The Crosstalk Between Mycobacterium abscessus and Immune Cells: Exploring Novel Interaction Modalities
Abstract
1. Introduction
2. Mycobacterium abscessus: Subtypes and Pathogenesis

3. Host Immune Response: Pathways and Modalities
4. The Role of Surface Lipids in Mycobacterium abscessus Virulence
5. What Can We Learn from Other Nontuberculous Mycobacteria to Better Understand Mycobacterium abscessus Pathogenesis?
| Receptor Protein | Receptor Family | Type of Study | Mycobacterial Species | Immune Response Involved | Ref. |
|---|---|---|---|---|---|
| TLR9 | Toll-like receptor | In vivo | M. avium | Recruitment of macrophages and lymphocytes to the granuloma | [81] |
| CR3 (CD11b/CD18) | Complement receptor | In vitro | M. avium, M. kansasii | Phagocytosis | [79,80] |
| Mannose receptor | C-type lectin (CLEC) | In vitro | M. kansasii | Phagocytosis | [80] |
| CD14 | Glycosylphosphatidylinositol (GPI)-anchored receptor | In vitro | M. kansasii | Phagocytosis | [80] |
6. Exploring the Contribution of Immune Resident Cells

7. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef]
- Lee, M.-R.; Sheng, W.-H.; Hung, C.-C.; Yu, C.-J.; Lee, L.-N.; Hsueh, P.-R. Mycobacterium abscessus Complex Infections in Humans. Emerg. Infect. Dis. J. 2015, 21, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Uslan, D.Z.; Kowalski, T.J.; Wengenack, N.L.; Virk, A.; Wilson, J.W. Skin and Soft Tissue Infections Due to Rapidly Growing Mycobacteria: Comparison of clinical features, treatment, and susceptibility. Arch. Dermatol. 2006, 142, 1287–1292. [Google Scholar] [CrossRef]
- Tokunaga, D.S.; Siu, A.M.; Lim, S.Y. Nontuberculous mycobacterial skin and soft tissue infection in Hawaiʻi. BMC Infect. Dis. 2022, 22, 360. [Google Scholar] [CrossRef]
- Kim, M.; Sung, Y.-B.; Kim, B.-N. Skin and Soft Tissue Infection Caused by Mycobacterium abscessus Developed after Intramuscular Injection: A Case Report. Infect. Chemother. 2012, 44, 67–70. [Google Scholar] [CrossRef]
- Cristancho-Rojas, C.; Varley, C.D.; Lara, S.C.; Kherabi, Y.; Henkle, E.; Winthrop, K.L. Epidemiology of Mycobacterium abscessus. Clin. Microbiol. Infect. 2024, 30, 712–717. [Google Scholar] [CrossRef]
- Bryant, J.M.; Brown, K.P.; Burbaud, S.; Everall, I.; Belardinelli, J.M.; Rodriguez-Rincon, D.; Grogono, D.M.; Peterson, C.M.; Verma, D.; Evans, I.E.; et al. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 2021, 372, eabb8699. [Google Scholar] [CrossRef]
- Bryant, J.M.; Grogono, D.M.; Rodriguez-Rincon, D.; Everall, I.; Brown, K.P.; Moreno, P.; Verma, D.; Hill, E.; Drijkoningen, J.; Gilligan, P.; et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016, 354, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Russell, C.; Soll, B.; Chow, D.; Bamrah, S.; Brostrom, R.; Kim, W.; Scott, J.; Bankowski, M. Increasing Prevalence of Nontuberculous Mycobacteria in Respiratory Specimens from US-Affiliated Pacific Island Jurisdictions. Emerg. Infect. Dis. J. 2018, 24, 485–491. [Google Scholar] [CrossRef]
- Squire, J.D.; Libertin, C.R.; Powers, H.; Nelson, J.; Brumble, L.; Laham, F.R.; Agharahimi, A.; Freeman, A.F.; Leiding, J.W. Disseminated mycobacterial infections after tumor necrosis factor inhibitor use, revealing inborn errors of immunity. Int. J. Infect. Dis. 2023, 131, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Chi, C.-Y.; Lin, C.-H.; Ho, M.-W.; Ding, J.-Y.; Huang, W.-C.; Shih, H.-P.; Yeh, C.-F.; Fung, C.-P.; Sun, H.-Y.; Huang, C.-T.; et al. Clinical manifestations, course, and outcome of patients with neutralizing anti-interferon-γ autoantibodies and disseminated nontuberculous mycobacterial infections. Medicine 2016, 95, e3927. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.D.; Bai, X.; Kartalija, M.; Orme, I.M.; Ordway, D.J. Host Immune Response to Rapidly Growing Mycobacteria, an Emerging Cause of Chronic Lung Disease. Am. J. Respir. Cell Mol. Biol. 2010, 43, 387–393. [Google Scholar] [CrossRef]
