Role of Angiogenesis in Retinal Diseases and New Advances in Drug Development
Abstract
1. Introduction
2. Retinal Vein Occlusion
2.1. Retinal Vein Occlusion—Classifications and Pathogenesis
2.2. Retinal Vein Occlusion—Classifications and Pathogenesis- Current Anti-Angiogenic Therapies
2.3. Retinal Vein Occlusion—Emerging Therapies and Future Directions
3. Age-Related Macular Degeneration
3.1. Age-Related Macular Degeneration—Classification and Pathogenesis
3.2. Age-Related Macular Degeneration—Current Anti-Angiogenic Therapies
3.3. Age-Related Macular Degeneration—Emerging Therapies and Future Directions
4. Diabetic Retinopathy
4.1. Diabetic Retinopathy—Classifications and Pathogenesis
4.2. Diabetic Retinopathy—Current Anti-Angiogenic Therapies
4.3. Diabetic Retinopathy—Emerging Therapies and Future Directions
5. Comparison of Mechanism, Therapeutic, and Translational Implications Between RVO, AMD, and DR
6. Retinopathy of Prematurity
6.1. Retinopathy of Prematurity—Classifications and Pathogenesis
6.2. Retinopathy of Prematurity—Current Anti-Angiogenic Therapies
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lutty, G.A.; McLeod, D.S. Development of the hyaloid, choroidal and retinal vasculatures in the fetal human eye. Prog. Retin. Eye Res. 2018, 62, 58–76. [Google Scholar] [CrossRef]
- Baba, T.; Grebe, R.; Hasegawa, T.; Bhutto, I.; Merges, C.; McLeod, D.S.; Lutty, G.A. Maturation of the fetal human choriocapillaris. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3503–3511. [Google Scholar] [CrossRef]
- Caprara, C.; Thiersch, M.; Lange, C.; Joly, S.; Samardzija, M.; Grimm, C. HIF1A is essential for the development of the intermediate plexus of the retinal vasculature. Investig. Ophthalmol. Vis. Sci. 2011, 52, 2109–2117. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, H.; Yan, N.; Lai, K.; Xiang, M. Hypoxia-Inducible Factor-1alpha Target Genes Contribute to Retinal Neuroprotection. Front. Cell. Neurosci. 2017, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, V.; Zhang, Y.; Ling, E.A.; Foulds, W.S.; Kaur, C. Insulin-like growth factors, angiopoietin-2, and pigment epithelium-derived growth factor in the hypoxic retina. J. Neurosci. Res. 2008, 86, 702–711. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Mar, F.; Amador, M.J.; Chang, A.; Gibson, K.; Joussen, A.M.; Kim, J.E.; Lee, J.; Margaron, P.; Saffar, I.; et al. Emerging clinical evidence of a dual role for Ang-2 and VEGF-A blockade with faricimab in retinal diseases. Graefes Arch. Clin. Exp. Ophthalmol. 2025, 263, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Lupidi, M.; Donati, S.; Astarita, C.; Gallinaro, V.; Pilotto, E. Role of inflammation in diabetic macular edema and neovascular age-related macular degeneration. Surv. Ophthalmol. 2024, 69, 870–881. [Google Scholar] [CrossRef]
- Noma, H.; Yasuda, K.; Shimura, M. Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J. Clin. Med. 2020, 9, 3457. [Google Scholar] [CrossRef]
- Srejovic, J.V.; Muric, M.D.; Jakovljevic, V.L.; Srejovic, I.M.; Sreckovic, S.B.; Petrovic, N.T.; Todorovic, D.Z.; Bolevich, S.B.; Sarenac Vulovic, T.S. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int. J. Mol. Sci. 2024, 25, 11850. [Google Scholar] [CrossRef]
- Anderson, D.H.; Radeke, M.J.; Gallo, N.B.; Chapin, E.A.; Johnson, P.T.; Curletti, C.R.; Hancox, L.S.; Hu, J.; Ebright, J.N.; Malek, G.; et al. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog. Retin. Eye Res. 2010, 29, 95–112. [Google Scholar] [CrossRef]
- Nita, M.; Grzybowski, A.; Ascaso, F.J.; Huerva, V. Age-related macular degeneration in the aspect of chronic low-grade inflammation (pathophysiological parainflammation). Mediat. Inflamm. 2014, 2014, 930671. [Google Scholar] [CrossRef]
- Rehak, M.; Wiedemann, P. Retinal vein thrombosis: Pathogenesis and management. J. Thromb. Haemost. 2010, 8, 1886–1894. [Google Scholar] [CrossRef]
- Jefferies, P.; Clemett, R.; Day, T. An anatomical study of retinal arteriovenous crossings and their role in the pathogenesis of retinal branch vein occlusions. Aust. N. Z. J. Ophthalmol. 1993, 21, 213–217. [Google Scholar] [CrossRef]
- Campochiaro, P.A. Molecular pathogenesis of retinal and choroidal vascular diseases. Prog. Retin. Eye Res. 2015, 49, 67–81. [Google Scholar] [CrossRef]
- Khan, M.A.; Mallika, V.; Joshi, D. Comparison of immediate versus deferred intravitreal Bevacizumab in macular oedema due to branch retinal vein occlusion: A pilot study. Int. Ophthalmol. 2018, 38, 943–949. [Google Scholar] [CrossRef]
- Scott, I.U.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B.A.; Oden, N.L.; Awh, C.C.; Kunimoto, D.Y.; Marcus, D.M.; Wroblewski, J.J.; King, J.; et al. Effect of Bevacizumab vs Aflibercept on Visual Acuity Among Patients with Macular Edema Due to Central Retinal Vein Occlusion: The SCORE2 Randomized Clinical Trial. JAMA 2017, 317, 2072–2087. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, A.; Solaiman, K.A.M.; Abdelrahman, A.; Samir, A. Efficacy and Frequency of Intravitreal Aflibercept Versus Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion. Retina 2018, 38, 1795–1800. [Google Scholar] [CrossRef]
- Sangroongruangsri, S.; Ratanapakorn, T.; Wu, O.; Anothaisintawee, T.; Chaikledkaew, U. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: A systematic review and network meta-analysis. Expert Rev. Clin. Pharmacol. 2018, 11, 903–916. [Google Scholar] [CrossRef] [PubMed]
- Vader, M.J.C.; Schauwvlieghe, A.M.E.; Verbraak, F.D.; Dijkman, G.; Hooymans, J.M.M.; Los, L.I.; Zwinderman, A.H.; Peto, T.; Hoyng, C.B.; van Leeuwen, R.; et al. Comparing the Efficacy of Bevacizumab and Ranibizumab in Patients with Retinal Vein Occlusion: The Bevacizumab to Ranibizumab in Retinal Vein Occlusions (BRVO) study, a Randomized Trial. Ophthalmol. Retin. 2020, 4, 576–587. [Google Scholar] [CrossRef] [PubMed]
