calvani, M.; Pasha, A.; Favre, C. Nutraceutical boom in cancer: Inside the labyrinth of reactive oxygen species. Int. J. Mol. Sci. 2020, 21, 1936. [Google Scholar] [CrossRef]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Liebman, S.E.; Le, T.H. Eat your broccoli: Oxidative stress, NRF2, and sulforaphane in chronic kidney disease. Nutrients 2021, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Tortorella, S.M.; Royce, S.G.; Licciardi, P.V.; Karagiannis, T.C. Dietary sulforaphane in cancer chemoprevention: The role of epigenetic regulation and HDAC inhibition. Antioxid. Redox Signal. 2015, 22, 1382–1424. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, L.; Du, S.; Wang, K.; Liu, S. Antioxidant curcumin induces oxidative stress to kill tumor cells. Oncol. Lett. 2023, 27, 67. [Google Scholar] [CrossRef]
- Goldbohm, R.A.; Hertog, M.G.; Brants, H.A.; van Poppel, G.; van den Brandt, P.A. Consumption of black tea and cancer risk: A prospective cohort study. JNCI J. Natl. Cancer Inst. 1996, 88, 93–100. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, W.; Chopra, S.; Kaur, D.; Wang, H.; Li, M.; Chen, P.; Zhang, W. The epigenetic modification of epigallocatechin gallate (EGCG) on cancer. Curr. Drug Targets 2020, 21, 1099–1104. [Google Scholar] [CrossRef]
- Na, H.-K.; Surh, Y.-J. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem. Toxicol. 2008, 46, 1271–1278. [Google Scholar] [CrossRef]
- Nandakumar, V.; Vaid, M.; Katiyar, S.K. (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p 16 INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis 2011, 32, 537–544. [Google Scholar] [CrossRef]
- Eden, A.; Gaudet, F.; Waghmare, A.; Jaenisch, R. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 2003, 300, 455. [Google Scholar] [CrossRef]
- Gaudet, F.; Hodgson, J.G.; Eden, A.; Jackson-Grusby, L.; Dausman, J.; Gray, J.W.; Leonhardt, H.; Jaenisch, R. Induction of tumors in mice by genomic hypomethylation. Science 2003, 300, 489–492. [Google Scholar] [CrossRef]
- Garg, S.K.; Shukla, A.; Choudhury, S. Polyphenols and Flavonoids. In Nutraceuticals in Veterinary Medicine; Springer: Cham, Switzerland, 2019; pp. 187–204. [Google Scholar]
- Singh, S.; Verma, R. Exploring the therapeutic potential of flavonoids in the management of cancer. Curr. Pharm. Biotechnol. 2025, 26, 17–47. [Google Scholar] [CrossRef]
- Lo, S.C.; Li, X.; Henzl, M.T.; Beamer, L.J.; Hannink, M. Structure of the Keap1: Nrf2 interface provides mechanistic insight into Nrf2 signaling. EMBO J. 2006, 25, 3605–3617. [Google Scholar] [CrossRef]
- Sthijns, M.M.; Schiffers, P.M.; Janssen, G.M.; Lemmens, K.J.; Ides, B.; Vangrieken, P.; Bouwman, F.G.; Mariman, E.C.; Pader, I.; Arnér, E.S. Rutin protects against H2O2-triggered impaired relaxation of placental arterioles and induces Nrf2-mediated adaptation in Human Umbilical Vein Endothelial Cells exposed to oxidative stress. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2017, 1861, 1177–1189. [Google Scholar] [CrossRef]
- Chen, J.; Li, G.; Sun, C.; Peng, F.; Yu, L.; Chen, Y.; Tan, Y.; Cao, X.; Tang, Y.; Xie, X. Chemistry, pharmacokinetics, pharmacological activities, and toxicity of Quercitrin. Phytother. Res. 2022, 36, 1545–1575. [Google Scholar] [CrossRef]
- Lai, W.-F.; Wong, W.-T. Design and optimization of quercetin-based functional foods. Crit. Rev. Food Sci. Nutr. 2022, 62, 7319–7335. [Google Scholar] [CrossRef]
- Liu, L.; Barber, E.; Kellow, N.J.; Williamson, G. Improving quercetin bioavailability: A systematic review and meta-analysis of human intervention studies. Food Chem. 2025, 477, 143630. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Bruno, R.S. Endogenous and exogenous mediators of quercetin bioavailability. J. Nutr. Biochem. 2015, 26, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Rezaei-Sadabady, R.; Eidi, A.; Zarghami, N.; Barzegar, A. Intracellular ROS protection efficiency and free radical-scavenging activity of quercetin and quercetin-encapsulated liposomes. Artif. Cells Nanomed. Biotechnol. 2016, 44, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Dey, D.; Biswas, P.K.; Rahaman, T.I.; Saha, S.; Parvez, A.; Khan, D.A.; Lily, N.J.; Saha, K.; Sohel, M. A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int. J. Mol. Sci. 2022, 23, 11746. [Google Scholar] [CrossRef]