- Griffith, D.E.; Brown-Elliott, B.A.; Benwill, J.L.; Wallace, R.J. Mycobacterium abscessus. “Pleased to Meet You, Hope You Guess My Name…”. Ann. Am. Thorac. Soc. 2015, 12, 436–439. [Google Scholar] [CrossRef]
- Kang, H.-R.; Hwang, E.J.; Kim, S.A.; Choi, S.M.; Lee, J.; Lee, C.-H.; Yim, J.-J.; Kwak, N. Clinical Implications of Size of Cavities in Patients with Nontuberculous Mycobacterial Pulmonary Disease: A Single-Center Cohort Study. Open Forum Infect. Dis. 2021, 8, ofab087. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Upadhyay, V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian J. Med. Res. 2020, 152, 185–226. [Google Scholar] [CrossRef]
- Schuurbiers, M.M.F.; Bruno, M.; Zweijpfenning, S.M.H.; Magis-Escurra, C.; Boeree, M.; Netea, M.G.; van Ingen, J.; van de Veerdonk, F.; Hoefsloot, W. Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res. 2020, 6, 00590–02020. [Google Scholar] [CrossRef]
- Sepulcri, C.; Vena, A.; Bassetti, M. Skin and soft tissue infections due to rapidly growing mycobacteria. Curr. Opin. Infect. Dis. 2023, 36, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, M.; Walsh, M.; Rosa, R.; Aragon, L.; Liu, S.Y.; Cleary, T.; Worley, M.; Frederick, C.; Abbo, L.M. Mycobacterium abscessus Complex Infections: A Retrospective Cohort Study. Open Forum Infect. Dis. 2018, 5, ofy022. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Böttger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Eur. Respir. J. 2020, 56, 2000535. [Google Scholar] [CrossRef]
- Griffith, D.E.; Daley, C.L. Treatment of Mycobacterium abscessus Pulmonary Disease. Chest 2022, 161, 64–75. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Heo, B.E.; Jeon, S.; Ash, A.; Lee, H.; Moon, C.; Jang, J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front. Microbiol. 2024, 15, 1331508. [Google Scholar] [CrossRef]
- Kwak, N.; Dalcolmo, M.P.; Daley, C.L.; Eather, G.; Gayoso, R.; Hasegawa, N.; Jhun, B.W.; Koh, W.-J.; Namkoong, H.; Park, J.; et al. Mycobacterium abscessus pulmonary disease: Individual patient data meta-analysis. Eur. Respir. J. 2019, 54, 1801991. [Google Scholar] [CrossRef] [PubMed]
- Ratnatunga, C.N.; Lutzky, V.P.; Kupz, A.; Doolan, D.L.; Reid, D.W.; Field, M.; Bell, S.C.; Thomson, R.M.; Miles, J.J. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front. Immunol. 2020, 11, 303. [Google Scholar] [CrossRef]
- Sanguinetti, M.; Ardito, F.; Fiscarelli, E.; La Sorda, M.; D’Argenio, P.; Ricciotti, G.; Fadda, G. Fatal Pulmonary Infection Due to Multidrug-Resistant Mycobacterium abscessus in a Patient with Cystic Fibrosis. J. Clin. Microbiol. 2001, 39, 816–819. [Google Scholar] [CrossRef] [PubMed]
- Zelazny, A.M.; Root, J.M.; Shea, Y.R.; Colombo, R.E.; Shamputa, I.C.; Stock, F.; Conlan, S.; McNulty, S.; Brown-Elliott, B.A.; Wallace, R.J.; et al. Cohort Study of Molecular Identification and Typing of Mycobacterium abscessus, Mycobacterium massiliense, and Mycobacterium bolletii. J. Clin. Microbiol. 2009, 47, 1985–1995. [Google Scholar] [CrossRef]
- Jönsson, B.E.; Gilljam, M.; Lindblad, A.; Ridell, M.; Wold, A.E.; Welinder-Olsson, C. Molecular Epidemiology of Mycobacterium abscessus, with Focus on Cystic Fibrosis. J. Clin. Microbiol. 2007, 45, 1497–1504. [Google Scholar] [CrossRef]