- Gurudas, S.; Patrao, N.; Nicholson, L.; Sen, P.; Ramu, J.; Sivaprasad, S.; Hykin, P. Visual Outcomes Associated with Patterns of Macular Edema Resolution in Central Retinal Vein Occlusion Treated with Anti-Vascular Endothelial Growth Factor Therapy: A Post Hoc Analysis of the Lucentis, Eylea, Avastin in Vein Occlusion (LEAVO) Trial. JAMA Ophthalmol. 2022, 140, 143–150. [Google Scholar] [CrossRef]
- Amer, A.A.; El Shafie, M.A.M.; Hassan, N.H.F. Ranibizumab versus aflibercept for macular edema secondary to nonischemic central retinal vein occlusion in young adult patients. Delta J. Ophthalmol. 2022, 23, 280–286. [Google Scholar] [CrossRef]
- Kamei, M.; Terasaki, H.; Yoshimura, N.; Shiraga, F.; Ogura, Y.; Grotzfeld, A.S.; Pilz, S.; Ishibashi, T. Short-term efficacy and safety of ranibizumab for macular oedema secondary to retinal vein occlusion in Japanese patients. Acta Ophthalmol. 2017, 95, e29–e35. [Google Scholar] [CrossRef]
- Chatziralli, I.; Theodossiadis, G.; Moschos, M.M.; Mitropoulos, P.; Theodossiadis, P. Ranibizumab versus aflibercept for macular edema due to central retinal vein occlusion: 18-month results in real-life data. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1093–1100. [Google Scholar] [CrossRef]
- Narayanan, R.; Kelkar, A.; Abbas, Z.; Goel, N.; Soman, M.; Naik, N.; Sudhalkar, A.; Walinjkar, J.; Shah, U.; Maksane, N. Sub-optimal gain in vision in retinal vein occlusion due to under-treatment in the real world: Results from an open-label prospective study of Intravitreal Ranibizumab. BMC Ophthalmol. 2021, 21, 33. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.R.; Nguyen, V.; Creuzot-Garcher, C.P.; Alforja, S.; Gabrielle, P.H.; Zarranz-Ventura, J.; Guillemin, M.; Fraser-Bell, S.; Casaroli Marano, R.P.; Arnold, J.; et al. Twelve-month outcomes of ranibizumab versus aflibercept for macular oedema in branch retinal vein occlusion: Data from the FRB! registry. Br. J. Ophthalmol. 2022, 106, 1178–1184. [Google Scholar] [CrossRef] [PubMed]
- Glacet-Bernard, A.; Girmens, J.F.; Kodjikian, L.; Delcourt, C.; Fajnkuchen, F.; Creuzot-Garcher, C.; San Nicolas, N.; Massin, P. Real-World Outcomes of Ranibizumab Treatment in French Patients with Visual Impairment due to Macular Edema Secondary to Retinal Vein Occlusion: 24-Month Results from the BOREAL-RVO Study. Ophthalmic Res. 2023, 66, 824–834. [Google Scholar] [CrossRef]
- Huang, J.M.; Khurana, R.N.; Ghanekar, A.; Wang, P.W.; Day, B.M.; Blodi, B.A.; Domalpally, A.; Quezada-Ruiz, C.; Ip, M.S. Disease-modifying effects of ranibizumab for central retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 260, 799–805. [Google Scholar] [CrossRef]
- Larsen, M.; Waldstein, S.M.; Priglinger, S.; Hykin, P.; Barnes, E.; Gekkieva, M.; Das Gupta, A.; Wenzel, A.; Mones, J.; Group, C.S. Sustained Benefits from Ranibizumab for Central Retinal Vein Occlusion with Macular Edema: 24-Month Results of the CRYSTAL Study. Ophthalmol. Retin. 2018, 2, 134–142. [Google Scholar] [CrossRef]
- Wei, W.; Weisberger, A.; Zhu, L.; Cheng, Y.; Liu, C.; Group, B.S. Efficacy and Safety of Ranibizumab in Asian Patients with Branch Retinal Vein Occlusion: Results from the Randomized BLOSSOM Study. Ophthalmol. Retin. 2020, 4, 57–66. [Google Scholar] [CrossRef]
- Pearce, I.; Clemens, A.; Brent, M.H.; Lu, L.; Gallego-Pinazo, R.; Minnella, A.M.; Creuzot-Garcher, C.; Spital, G.; Sakamoto, T.; Dunger-Baldauf, C.; et al. Real-world outcomes with ranibizumab in branch retinal vein occlusion: The prospective, global, LUMINOUS study. PLoS ONE 2020, 15, e0234739. [Google Scholar] [CrossRef] [PubMed]
- Saishin, Y.; Ito, Y.; Fujikawa, M.; Sawada, T.; Ohji, M. Comparison between ranibizumab and aflibercept for macular edema associated with central retinal vein occlusion. Jpn. J. Ophthalmol. 2017, 61, 67–73. [Google Scholar] [CrossRef]
- Khurana, R.N.; Chang, L.K.; Bansal, A.S.; Palmer, J.D.; Wu, C.; Wieland, M.R. Aflibercept for Previously Treated Macular Edema Associated with Central Retinal Vein Occlusions: 1-Year Results of the NEWTON Study. Ophthalmol. Retin. 2018, 2, 128–133. [Google Scholar] [CrossRef]
- Spooner, K.; Hong, T.; Bahrami, B.; Chang, A. A meta-analysis of patients with treatment-resistant macular oedema secondary to retinal vein occlusions following switching to aflibercept. Acta Ophthalmol. 2019, 97, 15–23. [Google Scholar] [CrossRef]
- Spooner, K.; Fraser-Bell, S.; Hong, T.; Chang, A. Prospective study of aflibercept for the treatment of persistent macular oedema secondary to retinal vein occlusions in eyes not responsive to long-term treatment with bevacizumab or ranibizumab. Clin. Exp. Ophthalmol. 2020, 48, 53–60. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, H.; Lin, B.; Jiao, X.; Luo, Y.; Zhang, F.; Tao, S.; Wu, Q.; Ke, Z.; Liu, X. Efficacy and Safety of Intravitreal Conbercept Injections in Macular Edema Secondary to Retinal Vein Occlusion. Retina 2017, 37, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Jiao, W.; Li, F.; Ma, A.; Zhao, B. Evaluation of Microvascular Structure Changes after Conbercept Treatment on Macular Edema Secondary to Retinal Vein Occlusion. Biomed Res. Int. 2020, 2020, 9046781. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Dai, Y.N.; Huang, X.B.; Peng, L. Comparison of efficacy of conbercept, aflibercept, and ranibizumab ophthalmic injection in the treatment of macular edema caused by retinal vein occlusion: A Meta-analysis. Int. J. Ophthalmol. 2023, 16, 1145–1154. [Google Scholar] [CrossRef]
- Li, F.; Sun, M.; Guo, J.; Ma, A.; Zhao, B. Comparison of Conbercept with Ranibizumab for the Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion. Curr. Eye Res. 2017, 42, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Zachary, I.; Jia, H. Mechanisms of Acquired Resistance to Anti-VEGF Therapy for Neovascular Eye Diseases. Investig. Ophthalmol. Vis. Sci. 2023, 64, 28. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Mir, T.A.; Scott, A.W.; Sophie, R.; Shah, S.M.; Ying, H.S.; Lu, L.; Chen, C.; Campbell, J.P.; et al. Pro-Permeability Factors After Dexamethasone Implant in Retinal Vein Occlusion; the Ozurdex for Retinal Vein Occlusion (ORVO) Study. Am. J. Ophthalmol. 2015, 160, 313–321.e319. [Google Scholar] [CrossRef]