- Yang, F.Q.; Liu, M.; Li, W.; Che, J.P.; Wang, G.C.; Zheng, J.H. Combination of quercetin and hyperoside inhibits prostate cancer cell growth and metastasis via regulation of microRNA-21. Mol. Med. Rep. 2015, 11, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.; Ma, B.; Pei, X.; Wang, W.; Gong, W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. Pharm. Biol. 2025, 63, 141–155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, H.; Hardy, T.M.; Tollefsbol, T.O. Epigenetic regulation of multiple tumor-related genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS ONE 2013, 8, e54369. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, M.K.; Ansari, M.Z.; Al Mutery, A.; Ashraf, M.; Nasab, R.; Rai, S.; Rais, N.; Hussain, A. Genistein induces alterations of epigenetic modulatory signatures in human cervical cancer cells. Anti-Cancer Agents Med. Chem. 2018, 18, 412–421. [Google Scholar] [CrossRef]
- El-Baba, C.; Baassiri, A.; Kiriako, G.; Dia, B.; Fadlallah, S.; Moodad, S.; Darwiche, N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis 2021, 26, 491–511. [Google Scholar] [CrossRef]
- de Lima, E.P.; Laurindo, L.F.; Catharin, V.C.S.; Direito, R.; Tanaka, M.; Jasmin Santos German, I.; Lamas, C.B.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.R. Polyphenols, alkaloids, and terpenoids against neurodegeneration: Evaluating the neuroprotective effects of phytocompounds through a comprehensive review of the current evidence. Metabolites 2025, 15, 124. [Google Scholar] [CrossRef]
- Bendrihem, K.A.; Mouane, A.; Azzi, M.; Mihoubi, M.A.; Atanassova, M.; Sawicka, B.; Zahnit, W.; Messaoudi, M. The Role of Medicinal Plants in Modulating Epigenetic Mechanisms: Implications for Cancer Prevention and Therapy. Phytother. Res. 2025, 39, 2571–2608. [Google Scholar] [CrossRef]
- Vanduchova, A.; Anzenbacher, P.; Anzenbacherova, E. Isothiocyanate from broccoli, sulforaphane, and its properties. J. Med. Food 2019, 22, 121–126. [Google Scholar] [CrossRef]
- Su, X.; Jiang, X.; Meng, L.; Dong, X.; Shen, Y.; Xin, Y. Anticancer activity of sulforaphane: The epigenetic mechanisms and the Nrf2 signaling pathway. Oxidative Med. Cell. Longev. 2018, 2018, 5438179. [Google Scholar] [CrossRef]
- Shukla, S.; Shukla, A.K.; Upadhyay, A.M.; Ray, N.; Fahad, F.I.; Nagappan, A.; Dutta, S.D.; Mongre, R.K. Molecular Insight and Antioxidative Therapeutic Potentials of Plant-Derived Compounds in Breast Cancer Treatment. Onco 2025, 5, 27. [Google Scholar] [CrossRef]
- Oršolić, N.; Jazvinšćak Jembrek, M. Potential strategies for overcoming drug resistance pathways using propolis and its polyphenolic/flavonoid compounds in combination with chemotherapy and radiotherapy. Nutrients 2024, 16, 3741. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, X.; Wu, M.; Wu, J.; Liu, J. Synergistic effects of resveratrol and temozolomide against glioblastoma cells: Underlying mechanism and therapeutic implications. Cancer Manag. Res. 2020, 12, 8341–8354. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Zuo, J.; Li, B.; Chen, R.; Luo, K.; Xiang, X.; Lu, S.; Huang, C.; Liu, L.; Tang, J. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 2023, 63, 102754. [Google Scholar] [CrossRef] [PubMed]
- Mora Lagares, L.; Pérez-Castillo, Y.; Minovski, N.; Novič, M. Structure–function relationships in the human P-glycoprotein (ABCB1): Insights from molecular dynamics simulations. Int. J. Mol. Sci. 2021, 23, 362. [Google Scholar] [CrossRef]
- Ahn-Jarvis, J.H.; Parihar, A.; Doseff, A.I. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants 2019, 8, 202. [Google Scholar] [CrossRef]
- Li, Y.-W.; Zhang, Y.; Zhang, L.; Li, X.; Yu, J.-B.; Zhang, H.-T.; Tan, B.-B.; Jiang, L.-H.; Wang, Y.-X.; Liang, Y. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway. Gene 2014, 542, 46–51. [Google Scholar] [CrossRef]
- Maraldi, T.; Vauzour, D.; Angeloni, C. Dietary polyphenols and their effects on cell biochemistry and pathophysiology 2013. Oxidative Med. Cell. Longev. 2014, 2014, 576363. [Google Scholar] [CrossRef]




| Compounds | Clinical Trial/Study (NCT No. or Reference) | Cancer Type | Intervention and Dose | Key Findings |
|---|---|---|---|---|
| Curcumin | NCT01246973 | Breast Cancer | 4 Curcumin C3 Complex 500 mg capsules (2.0 g) taken orally 3 times/day throughout course of radiation treatments plus one week. | curcumin in preventing and/or reducing the severity of dermatitis in radiation treatment site in breast cancer patients. |