- Deshayes, C.; Kocíncová, D.; Etienne, G.; Reyrat, J.-M. Glycopeptidolipids: A Complex Pathway for Small Pleiotropic Molecules. In The Mycobacterial Cell Envelope; ASM Press: Washington, DC, USA, 2008; pp. 345–366. [Google Scholar] [CrossRef]
- Recht, J.; Martínez, A.; Torello, S.; Kolter, R. Genetic Analysis of Sliding Motility in Mycobacterium smegmatis. J. Bacteriol. 2000, 182, 4348–4351. [Google Scholar] [CrossRef]
- Halloum, I.; Carrère-Kremer, S.; Blaise, M.; Viljoen, A.; Bernut, A.; Le Moigne, V.; Vilchèze, C.; Guérardel, Y.; Lutfalla, G.; Herrmann, J.-L.; et al. Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc. Natl. Acad. Sci. USA 2016, 113, E4228–E4237. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, E.A.; Lenhart-Pendergrass, P.M.; Rysavy, N.M.; Poch, K.R.; Caceres, S.M.; Calhoun, K.M.; Serban, K.A.; Nick, J.A.; Malcolm, K.C. Divergent host humoral innate immune response to the smooth-to-rough adaptation of Mycobacterium abscessus in chronic infection. Front. Cell. Infect. Microbiol. 2025, 15, 1445660. [Google Scholar] [CrossRef]
- Hedin, W.; Fröberg, G.; Fredman, K.; Chryssanthou, E.; Selmeryd, I.; Gillman, A.; Orsini, L.; Runold, M.; Jönsson, B.; Schön, T.; et al. A Rough Colony Morphology of Mycobacterium abscessus Is Associated with Cavitary Pulmonary Disease and Poor Clinical Outcome. J. Infect. Dis. 2023, 227, 820–827. [Google Scholar] [CrossRef]
- Howard, S.T.; Rhoades, E.; Recht, J.; Pang, X.; Alsup, A.; Kolter, R.; Lyons, C.R.; Byrd, T.F. Spontaneous reversion of Mycobacterium abscessus from a smooth to a rough morphotype is associated with reduced expression of glycopeptidolipid and reacquisition of an invasive phenotype. Microbiology 2006, 152, 1581–1590. [Google Scholar] [CrossRef]
- Sui, X.; Oehlers, S.H. Animal models of Mycobacterium abscessus pulmonary infection phenotypes: What are we modeling? PLoS Pathog. 2025, 21, e1013414. [Google Scholar] [CrossRef] [PubMed]
- Catherinot, E.; Clarissou, J.; Etienne, G.; Ripoll, F.; Emile, J.-F.; Daffé, M.; Perronne, C.; Soudais, C.; Gaillard, J.-L.; Rottman, M. Hypervirulence of a Rough Variant of the Mycobacterium abscessus Type Strain. Infect. Immun. 2007, 75, 1055–1058. [Google Scholar] [CrossRef]
- Jurcisek, J.A.; Kurbatfinski, N.; Wilbanks, K.Q.; Rhodes, J.D.; Goodman, S.D.; Bakaletz, L.O. Mycobacterium abscessus biofilm cleared from murine lung by monoclonal antibody against bacterial DNABII proteins. J. Cyst. Fibros. 2025, 24, 374–381. [Google Scholar] [CrossRef] [PubMed]
- De Groote, M.A.; Johnson, L.; Podell, B.; Brooks, E.; Basaraba, R.; Gonzalez-Juarrero, M. GM-CSF knockout mice for preclinical testing of agents with antimicrobial activity against Mycobacterium abscessus. J. Antimicrob. Chemother. 2014, 69, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Caverly, L.J.; Caceres, S.M.; Fratelli, C.; Happoldt, C.; Kidwell, K.M.; Malcolm, K.C.; Nick, J.A.; Nichols, D.P. Mycobacterium abscessus Morphotype Comparison in a Murine Model. PLoS ONE 2015, 10, e0117657. [Google Scholar] [CrossRef]
- Gutiérrez, A.V.; Viljoen, A.; Ghigo, E.; Herrmann, J.-L.; Kremer, L. Glycopeptidolipids, a Double-Edged Sword of the Mycobacterium abscessus Complex. Front. Microbiol. 2018, 9, 1145. [Google Scholar] [CrossRef]
- Rottman, M.; Catherinot, E.; Hochedez, P.; Emile, J.-F.; Casanova, J.-L.; Gaillard, J.-L.; Soudais, C. Importance of T Cells, Gamma Interferon, and Tumor Necrosis Factor in Immune Control of the Rapid Grower Mycobacterium abscessus in C57BL/6 Mice. Infect. Immun. 2007, 75, 5898–5907. [Google Scholar] [CrossRef]
- Tsai, S.-H.; Lai, H.-C.; Hu, S.-T. Subinhibitory Doses of Aminoglycoside Antibiotics Induce Changes in the Phenotype of Mycobacterium abscessus. Antimicrob. Agents Chemother. 2015, 59, 6161–6169. [Google Scholar] [CrossRef]