- Blanc, J.; Deschasse, C.; Kodjikian, L.; Dot, C.; Bron, A.M.; Creuzot-Garcher, C. Safety and long-term efficacy of repeated dexamethasone intravitreal implants for the treatment of cystoid macular edema secondary to retinal vein occlusion with or without a switch to anti-VEGF agents: A 3-year experience. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 1441–1448. [Google Scholar] [CrossRef]
- Ji, K.; Zhang, Q.; Tian, M.; Xing, Y. Comparison of dexamethasone intravitreal implant with intravitreal anti-VEGF injections for the treatment of macular edema secondary to branch retinal vein occlusion: A meta-analysis. Medicine 2019, 98, e15798. [Google Scholar] [CrossRef]
- Carnevali, A.; Bacherini, D.; Metrangolo, C.; Chiosi, F.; Viggiano, P.; Astarita, C.; Gallinaro, V.; Bonfiglio, V.M.E. Long term efficacy and safety profile of dexamethasone intravitreal implant in retinal vein occlusions: A systematic review. Front. Med. 2024, 11, 1454591. [Google Scholar] [CrossRef]
- Patil, N.S.; Hatamnejad, A.; Mihalache, A.; Popovic, M.M.; Kertes, P.J.; Muni, R.H. Anti-Vascular Endothelial Growth Factor Treatment Compared with Steroid Treatment for Retinal Vein Occlusion: A Meta-Analysis. Ophthalmologica 2022, 245, 500–515. [Google Scholar] [CrossRef] [PubMed]
- Bandello, F.; Augustin, A.; Tufail, A.; Leaback, R. A 12-month, multicenter, parallel group comparison of dexamethasone intravitreal implant versus ranibizumab in branch retinal vein occlusion. Eur. J. Ophthalmol. 2018, 28, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Garay-Aramburu, G.; Hunt, A.; Arruabarrena, C.; Mehta, H.; Invernizzi, A.; Gabrielle, P.H.; Guillaumie, T.; Wolff, B.; Gillies, M.C.; Zarranz-Ventura, J. Initial response and 12-month outcomes after commencing dexamethasone or vascular endothelial growth factor inhibitors for retinal vein occlusion in the FRB registry. Sci. Rep. 2024, 14, 6122. [Google Scholar] [CrossRef] [PubMed]
- Ming, S.; Xie, K.; Yang, M.; He, H.; Li, Y.; Lei, B. Comparison of intravitreal dexamethasone implant and anti-VEGF drugs in the treatment of retinal vein occlusion-induced oedema: A meta-analysis and systematic review. BMJ Open 2020, 10, e032128. [Google Scholar] [CrossRef]
- Hu, Q.; Li, H.; Xu, W.; Du, Y.; Ma, C.; He, J. Comparison between Ozurdex and intravitreal anti-vascular endothelial growth factor treatment for retinal vein occlusion-related macular edema: A systematic review and meta-analysis of randomized controlled trials. Indian. J. Ophthalmol. 2019, 67, 1800–1809. [Google Scholar] [CrossRef]
- Pranata, R.; Vania, A.; Vania, R.; Victor, A.A. Intravitreal ranibizumab versus dexamethasone implant in macular edema due to branch retinal vein occlusion: Systematic review and meta-analysis. Eur. J. Ophthalmol. 2021, 31, 1907–1914. [Google Scholar] [CrossRef]
- Yuan, Q.; Gao, Y.; Liu, Y.; Xu, H.; Wang, T.; Zhang, M. Efficacy of single-dose intravitreal dexamethasone implantation for retinal vein occlusion patients with refractory macular edema: A systematic review and meta-analysis. Front. Pharmacol. 2022, 13, 951666. [Google Scholar] [CrossRef]
- Eissa, M.; Kalogeropoulos, D.; Evans, W.; Arora, R.; Lotery, A.J. Efficacy of Ozurdex implants as second-line therapy for non-responders to anti-VEGF in retinal vein occlusion-associated macular edema: A retrospective cohort study. Ir. J. Med. Sci. 2025, 194, 745–750. [Google Scholar] [CrossRef]
- Gao, L.; Zhou, L.; Tian, C.; Li, N.; Shao, W.; Peng, X.; Shi, Q. Intravitreal dexamethasone implants versus intravitreal anti-VEGF treatment in treating patients with retinal vein occlusion: A meta-analysis. BMC Ophthalmol. 2019, 19, 8. [Google Scholar] [CrossRef] [PubMed]
- Feltgen, N.; Hattenbach, L.O.; Bertelmann, T.; Callizo, J.; Rehak, M.; Wolf, A.; Berk, H.; Eter, N.; Lang, G.E.; Pielen, A.; et al. Comparison of ranibizumab versus dexamethasone for macular oedema following retinal vein occlusion: 1-year results of the COMRADE extension study. Acta Ophthalmol. 2018, 96, e933–e941. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, S.; Eckert, A.; Vom Brocke, G.A.; Schneider, A.; Pohlmann, D.; Pilger, D.; Joussen, A.M.; Rehak, M.; Grittner, U. Real-life clinical data for dexamethasone and ranibizumab in the treatment of branch or central retinal vein occlusion over a period of six months. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 267–279. [Google Scholar] [CrossRef]
- Qian, T.; Zhao, M.; Xu, X. Comparison between anti-VEGF therapy and corticosteroid or laser therapy for macular oedema secondary to retinal vein occlusion: A meta-analysis. J. Clin. Pharm. Ther. 2017, 42, 519–529. [Google Scholar] [CrossRef]
- Nichani, P.A.H.; Popovic, M.M.; Mihalache, A.; Pathak, A.; Muni, R.H.; Wong, D.T.W.; Kertes, P.J. Efficacy and Safety of Intravitreal Faricimab in Neovascular Age-Related Macular Degeneration, Diabetic Macular Edema, and Retinal Vein Occlusion: A Meta-Analysis. Ophthalmologica 2024, 247, 355–372. [Google Scholar] [CrossRef] [PubMed]
- Tadayoni, R.; Paris, L.P.; Danzig, C.J.; Abreu, F.; Khanani, A.M.; Brittain, C.; Lai, T.Y.Y.; Haskova, Z.; Sakamoto, T.; Kotecha, A.; et al. Efficacy and Safety of Faricimab for Macular Edema due to Retinal Vein Occlusion: 24-Week Results from the BALATON and COMINO Trials. Ophthalmology 2024, 131, 950–960. [Google Scholar] [CrossRef]
- Danzig, C.J.; Dinah, C.; Ghanchi, F.; Hattenbach, L.O.; Khanani, A.M.; Lai, T.Y.Y.; Shimura, M.; Abreu, F.; Arrisi, P.; Liu, Y.; et al. Faricimab Treat-and-Extend Dosing for Macular Edema Due to Retinal Vein Occlusion: 72-Week Results from the BALATON and COMINO Trials. Ophthalmol. Retin. 2025, 9, 848–859. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. BYOOVIZ; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021.