| Curcumin + Piperine | NCT02598726 | Reducing Inflammation for Ureteral Stent-Induced Symptoms in Patients with Cancer | Curcumin PO BID or TID; piperine extract PO on days 1–7. | As secondary and exploratory outcomes, the clinical trial examined the best biologically active dose, changes in quality of life, and prostaglandin E2 levels in addition to evaluating the safety and tolerability of curcumin and piperine by identifying adverse events and the maximum tolerated dose. |
| Resveratrol | NCT00256334 | Colon cancer | Patients were randomly assigned to one of four dose cohorts: plant-derived resveratrol tablets (purchased through the Life Extension Foundation, Scottsdale, AZ) at a dose of 80 mg/day, plant-derived resveratrol tablets at a dose of 20 mg/day, Grape Powder (GP) dissolved in water and taken orally (supplied by the California Table Grape Commission) at a dose of 120 g/day, and GP at a dose of 80 g/day. | Test the hypothesis that resveratrol modulates Wnt signaling in vivo in colon cancer and normal colonic mucosa. |
| EGCG (Green tea extract) | NCT00666562 | Nonmetastatic Bladder Cancer | Patients with bladder cancer treated with oral polyphenon E 800 mg EGCG or polyphenon E 1200 mg EGCG once daily for 14–28 days. | The bioavailability of EGCG in bladder tissues, serum, and urine, as well as its impact on catechin levels and associated biomarkers, were assessed in a clinical study; the published summary concentrates on outcome measures rather than particular efficacy result. |
| EGCG | NCT05039983 | Esophageal Cancer | Three times a day, different concentrations of EGCG are dissolved in a 0.9% saline solution. Every time, a fresh batch is created. To ensure that the medication remains in the esophageal walls for an extended period of time, 30 milliliters of the EGCG solution must be swallowed several times. | EGCG has been shown to have antioxidant, anti-inflammatory and anti-tumor effects. The complex effects of EGCG may improve esophageal obstruction during the waiting period before antineoplastic therapy. |
| Quercetin | NCT01912820 | Prostate Cancer | Patients receive GT extract PO BID and quercetin PO BID for 3–6 weeks before undergoing prostatectomy. | Quercetin and Green Tea: A Phase I Randomized, Double-Blind, Placebo-Controlled Two-Arm Study to Increase Green Tea Polyphenol Bioavailability in Men Having Prostate Excision. |
| Genistein | NCT00244933 | Breast Cancer | Novasoy Orally—100 mg 2 times/day for 7 days; 2 times/day on Days 1–21 every 21 days. | For target lesions evaluated by MRI in accordance with the Response Evaluation Criteria In Solid Tumors Criteria (RECIST v1.0): Total Reaction (CR), elimination of every target lesion; Partial Response (PR), a reduction of more than 30% in the total of the target lesions’ longest diameters; CR + PR = Overall Response (OR). |
| Sulforaphane (Broccoli sprout extract) | NCT00946309 | Prostate Cancer | Drug: High Sulforaphane Extract (Broccoli Sprout Extract) 100 umol sulforaphane, every other day for 5 weeks Drug: Microcrystalline Cellulose NF (placebo). | The expression of Phase II detoxification enzymes was marginally impacted by sulforaphane, and hormone-related markers such as DHT, testosterone, and 3α-DG were somewhat decreased. Only minor gastrointestinal adverse events were reported, and it was well tolerated. Oxidative stress and DNA oxidation data were not gathered. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truong, T.T.; Singh, A.A.; Tak, S.; Na, S.; Choi, J.; Oh, J.; Mondal, S. Plant-Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming in Cancer. Cells 2025, 14, 1948. https://doi.org/10.3390/cells14241948
Truong TT, Singh AA, Tak S, Na S, Choi J, Oh J, Mondal S. Plant-Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming in Cancer. Cells. 2025; 14(24):1948. https://doi.org/10.3390/cells14241948
Chicago/Turabian StyleTruong, Thi Thuy, Alka Ashok Singh, Soonhyuk Tak, Sungsoo Na, Jaeyeop Choi, Junghwan Oh, and Sudip Mondal. 2025. "Plant-Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming in Cancer" Cells 14, no. 24: 1948. https://doi.org/10.3390/cells14241948
APA StyleTruong, T. T., Singh, A. A., Tak, S., Na, S., Choi, J., Oh, J., & Mondal, S. (2025). Plant-Derived Antioxidants as Modulators of Redox Signaling and Epigenetic Reprogramming in Cancer. Cells, 14(24), 1948. https://doi.org/10.3390/cells14241948