- Simcox, B.S.; Tomlinson, B.R.; Shaw, L.N.; Rohde, K.H. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front. Cell. Infect. Microbiol. 2023, 13, 1144210. [Google Scholar] [CrossRef]
- Rüger, K.; Hampel, A.; Billig, S.; Rücker, N.; Suerbaum, S.; Bange, F.-C. Characterization of Rough and Smooth Morphotypes of Mycobacterium abscessus Isolates from Clinical Specimens. J. Clin. Microbiol. 2014, 52, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Ferrell, K.C.; Stewart, E.L.; Counoupas, C.; Triccas, J.A. Colony morphotype governs innate and adaptive pulmonary immune responses to Mycobacterium abscessus infection in C3HeB/FeJ mice. Eur. J. Immunol. 2024, 54, e2350610. [Google Scholar] [CrossRef]
- Ferrell, K.C.; Johansen, M.D.; Triccas, J.A.; Counoupas, C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front. Microbiol. 2022, 13, 842017. [Google Scholar] [CrossRef]
- Secott, T.E.; Lin, T.L.; Wu, C.C. Fibronectin Attachment Protein Is Necessary for Efficient Attachment and Invasion of Epithelial Cells by Mycobacterium avium subsp. paratuberculosis. Infect. Immun. 2002, 70, 2670–2675. [Google Scholar] [CrossRef]
- Kuo, C.-J.; Ptak, C.P.; Hsieh, C.-L.; Akey, B.L.; Chang, Y.-F. Elastin, a Novel Extracellular Matrix Protein Adhering to Mycobacterial Antigen 85 Complex. J. Biol. Chem. 2013, 288, 3886–3896. [Google Scholar] [CrossRef] [PubMed]
- Pethe, K.; Alonso, S.; Biet, F.; Delogu, G.; Brennan, M.J.; Locht, C.; Menozzi, F.D. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 2001, 412, 190–194. [Google Scholar] [CrossRef]
- Volkman, H.E.; Pozos, T.C.; Zheng, J.; Davis, J.M.; Rawls, J.F.; Ramakrishnan, L. Tuberculous Granuloma Induction via Interaction of a Bacterial Secreted Protein with Host Epithelium. Science 2010, 327, 466–469. [Google Scholar] [CrossRef]
- Davidson, L.B.; Nessar, R.; Kempaiah, P.; Perkins, D.J.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipid Prevents Respiratory Epithelial TLR2 Signaling as Measured by HβD2 Gene Expression and IL-8 Release. PLoS ONE 2011, 6, e29148. [Google Scholar] [CrossRef] [PubMed]
- Bernut, A.; Nguyen-Chi, M.; Halloum, I.; Herrmann, J.-L.; Lutfalla, G.; Kremer, L. Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking. PLoS Pathog. 2016, 12, e1005986. [Google Scholar] [CrossRef]
- Lee, S.J.; Jang, J.-H.; Yoon, G.Y.; Kang, D.R.; Park, H.J.; Shin, S.J.; Han, H.D.; Kang, T.H.; Park, W.S.; Yoon, Y.K.; et al. Mycobacterium abscessusD-alanyl-D-alanine dipeptidase induces the maturation of dendritic cells and promotes Th1-biased immunity. BMB Rep. 2016, 49, 554–559. [Google Scholar] [CrossRef]
- Lee, S.J.; Shin, S.J.; Lee, S.J.; Lee, M.H.; Kang, T.H.; Noh, K.T.; Shin, Y.K.; Kim, H.W.; Yun, C.-H.; Jung, I.D.; et al. Mycobacterium abscessus MAB2560 induces maturation of dendritic cells via Toll-like receptor 4 and drives Th1 immune response. BMB Rep. 2014, 47, 512–517. [Google Scholar] [CrossRef]
- Co, D.O.; Hogan, L.H.; Kim, S.-I.; Sandor, M. Mycobacterial granulomas: Keys to a long-lasting host–pathogen relationship. Clin. Immunol. 2004, 113, 130–136. [Google Scholar] [CrossRef]
- Siad, S.; Byrne, S.; Mukamolova, G.; Stover, C. Intracellular localisation of Mycobacterium marinum in mast cells. World J. Immunol. 2016, 6, 83–95. [Google Scholar] [CrossRef]
- Abate, G.; Hamzabegovic, F.; Eickhoff, C.S.; Hoft, D.F. BCG Vaccination Induces M. avium and M. abscessus Cross-Protective Immunity. Front. Immunol. 2019, 10, 234. [Google Scholar] [CrossRef]