- U.S. Food and Drug Administration. CIMERLI; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2022.
- U.S. Food and Drug Administration. AFLIBERCEPT-YSZY; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- U.S. Food and Drug Administration. AHZANTIVE; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- U.S. Food and Drug Administration. YESAFILI; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- U.S. Food and Drug Administration. PAVBLU; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Chakraborty, S.; Sheth, J.U. Efficacy and Safety of an Indian Bevacizumab BIOSimilar (BEVATAS) for Retinal Vein Occlusion (BIOS-RVO Study). Clin. Ophthalmol. 2024, 18, 2865–2871. [Google Scholar] [CrossRef]
- Wang, H.; Bahrami, B.; Huang, S.; Tahmasebi Sarvestani, M.; Cugati, S.; Lake, S.; Chan, W.O.; Supramaniam, D.; Little, M. Safety of an Intravitreal Bevacizumab Biosimilar (MVASI). Clin. Exp. Ophthalmol. 2025, 53, 523–528. [Google Scholar] [CrossRef]
- Tsai, J.H.; Derby, E.; Holland, E.J.; Khatana, A.K. Incidence and prevalence of glaucoma in severe ocular surface disease. Cornea 2006, 25, 530–532. [Google Scholar] [CrossRef]
- Cursiefen, C.; Bock, F.; Horn, F.K.; Kruse, F.E.; Seitz, B.; Borderie, V.; Fruh, B.; Thiel, M.A.; Wilhelm, F.; Geudelin, B.; et al. GS-101 antisense oligonucleotide eye drops inhibit corneal neovascularization: Interim results of a randomized phase II trial. Ophthalmology 2009, 116, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- VanNewkirk, M.R.; Nanjan, M.B.; Wang, J.J.; Mitchell, P.; Taylor, H.R.; McCarty, C.A. The prevalence of age-related maculopathy: The visual impairment project. Ophthalmology 2000, 107, 1593–1600. [Google Scholar] [CrossRef]
- Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health 2014, 2, e106–e116. [Google Scholar] [CrossRef]
- Mitchell, P.; Liew, G.; Gopinath, B.; Wong, T.Y. Age-related macular degeneration. Lancet 2018, 392, 1147–1159. [Google Scholar] [CrossRef]
- Khachigian, L.M.; Liew, G.; Teo, K.Y.C.; Wong, T.Y.; Mitchell, P. Emerging therapeutic strategies for unmet need in neovascular age-related macular degeneration. J. Transl. Med. 2023, 21, 133. [Google Scholar] [CrossRef]
- Kim, B.J.; Mastellos, D.C.; Li, Y.; Dunaief, J.L.; Lambris, J.D. Targeting complement components C3 and C5 for the retina: Key concepts and lingering questions. Prog. Retin. Eye Res. 2021, 83, 100936. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Zhang, S.; Huang, M.; Liu, Y.; Zou, X.; Chen, X.; Zhang, Z. Treatment of neovascular age-related macular degeneration with anti-vascular endothelial growth factor drugs: Progress from mechanisms to clinical applications. Front. Med. 2024, 11, 1411278. [Google Scholar] [CrossRef]
- Heier, J.S.; Khanani, A.M.; Quezada Ruiz, C.; Basu, K.; Ferrone, P.J.; Brittain, C.; Figueroa, M.S.; Lin, H.; Holz, F.G.; Patel, V.; et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): Two randomised, double-masked, phase 3, non-inferiority trials. Lancet 2022, 399, 729–740. [Google Scholar] [CrossRef]
- Bressler, N.M.; Veith, M.; Hamouz, J.; Ernest, J.; Zalewski, D.; Studnička, J.; Vajas, A.; Papp, A.; Vogt, G.; Luu, J.; et al. Biosimilar SB11 versus reference ranibizumab in neovascular age-related macular degeneration: 1-year phase III randomised clinical trial outcomes. Br. J. Ophthalmol. 2023, 107, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Harp, M. Outlook Therapeutics Resubmits BLA for ONS-5010 for Treatment of Wet AMD; Outlook Therapeutics: Iselin, NJ, USA, 2025. [Google Scholar]
- Outlook Therapeutics. Safety and Effectiveness of ONS-5010 Compared to Lucentis® in Subjects with Neovascular Age-Related Macular Degeneration; NORSE EIGHT; Outlook Therapeutics: Iselin, NJ, USA, 2023. [Google Scholar]
- Trincao-Marques, J.; Ayton, L.N.; Hickey, D.G.; Marques-Neves, C.; Guymer, R.H.; Edwards, T.L.; Sousa, D.C. Gene and cell therapy for age-related macular degeneration: A review. Surv. Ophthalmol. 2024, 69, 665–676. [Google Scholar] [CrossRef] [PubMed]
- NewG Lab Biotechnology Co., Ltd. An Open-Label, Dose-Escalation Study to Evaluate the Safety and Tolerability of Gene Therapy with EXG102-031 in Participants with Neovascular Age-Related Macular Degeneration; NewG Lab Biotechnology Co., Ltd: Qingdao, China, 2023. [Google Scholar]
- 4D Molecular Therapeutics (4DMT). A Phase 1/2 Dose-Escalation and Randomized, Controlled, Masked Expansion Trial of Intravitreal 4D-150 Gene Therapy in Adults with Neovascular (Wet) Age-Related Macular Degeneration; 4D Molecular Therapeutics (4DMT): Emeryville, CA, USA, 2022. [Google Scholar]
- Regenxbio Inc. A Phase 2, Randomized, Controlled, Dose-Escalation Study to Evaluate the Efficacy, Safety, and Tolerability of RGX-314 Gene Therapy Delivered Via a Single Suprachoroidal Space (SCS) Injections in Participants with Diabetic Retinopathy (DR) with and Without Center Involved-Diabetic Macular Edema (CI-DME)(ALTITUDE); Regenxbio Inc.: Rockville, MD, USA, 2020. [Google Scholar]
- Ferro Desideri, L.; Artemiev, D.; Bernardi, E.; Paschon, K.; Zandi, S.; Zinkernagel, M.; Anguita, R. Investigational drugs inhibiting complement for the treatment of geographic atrophy. Expert Opin. Investig. Drugs 2023, 32, 1009–1016. [Google Scholar] [CrossRef]
- Heier, J.S.; Lad, E.M.; Holz, F.G.; Rosenfeld, P.J.; Guymer, R.H.; Boyer, D.; Grossi, F.; Baumal, C.R.; Korobelnik, J.F.; Slakter, J.S.; et al. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): Two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. Lancet 2023, 402, 1434–1448. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, J.; Zhang, Q.; Tian, Z.; Sun, Y.; Zhu, T.; Bi, Y.; Zhang, L. Efficacy and safety of complement inhibitors in patients with geographic atrophy associated with age-related macular degeneration: A network meta-analysis of randomized controlled trials. Front. Pharmacol. 2024, 15, 1410172. [Google Scholar] [CrossRef]
- Apellis Pharmaceuticals, Inc. A Phase 3, Open-Label, Multicenter, Extension Study to Evaluate the Long-Term Safety and Efficacy of Pegcetacoplan in Subjects with Geographic Atrophy Secondary to Age-Related Macular Degeneration; Apellis Pharmaceuticals, Inc.: Waltham, MA, USA, 2021. [Google Scholar]
- Regeneron Pharmaceuticals. Randomized, Double-Masked, Active-Controlled, Phase 3 Study of the Efficacy and Safety of High Dose Aflibercept in Patients with Neovascular Age-Related Macular Degeneration; Regeneron Pharmaceuticals: Tarrytown, NY, USA, 2020. [Google Scholar]
- NGM Biopharmaceuticals, Inc. A Phase 2 Multicenter, Randomized, Double-Masked, Sham-Controlled Study of the Safety and Efficacy of Intravitreal Injections of NGM621 in Subjects with Geographic Atrophy (GA) Secondary to Age-Related Macular Degeneration (AMD); NGM Biopharmaceuticals, Inc.: South San Francisco, CA, USA, 2020. [Google Scholar]
- Regeneron Pharmaceuticals. A Multicenter, Randomized, Double-Masked, Placebo-Controlled Phase 3 Study of the Efficacy, Safety, and Tolerability of Subcutaneously Administered Pozelimab in Combination with Cemdisiran or Cemdisiran Alone in Participants With Geographic Atrophy Secondary to Age-Related Macular Degeneration; Regeneron Pharmaceuticals: Tarrytown, NY, USA, 2024. [Google Scholar]
- Boehringer Ingelheim. Randomized, Double-masked, Active-controlled, Multicenter Study to Evaluate Efficacy and Safety of Two Regimens of Intravitreal BI 771716 Against Pegcetacoplan in Participants with Geographic Atrophy Secondary to Age-related Macular Degeneration VERDANT Trial; Boehringer Ingelheim: Ingelheim am Rhein, Germany, 2024. [Google Scholar]
- Genentech, Inc. Phase III, Multicenter, Randomized, Visual Assessor-Masked, Active-Comparator Study of the Efficacy, Safety, and Pharmacokinetics of the Port Delivery System with Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration; Genentech, Inc.: South San Francisco, CA, USA, 2018. [Google Scholar]
- Genentech, Inc. A Multicenter, Open-Label Extension Study to Evaluate the Long-Term Safety and Tolerability of the Port Delivery System with Ranibizumab in Patients with Neovascular Age-Related Macular Degeneration (Portal); Genentech, Inc.: South San Francisco, CA, USA, 2018. [Google Scholar]
- EyePoint Pharmaceuticals, Inc. A 2-Year Phase 3, Multicenter, Prospective, Randomized, Double-Masked, Parallel-Group Study of EYP-1901, a Tyrosine Kinase Inhibitor (TKI), Compared to Aflibercept in Subjects with Wet AMD; EyePoint Pharmaceuticals, Inc.: Watertown, MA, USA, 2024. [Google Scholar]
- Ocular Therapeutix, Inc. A Phase 3, Multicenter, Double-Masked, Randomized, Parallel-Group Study to Evaluate the Efficacy and Safety of Intravitreal OTX-TKI (Axitinib Implant) in Subjects with Neovascular Age-Related Macular Degeneration (nAMD); Ocular Therapeutix, Inc.: Bedford, MA, USA, 2024. [Google Scholar]
- Regenxbio Inc. A Randomized, Partially Masked, Controlled, Phase 2b/3 Clinical Study to Evaluate the Efficacy and Safety of RGX-314 Gene Therapy in Participants with nAMD (ATMOSPHERE); Regenxbio Inc.: Rockville, MD, USA, 2021. [Google Scholar]
- Adverum Biotechnologies, Inc. A Multi-Center, Randomized, Double-Masked Phase 2 Study to Assess Safety and Efficacy of ADVM-022 (AAV.7m8-aflibercept) in Anti-VEGF Treatment-Experienced Patients with Neovascular (Wet) Age-related Macular Degeneration (nAMD) [LUNA]; Adverum Biotechnologies, Inc.: Redwood City, CA, USA, 2022. [Google Scholar]
- Iveric Bio, An Astellas Company. A Multi-Center, Randomized, Double-Masked, Active-Comparator-Controlled, Phase 3 Study to Evaluate the Efficacy and Safety of Ixoberogene Soroparvovec (Ixo-vec) in Participants with Neovascular Age-Related Macular Degeneration (ARTEMIS); Iveric Bio, An Astellas Company: Parsippany, NJ, USA, 2025. [Google Scholar]
- Yau, J.W.Y.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Global Prevalence and Major Risk Factors of Diabetic Retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Zeng, T.; Roux, M.; Lazar, D.; Chen, L.; Tudzarova, S. The Role of HIF1α-PFKFB3 Pathway in Diabetic Retinopathy. J. Clin. Endocrinol. Metab. 2021, 106, 2505–2519. [Google Scholar] [CrossRef]
- Selim, K.M.; Sahan, D.; Muhittin, T.; Osman, C.; Mustafa, O. Increased levels of vascular endothelial growth factor in the aqueous humor of patients with diabetic retinopathy. Indian. J. Ophthalmol. 2010, 58, 375–379. [Google Scholar] [CrossRef]
- Heier, J.S.; Singh, R.P.; Wykoff, C.C.; Csaky, K.G.; Lai, T.Y.Y.; Loewenstein, A.; Schlottmann, P.G.; Paris, L.P.; Westenskow, P.D.; Quezada-Ruiz, C. The Angiopoietin/Tie Pathway in Retinal Vascular Diseases: A Review. Retina 2021, 41, 1–19. [Google Scholar] [CrossRef]
- Nguyen, Q.D.; Brown, D.M.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Gibson, A.; Sy, J.; Rundle, A.C.; Hopkins, J.J.; et al. Ranibizumab for diabetic macular edema: Results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012, 119, 789–801. [Google Scholar] [CrossRef]