- Gold, M.C.; Cerri, S.; Smyk-Pearson, S.; Cansler, M.E.; Vogt, T.M.; Delepine, J.; Winata, E.; Swarbrick, G.M.; Chua, W.-J.; Yu, Y.Y.L.; et al. Human Mucosal Associated Invariant T Cells Detect Bacterially Infected Cells. PLoS Biol. 2010, 8, e1000407. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, G.; Ortegón, M.; Camargo, D.; Orozco, L.C. Iatrogenic Mycobacterium abscessus infection: Histopathology of 71 patients. Br. J. Dermatol. 1997, 137, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Bartralot, R.; Pujol, R.M.; García-Patos, V.; Sitjas, D.; Martín-Casabona, N.; Coll, P.; Alomar, A.; Castells, A. Cutaneous infections due to nontuberculous mycobacteria: Histopathological review of 28 cases. Comparative study between lesions observed in immunosuppressed patients and normal hosts. J. Cutan. Pathol. 2000, 27, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Zhang, Q.; Peng, L.; Ma, W.; Guo, J. Cutaneous Mycobacterium Abscessus Infection Following Plastic Surgery: Three Case Reports. Clin. Cosmet. Investig. Dermatol. 2024, 17, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Lee, K.S.; Koh, W.-J.; Yi, C.A.; Kim, T.S.; Kwon, O.J. Radiographic and CT Findings of Nontuberculous Mycobacterial Pulmonary Infection Caused by Mycobacterium abscessus. Am. J. Roentgenol. 2003, 181, 513–517. [Google Scholar] [CrossRef]
- Shin, D.-M.; Yang, C.-S.; Yuk, J.-M.; Lee, J.-Y.; Kim, K.H.; Shin, S.J.; Takahara, K.; Lee, S.J.; Jo, E.-K. Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1. Cell. Microbiol. 2008, 10, 1608–1621. [Google Scholar] [CrossRef]
- Ruangkiattikul, N.; Rys, D.; Abdissa, K.; Rohde, M.; Semmler, T.; Tegtmeyer, P.-K.; Kalinke, U.; Schwarz, C.; Lewin, A.; Goethe, R. Type I interferon induced by TLR2-TLR4-MyD88-TRIF-IRF3 controls Mycobacterium abscessus subsp. abscessus persistence in murine macrophages via nitric oxide. Int. J. Med. Microbiol. 2019, 309, 307–318. [Google Scholar] [CrossRef]
- Roux, A.-L.; Ray, A.; Pawlik, A.; Medjahed, H.; Etienne, G.; Rottman, M.; Catherinot, E.; Coppée, J.-Y.; Chaoui, K.; Monsarrat, B.; et al. Overexpression of proinflammatory TLR-2-signalling lipoproteins in hypervirulent mycobacterial variants: TLR-2 ligand induction at the mycobacterial surface. Cell. Microbiol. 2011, 13, 692–704. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kang, M.-J.; Kim, W.S.; Han, S.J.; Kim, H.M.; Kim, H.W.; Kwon, K.W.; Kim, S.J.; Cha, S.B.; Eum, S.-Y.; et al. Essential Engagement of Toll-Like Receptor 2 in Initiation of Early Protective Th1 Response against Rough Variants of Mycobacterium abscessus. Infect. Immun. 2015, 83, 1556–1567. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, E.R.; Archambault, A.S.; Greendyke, R.; Hsu, F.-F.; Streeter, C.; Byrd, T.F. Mycobacterium abscessus Glycopeptidolipids Mask Underlying Cell Wall Phosphatidyl-myo Inositol Mannosides Blocking Induction of Human Macrophage TNF-α by Preventing Interaction with TLR2. J. Immunol. 2009, 183, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
- Ochoa, A.E.; Congel, J.H.; Corley, J.M.; Janssen, W.J.; Nick, J.A.; Malcolm, K.C.; Hisert, K.B. Dectin-1-Independent Macrophage Phagocytosis of Mycobacterium abscessus. Int. J. Mol. Sci. 2023, 24, 11062. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-Y.; Lee, M.-S.; Kim, D.-J.; Yang, S.-J.; Lee, S.-J.; Noh, E.-J.; Shin, S.J.; Park, J.-H. Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production. Front. Immunol. 2017, 8, 1477. [Google Scholar] [CrossRef]
- Zakhareva, E.V.; Martini, B.A.; Salina, E.G. Mechanisms of Virulence of Mycobacterium abscessus and Interaction with the Host Immune System. Biochemistry 2025, 90, S214–S232. [Google Scholar] [CrossRef]