- Brown, D.M.; Schmidt-Erfurth, U.; Do, D.V.; Holz, F.G.; Boyer, D.S.; Midena, E.; Heier, J.S.; Terasaki, H.; Kaiser, P.K.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema: 100-Week Results From the VISTA and VIVID Studies. Ophthalmology 2015, 122, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Chou, B.; Patel, M.; Watane, A.; Shah, L.; Yannuzzi, N.; Sridhar, J. Review and analysis of history and utilization of panretinal photocoagulation and ranibizumab after publication of protocol S. Curr. Opin. Ophthalmol. 2024, 35, 369–375. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Walker, R.; Fulbright, H.; Walton, M.; Hodgson, R.; Bojke, L.; Stewart, L.; Dias, S.; Rush, T.; et al. Anti-VEGF drugs compared with laser photocoagulation for the treatment of diabetic retinopathy: A systematic review and meta-analysis. Health Technol. Assess. 2024, 29, 17–88. [Google Scholar] [CrossRef]
- Rassi, T.N.O.; Barbosa, L.M.; Amaral, D.C.; Louzada, R.N.; Filho, H.N.F.; Marques, G.N.; Vieira, B.C.; Sivaprasad, S.; Maia, M. Meta-analysis: Long/short-term efficacy of anti-VEGF vs. panretinal photocoagulation in preventing severe complications in proliferative diabetic retinopathy. Int. J. Retin. Vitr. 2025, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, T.C.; Deng, G.H.; Chang, Y.C.; Chang, F.L.; He, M.S. A real-world study for timely assessing the diabetic macular edema refractory to intravitreal anti-VEGF treatment. Front. Endocrinol. 2023, 14, 1108097. [Google Scholar] [CrossRef] [PubMed]
- Ciulla, T.A.; Bracha, P.; Pollack, J.; Williams, D.F. Real-world Outcomes of Anti–Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema in the United States. Ophthalmol. Retin. 2018, 2, 1179–1187. [Google Scholar] [CrossRef]
- Schwartz, S.G.; Scott, I.U.; Stewart, M.W.; Flynn, H.W., Jr. Update on corticosteroids for diabetic macular edema. Clin. Ophthalmol. 2016, 10, 1723–1730. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, H.; Xiong, F. Efficacy and safety of dexamethasone or triamcinolone in combination with anti-vascular endothelial growth factor therapy for diabetic macular edema: A systematic review and meta-analysis with trial sequential analysis. PLoS ONE 2025, 20, e0318373. [Google Scholar] [CrossRef] [PubMed]
- Wykoff, C.C.; Abreu, F.; Adamis, A.P.; Basu, K.; Eichenbaum, D.A.; Haskova, Z.; Lin, H.; Loewenstein, A.; Mohan, S.; Pearce, I.A.; et al. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): Two randomised, double-masked, phase 3 trials. Lancet 2022, 399, 741–755. [Google Scholar] [CrossRef]
- Brown, D.M.; Boyer, D.S.; Csaky, K.; Vitti, R.; Perlee, L.; Chu, K.W.; Asmus, F.; Leal, S.; Zeitz, O.; Cheng, Y.; et al. Intravitreal Nesvacumab (Antiangiopoietin 2) Plus Aflibercept in Diabetic Macular Edema: Phase 2 RUBY Randomized Trial. Retina 2022, 42, 1111–1120. [Google Scholar] [CrossRef]
- Bressler, S.B.; Barve, A.; Ganapathi, P.C.; Beckmann, K.; Apte, R.S.; Marcus, D.M.; Baumane, K.; Agarwal, S.; Oleksy, P.; Reichstein, D.A.; et al. Aflibercept Biosimilar MYL-1701P vs Reference Aflibercept in Diabetic Macular Edema: The INSIGHT Randomized Clinical Trial. JAMA Ophthalmol. 2024, 142, 952–960. [Google Scholar] [CrossRef]
- Virani, S.; Bhatiwal, A.; Rewri, P. Efficacy, safety, and cost-effectiveness of biosimilars of bevacizumab in naive patients with diabetic macular edema. Indian. J. Pharmacol. 2024, 56, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.J.; Kang, M.H.; Seong, M.; Cho, H.Y. Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion. Br. J. Ophthalmol. 2012, 96, 1426–1430. [Google Scholar] [CrossRef]
- Kaya, C.; Zandi, S.; Pfister, I.B.; Gerhardt, C.; Garweg, J.G. Adding a Corticosteroid or Switching to Another Anti-VEGF in Insufficiently Responsive Wet Age-Related Macular Degeneration. Clin. Ophthalmol. 2019, 13, 2403–2409. [Google Scholar] [CrossRef] [PubMed]
- Geltzer, A.; Turalba, A.; Vedula, S.S. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst. Rev. 2013, 2013, CD005022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Y.; Sang, A. Efficacy and effectiveness of anti-VEGF or steroids monotherapy versus combination treatment for macular edema secondary to retinal vein occlusion: A systematic review and meta-analysis. BMC Ophthalmol. 2022, 22, 472. [Google Scholar] [CrossRef]
- Vinkovic, M.; Bosnar, D.; Tedeschi Reiner, E.; De Salvo, G.; Matic, S. Combined Treatment with Bevacizumab and Triamcinolone Acetonide for Macular Edema Due to Retinal Vein Occlusion. Acta Clin. Croat. 2020, 59, 569–575. [Google Scholar] [CrossRef]
- Osaka, R.; Muraoka, Y.; Nakano, Y.; Takasago, Y.; Koyama, Y.; Miyoshi, Y.; Tsujikawa, A.; Suzuma, K. One-year results of anti-vascular endothelial growth factor therapy combined with triamcinolone acetonide for macular edema associated with branch retinal vein occlusion. Jpn. J. Ophthalmol. 2020, 64, 605–612. [Google Scholar] [CrossRef]
- Lucatto, L.F.A.; Magalhaes-Junior, O.; Prazeres, J.M.B.; Ferreira, A.M.; Oliveira, R.A.; Moraes, N.S.; Hirai, F.E.; Maia, M. Incidence of anterior segment neovascularization during intravitreal treatment for macular edema secondary to central retinal vein occlusion. Arq. Bras. Oftalmol. 2017, 80, 97–103. [Google Scholar] [CrossRef]
- Hellstrom, A.; Smith, L.E.; Dammann, O. Retinopathy of prematurity. Lancet 2013, 382, 1445–1457. [Google Scholar] [CrossRef]
- Kandasamy, Y.; Hartley, L.; Rudd, D.; Smith, R. The association between systemic vascular endothelial growth factor and retinopathy of prematurity in premature infants: A systematic review. Br. J. Ophthalmol. 2017, 101, 21–24. [Google Scholar] [CrossRef]
- The Committee for the Classification of Retinopathy of Prematurity. An International Classification of Retinopathy of Prematurity. Arch. Ophthalmol. 1984, 102, 1130–1134. [Google Scholar] [CrossRef]
- Fierson, W.M.; American Academy of Pediatrics Section on Ophthalmology; American Academy of Ophthalmology; American Association for Pediatric Ophthalmology and Strabismus; American Association of Certified Orthoptists. Screening Examination of Premature Infants for Retinopathy of Prematurity. Pediatrics 2018, 142, e20183061. [Google Scholar] [CrossRef] [PubMed]
- Sankar, M.J.; Sankar, J.; Chandra, P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst. Rev. 2018, 1, CD009734. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Deng, G.; Zhang, J.; Zhu, J.; Liu, Z.; Xu, F.; Zhou, D. Efficacy of four anti-vascular endothelial growth factor agents and laser treatment for retinopathy of prematurity: A network meta-analysis. Biomol. Biomed. 2023, 24, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Hashimoto, K.; Liu, W.; Cai, Y.; Liang, J.; Shi, X.; Zhao, M. Efficacy comparison of anti-vascular endothelial growth factor drugs for the treatment of type 1 retinopathy of prematurity: A network meta-analysis of randomised controlled trials. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 1409–1419. [Google Scholar] [CrossRef]
- Ortiz-Seller, A.; Martorell, P.; Barranco, H.; Pascual-Camps, I.; Morcillo, E.; Ortiz, J.L. Comparison of different agents and doses of anti-vascular endothelial growth factors (aflibercept, bevacizumab, conbercept, ranibizumab) versus laser for retinopathy of prematurity: A network meta-analysis. Surv. Ophthalmol. 2024, 69, 585–605. [Google Scholar] [CrossRef]
- Zhuang, H.; Lin, L.; Luo, D.; Zheng, N.X. A Network Meta-Analysis of Success Rates following Low Dosage Anti-VEGF for Retinopathy of Prematurity. Curr. Eye Res. 2024, 49, 1–9. [Google Scholar] [CrossRef]
- Pfeil, J.M.; Barth, T.; Lagreze, W.A.; Lorenz, B.; Hufendiek, K.; Liegl, R.; Breuss, H.; Bemme, S.; Aisenbrey, S.; Glitz, B.; et al. Treated Cases of Retinopathy of Prematurity in Germany: 10-Year Data from the Retina.net Retinopathy of Prematurity Registry. Ophthalmol. Retina 2024, 8, 579–589. [Google Scholar] [CrossRef]
- Stahl, A.; Krohne, T.U.; Eter, N.; Oberacher-Velten, I.; Guthoff, R.; Meltendorf, S.; Ehrt, O.; Aisenbrey, S.; Roider, J.; Gerding, H.; et al. Comparing Alternative Ranibizumab Dosages for Safety and Efficacy in Retinopathy of Prematurity: A Randomized Clinical Trial. JAMA Pediatr. 2018, 172, 278–286. [Google Scholar] [CrossRef]
- Akdogan, M.; Cevik, S.G.; Sahin, O. The safety and effectiveness of 0.16 mg bevacizumab plus or minus additional laser photocoagulation in the treatment of retinopathy of prematurity. Indian. J. Ophthalmol. 2019, 67, 879–883. [Google Scholar] [CrossRef]
- Chang, E.; Josan, A.S.; Purohit, R.; Patel, C.K.; Xue, K. A Network Meta-Analysis of Retreatment Rates following Bevacizumab, Ranibizumab, Aflibercept, and Laser for Retinopathy of Prematurity. Ophthalmology 2022, 129, 1389–1401. [Google Scholar] [CrossRef]
- Chen, J.; Hao, Q.; Zhang, J.; Du, Y.; Chen, H.; Cheng, X. The efficacy and ocular safety following aflibercept, conbercept, ranibizumab, bevacizumab, and laser for retinopathy of prematurity: A systematic review and meta-analysis. Ital. J. Pediatr. 2023, 49, 136. [Google Scholar] [CrossRef]
- Stahl, A.; Sukgen, E.A.; Wu, W.C.; Lepore, D.; Nakanishi, H.; Mazela, J.; Moshfeghi, D.M.; Vitti, R.; Athanikar, A.; Chu, K.; et al. Effect of Intravitreal Aflibercept vs Laser Photocoagulation on Treatment Success of Retinopathy of Prematurity: The FIREFLEYE Randomized Clinical Trial. JAMA 2022, 328, 348–359. [Google Scholar] [CrossRef]
- Stahl, A.; Azuma, N.; Wu, W.C.; Lepore, D.; Sukgen, E.; Nakanishi, H.; Mazela, J.; Leal, S.; Pieper, A.; Schlief, S.; et al. Systemic exposure to aflibercept after intravitreal injection in premature neonates with retinopathy of prematurity: Results from the FIREFLEYE randomized phase 3 study. Eye 2024, 38, 1444–1453. [Google Scholar] [CrossRef]
- Gangwe, A.B.; Agrawal, D.; Gangrade, A.K.; Parchand, S.M.; Agrawal, D.; Azad, R.V. Outcomes of early versus deferred laser after intravitreal ranibizumab in aggressive posterior retinopathy of prematurity. Indian J. Ophthalmol. 2021, 69, 2171–2176. [Google Scholar] [CrossRef]
- Kumari, A.; Surve, A.; Azad, S.V.; Chawla, R.; Chandra, P.; Thukral, A.; Vohra, R.; Kumar, A. An Observational Study of Different Treatment Practices for Aggressive Posterior Retinopathy of Prematurity. J. Pediatr. Ophthalmol. Strabismus 2021, 58, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, A.; Alnabihi, A.N.; Alsudais, A.S.; Almufarriji, N.; Batais, W.T.; Aldahlawi, A.K.; Altalhi, A.; Al-Dhibi, H.A.; Alakeely, A.G. Safety and Efficacy of Combination Therapy with Anti-Vascular Endothelial Growth Factor and Laser for Retinopathy of Prematurity: A Systematic Review and Meta-Analysis. Clin. Ophthalmol. 2025, 19, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pertl, L.; Steinwender, G.; Mayer, C.; Hausberger, S.; Poschl, E.M.; Wackernagel, W.; Wedrich, A.; El-Shabrawi, Y.; Haas, A. A Systematic Review and Meta-Analysis on the Safety of Vascular Endothelial Growth Factor (VEGF) Inhibitors for the Treatment of Retinopathy of Prematurity. PLoS ONE 2015, 10, e0129383. [Google Scholar] [CrossRef] [PubMed]