- Mufti, A.H.; Toye, B.W.; Mckendry, R.R.J.; Angel, J.B. Mycobacterium abscessus infection after use of tumor necrosis factor α inhibitor therapy: Case report and review of infectious complications associated with tumor necrosis factor α inhibitor use. Diagn. Microbiol. Infect. Dis. 2005, 53, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Malcolm, K.C.; Caceres, S.M.; Pohl, K.; Poch, K.R.; Bernut, A.; Kremer, L.; Bratton, D.L.; Herrmann, J.-L.; Nick, J.A. Neutrophil killing of Mycobacterium abscessus by intra- and extracellular mechanisms. PLoS ONE 2018, 13, e0196120. [Google Scholar] [CrossRef]
- Guthrie, C.M.; Meeker, A.C.; Self, A.E.; Ramos-Leyva, A.; Clark, O.L.; Kotey, S.K.; Hartson, S.D.; Liang, Y.; Liu, L.; Tan, X.; et al. Microvesicles Derived from Human Bronchial Epithelial Cells Regulate Macrophage Activation During Mycobacterium abscessus Infection. J. Proteome Res. 2025, 24, 2291–2301. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.-L.; Viljoen, A.; Bah, A.; Simeone, R.; Bernut, A.; Laencina, L.; Deramaudt, T.; Rottman, M.; Gaillard, J.-L.; Majlessi, L.; et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016, 6, 160185. [Google Scholar] [CrossRef]
- Kim, B.-R.; Kim, B.-J.; Kook, Y.-H.; Kim, B.-J. Mycobacterium abscessus infection leads to enhanced production of type 1 interferon and NLRP3 inflammasome activation in murine macrophages via mitochondrial oxidative stress. PLoS Pathog. 2020, 16, e1008294. [Google Scholar] [CrossRef]
- Gutiérrez, A.V.; Baron, S.A.; Sardi, F.S.; Saad, J.; Coltey, B.; Reynaud-Gaubert, M.; Drancourt, M. Beyond phenotype: The genomic heterogeneity of co-infecting Mycobacterium abscessus smooth and rough colony variants in cystic fibrosis patients. J. Cyst. Fibros. 2021, 20, 421–423. [Google Scholar] [CrossRef]
- Gilliland, H.N.; Beckman, O.K.; Olive, A.J. A Genome-Wide Screen in Macrophages Defines Host Genes Regulating the Uptake of Mycobacterium abscessus. mSphere 2023, 8, e00663-22. [Google Scholar] [CrossRef]
- Karam, J.; Blanchet, F.P.; Vivès, É.; Boisguérin, P.; Boudehen, Y.-M.; Kremer, L.; Daher, W. Mycobacterium abscessus alkyl hydroperoxide reductase C promotes cell invasion by binding to tetraspanin CD81. iScience 2023, 26, 106042. [Google Scholar] [CrossRef]
- Hirsch, C.S.; Ellner, J.J.; Russell, D.G.; Rich, E.A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J. Immunol. 1994, 152, 743–753. [Google Scholar] [CrossRef]
- Zaffran, Y.; Zhang, L.; Ellner, J.J. Role of CR4 in Mycobacterium tuberculosis-Human Macrophages Binding and Signal Transduction in the Absence of Serum. Infect. Immun. 1998, 66, 4541–4544. [Google Scholar] [CrossRef] [PubMed]
- Peyron, P.; Bordier, C.; N′Diaye, E.-N.; Maridonneau-Parini, I. Nonopsonic Phagocytosis of Mycobacterium kansasii by Human Neutrophils Depends on Cholesterol and Is Mediated by CR3 Associated with Glycosylphosphatidylinositol-Anchored Proteins. J. Immunol. 2000, 165, 5186–5191. [Google Scholar] [CrossRef] [PubMed]
- Souza, C.D.; Evanson, O.A.; Sreevatsan, S.; Weiss, D.J. Cell membrane receptors on bovine mononuclear phagocytes involved in phagocytosis of Mycobacterium avium subsp. paratuberculosis. Am. J. Vet. Res. 2007, 68, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, N.B.; Oliveira, F.S.; Durães, F.V.; de Almeida, L.A.; Flórido, M.; Prata, L.O.; Caliari, M.V.; Appelberg, R.; Oliveira, S.C. Toll-Like Receptor 9 Is Required for Full Host Resistance to Mycobacterium avium Infection but Plays No Role in Induction of Th1 Responses. Infect. Immun. 2011, 79, 1638–1646. [Google Scholar] [CrossRef]
- Lamphier, M.S.; Sirois, C.M.; Verma, A.; Golenbock, D.T.; Latz, E. TLR9 and the Recognition of Self and Non-Self Nucleic Acids. Ann. N. Y. Acad. Sci. 2006, 1082, 31–43. [Google Scholar] [CrossRef]
- Constant, D.A.; Nice, T.J.; Rauch, I. Innate immune sensing by epithelial barriers. Curr. Opin. Immunol. 2021, 73, 1–8. [Google Scholar] [CrossRef]
- Leestemaker-Palmer, A.L.; Bermudez, L.E. Mycobacterium abscessus infection results in decrease of oxidative metabolism of lung airways cells and relaxation of the epithelial mucosal tight junctions. Tuberculosis 2023, 138, 102303. [Google Scholar] [CrossRef] [PubMed]
- Sangari, F.J.; Petrofsky, M.; Bermudez, L.E. Mycobacterium avium Infection of Epithelial Cells Results in Inhibition or Delay in the Release of Interleukin-8 and RANTES. Infect. Immun. 1999, 67, 5069–5075. [Google Scholar] [CrossRef]
- Hu, R.; Wan, L.; Liu, X.; Lu, J.; Hu, X.; Zhang, X.; Zhang, M. K. pneumoniae and M. smegmatis infect epithelial cells via different strategies. J. Thorac. Dis. 2023, 15, 4396–4412. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Sohn, H.; Choi, G.-E.; Cho, S.-N.; Oh, T.; Kim, H.-J.; Whang, J.; Kim, J.-S.; Byun, E.-H.; Kim, W.S.; et al. Conversion of Mycobacterium smegmatis to a pathogenic phenotype via passage of epithelial cells during macrophage infection. Med. Microbiol. Immunol. 2011, 200, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, C.; Troeltzsch, D.; Giménez-Rivera, V.A.; Galli, S.J.; Metz, M.; Maurer, M.; Siebenhaar, F. Mast cells are critical for controlling the bacterial burden and the healing of infected wounds. Proc. Natl. Acad. Sci. USA 2019, 116, 20500–20504. [Google Scholar] [CrossRef]
- Wierzbicki, M.; Brzezińska-Błaszczyk, E. Diverse effects of bacterial cell wall components on mast cell degranulation, cysteinyl leukotriene generation and migration. Microbiol. Immunol. 2009, 53, 694–703. [Google Scholar] [CrossRef]
- Muñoz, S.; Hernández-Pando, R.; Abraham, S.N.; Enciso, J.A. Mast Cell Activation by Mycobacterium tuberculosis: Mediator Release and Role of CD48. J. Immunol. 2003, 170, 5590–5596. [Google Scholar] [CrossRef]
- Muñoz, S.; Rivas-Santiago, B.; Enciso, J.A. Mycobacterium tuberculosis Entry into Mast Cells Through Cholesterol-rich Membrane Microdomains. Scand. J. Immunol. 2009, 70, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Carlos, D.; Frantz, F.G.; Souza-Júnior, D.A.; Jamur, M.C.; Oliver, C.; Ramos, S.G.; Quesniaux, V.F.; Ryffel, B.; Silva, C.L.; Bozza, M.T.; et al. TLR2-dependent mast cell activation contributes to the control of Mycobacterium tuberculosis infection. Microbes Infect. 2009, 11, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, K.M.; Goenka, A.; Thomson, D.D.; Bahri, R.; Tontini, C.; Salcman, B.; Hernandez-Pando, R.; Bulfone-Paus, S. Bacillus Calmette–Guérin-Induced Human Mast Cell Activation Relies on IL-33 Priming. Int. J. Mol. Sci. 2022, 23, 7549. [Google Scholar] [CrossRef]
- Naqvi, N.; Srivastava, R.; Naskar, P.; Puri, N. Mast cells modulate early responses to Mycobacterium bovis Bacillus Calmette-Guerin by phagocytosis and formation of extracellular traps. Cell. Immunol. 2021, 365, 104380. [Google Scholar] [CrossRef]