- Alzuabi, A.K.; Alshammari, O.M.; Almousa, A.N.; Abouammoh, M.A. Anti-vascular endothelial growth factor therapy in retinopathy of prematurity: An updated literature review. Saudi J. Ophthalmol. 2022, 36, 260–269. [Google Scholar] [CrossRef]
- Shahzad, H.; Mahmood, S.; McGee, S.; Hubbard, J.; Haque, S.; Paudyal, V.; Denniston, A.K.; Hill, L.J.; Jalal, Z. Non-adherence and non-persistence to intravitreal anti-vascular endothelial growth factor (anti-VEGF) therapy: A systematic review and meta-analysis. Syst. Rev. 2023, 12, 92. [Google Scholar] [CrossRef]
- Okada, M.; Mitchell, P.; Finger, R.P.; Eldem, B.; Talks, S.J.; Hirst, C.; Paladini, L.; Barratt, J.; Wong, T.Y.; Loewenstein, A. Nonadherence or Nonpersistence to Intravitreal Injection Therapy for Neovascular Age-Related Macular Degeneration: A Mixed-Methods Systematic Review. Ophthalmology 2021, 128, 234–247. [Google Scholar] [CrossRef]
- Ko, M.Y.; Talebi, R.; Yu, F.; Tseng, V.L.; Coleman, A.L.; Hosseini, H. Socioeconomic Disparities in Intravitreal Injection Use and Anti-VEGF Agent Selection: Aflibercept/Ranibizumab Versus Bevacizumab. Clin. Ther. 2025, 47, 559–565. [Google Scholar] [CrossRef]
- Rowe, L.W.; Belamkar, A.; Antman, G.; Hajrasouliha, A.R.; Harris, A. Vascular imaging findings in retinopathy of prematurity. Acta Ophthalmol. 2024, 102, e452–e472. [Google Scholar] [CrossRef] [PubMed]
- Muniyandi, A.; Hartman, G.D.; Song, Y.; Mijit, M.; Kelley, M.R.; Corson, T.W. Beyond VEGF: Targeting Inflammation and Other Pathways for Treatment of Retinal Disease. J. Pharmacol. Exp. Ther. 2023, 386, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Soundara Pandi, S.P.; Winter, H.; Smith, M.R.; Harkin, K.; Bojdo, J. Preclinical Retinal Disease Models: Applications in Drug Development and Translational Research. Pharmaceuticals 2025, 18, 293. [Google Scholar] [CrossRef] [PubMed]
| Target | Role in Retinal Disease | Drug Class | Key Examples | Clinical Status |
|---|---|---|---|---|
| VEGF/VEGFR | Central mediator of pathological angiogenesis in RVO, AMD, DME, ROP | Monoclonal antibodies, fusion proteins, aptamers, biosimilars, gene therapy | Ranibizumab, Aflibercept, Bevacizumab, Conbercept, Pegaptanib, VEGFR TKIs | First-line therapy |
| Angiopoietin/Tie2 | Synergistic with VEGF | Bispecific antibodies | Faricimab (VEGF-A/Ang-2 bispecific) | Faricimab approved; others in clinical trials |
| Inflammatory Pathways | Inflammation (via inflammatory mediators) contributes to neovascularization and disease progression | Steroids, small molecules, biologics targeting inflammatory mediators | Triamcinolone, Dexamethasone | Off-label Early clinical/preclinical development |
| Drug | Clinical Trial | Retinal Disease |
|---|---|---|
| Ranibizumab | DIAMOND (eye drops) (Phase 3) | DME |
| ARCHWAY (Port Delivery System for Continuous Delivery) (Phase 3) | Neovascular AMD | |
| PAGODA (Port Delivery System) (Phase 3) | DME | |
| PORTAL (Port Delivery) | Neovascular AMD | |
| Aflibercept | QUASAR (8 mg) (Phase 3) | CME in RVO |
| ELARA (8 mg) (Phase 3b) | Neovascular AMD and DME | |
| CANDELA (high dose) (Phase 2) | Neovascular AMD | |
| PHOTON (high dose) | DME | |
| PULSAR (high dose) (Phase 3) | Neovascular AMD | |
| ADVM-022 (AAV.7m8-aflibercept) | LUNA (Phase 2) | Neovascular AMD |
| RGX-314 | RGX-314 (Phase 1/2a) | nAMD (investigational) |
| Tarcocimab Tedromer | GLOW2 (Phase 3) | Moderately Severe to Severe NPDR |
| DAYBREAK (Phase 3) | Neovascular AMD | |
| Intravitreal OTX-TKI (axitinib implant) | SOL-I (Phase 3) | Neovascular AMD |
| Sol-R (Phase 3) | Neovascular AMD | |
| Intravitreal BI 764524 | CRIMSON | Moderately Severe to Severe NPDR |
| ONS-5010 Compared to Lucentis | NORSE EIGHT | Neovascular AMD |
| EYE103 | BRUNELLO (Phase 2/3) | DME |
| BAROLO (Phase 2/3) | DME | |
| EYP-1901, a Tyrosine Kinase Inhibitor (TKI) | LUGANO (Phase 3) | Neovascular AMD |
| OLN324 | Phase 1b | Neovascular AMD, DME |
| Ixoberogene soroparvovec (Ixo-vec) | ARTEMIS (Phase 3) | Neovascular AMD |
| AR-14034 Sustained Release Implant | NOVA-1 (Phase 1/2) | Neovascular AMD |
| Ro6867461 | RHINE (Phase 3) | DME |
| ABP 938 | Phase 3 | Neovascular AMD |
| Intravitreal KSI-301 | BEACON (Phase 3) | CME RVO |
| GLIMMER (Phase 3) | DME | |
| DAYLIGHT | Neovascular AMD | |
| GLOW (Phase 3) | Moderately Severe to Severe NPDR | |
| SOK583A1 | SANDOZ | Neovascular AMD |
| RGX314 Gene Therapy | ATMOSPHERE (Phase 2b/3) | Neovascular AMD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boey, E.; Zaidi, H.; Tang, T.; Yazdanyar, A. Role of Angiogenesis in Retinal Diseases and New Advances in Drug Development. Cells 2025, 14, 1849. https://doi.org/10.3390/cells14231849
Boey E, Zaidi H, Tang T, Yazdanyar A. Role of Angiogenesis in Retinal Diseases and New Advances in Drug Development. Cells. 2025; 14(23):1849. https://doi.org/10.3390/cells14231849
Chicago/Turabian StyleBoey, Emma, Humza Zaidi, Tina Tang, and Amirfarbod Yazdanyar. 2025. "Role of Angiogenesis in Retinal Diseases and New Advances in Drug Development" Cells 14, no. 23: 1849. https://doi.org/10.3390/cells14231849
APA StyleBoey, E., Zaidi, H., Tang, T., & Yazdanyar, A. (2025). Role of Angiogenesis in Retinal Diseases and New Advances in Drug Development. Cells, 14(23), 1849. https://doi.org/10.3390/cells14231849