- Campillo-Navarro, M.; Leyva-Paredes, K.; Donis-Maturano, L.; Rodríguez-López, G.M.; Soria-Castro, R.; García-Pérez, B.E.; Puebla-Osorio, N.; Ullrich, S.E.; Luna-Herrera, J.; Flores-Romo, L.; et al. Mycobacterium tuberculosis Catalase Inhibits the Formation of Mast Cell Extracellular Traps. Front. Immunol. 2018, 9, 1161. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, K.M.; Bini, E.I.; Gamboa-Domínguez, A.; Espitia-Pinzón, C.I.; Huerta-Yepez, S.; Bulfone-Paus, S.; Hernández-Pando, R. Differential mast cell numbers and characteristics in human tuberculosis pulmonary lesions. Sci. Rep. 2021, 11, 10687. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rodriguez, K.M.; Goenka, A.; Alonso-Rasgado, M.T.; Hernández-Pando, R.; Bulfone-Paus, S. The Role of Mast Cells in Tuberculosis: Orchestrating Innate Immune Crosstalk? Front. Immunol. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Godfrey, D.I.; Koay, H.-F.; McCluskey, J.; Gherardin, N.A. The biology and functional importance of MAIT cells. Nat. Immunol. 2019, 20, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Chengalroyen, M.D.; Oketade, N.; Worley, A.; Lucas, M.; Ramirez, L.M.N.; Raphela, M.L.; Swarbrick, G.M.; Soma, P.S.; Zuma, M.; Warner, D.F.; et al. Disruption of riboflavin biosynthesis in mycobacteria establishes riboflavin pathway intermediates as key precursors of MAIT cell agonists. PLoS Pathog. 2025, 21, e1012632. [Google Scholar] [CrossRef]
- Chua, W.-J.; Truscott, S.M.; Eickhoff, C.S.; Blazevic, A.; Hoft, D.F.; Hansen, T.H. Polyclonal Mucosa-Associated Invariant T Cells Have Unique Innate Functions in Bacterial Infection. Infect. Immun. 2012, 80, 3256–3267. [Google Scholar] [CrossRef]
- Sharma, M.; Zhang, S.; Niu, L.; Lewinsohn, D.M.; Zhang, X.; Huang, S. Mucosal-Associated Invariant T Cells Develop an Innate-Like Transcriptomic Program in Anti-mycobacterial Responses. Front. Immunol. 2020, 11, 1136. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Q.; Li, Y.; Lu, L.; Xiang, Z.; Yin, Z.; Kabelitz, D.; Wu, Y. γδ T cells: Origin and fate, subsets, diseases and immunotherapy. Signal Transduct. Target. Ther. 2023, 8, 434. [Google Scholar] [CrossRef]
- Morita, C.T.; Mariuzza, R.A.; Brenner, M.B. Antigen recognition by human γδ T cells: Pattern recognition by the adaptive immune system. Springer Semin. Immunopathol. 2000, 22, 191–217. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.E.; Torres, M.; Fournié, J.-J.; Harding, C.V.; Boom, W.H. Phosphoantigen Presentation by Macrophages to Mycobacterium tuberculosis Reactive Vγ9Vδ2+ T Cells: Modulation by Chloroquine. Infect. Immun. 2002, 70, 4019–4027. [Google Scholar] [CrossRef]
- Balbi, B.; Valle, M.T.; Oddera, S.; Giunti, O.; Manca, F.; Rossi, G.A.; Allegra, L. T-Lymphocytes with γδ + Vδ2+ Antigen Receptors Are Present in Increased Proportions in a Fraction of Patients with Tuberculosis or with Sarcoidosis. Am. Rev. Respir. Dis. 1993, 148, 1685–1690. [Google Scholar] [CrossRef]
- Hoft, D.F.; Brown, R.M.; Roodman, S.T. Bacille Calmette-Guérin vaccination enhances human gamma delta T cell responsiveness to mycobacteria suggestive of a memory-like phenotype. J. Immunol. 1998, 161, 1045–1054. [Google Scholar] [CrossRef]
- Plattner, B.L.; Doyle, R.T.; Hostetter, J.M. Gamma–delta T cell subsets are differentially associated with granuloma development and organization in a bovine model of mycobacterial disease. Int. J. Exp. Pathol. 2009, 90, 587–597. [Google Scholar] [CrossRef]
- Uhlén, M.; Karlsson, M.J.; Hober, A.; Svensson, A.S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The human secretome. Sci. Signal. 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
- Marshall, J.S.; Jawdat, D.M. Mast cells in innate immunity. J. Allergy Clin. Immunol. 2004, 114, 21–27. [Google Scholar] [CrossRef]
- Kabelitz, D. Expression and function of Toll-like receptors in T lymphocytes. Curr. Opin. Immunol. 2007, 19, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.V.; Christensen, J.P.; Andersson, E.C.; Marker, O.; Thomsen, A.R. Expression of type 3 complement receptor on activated CD8+ T cells facilitates homing to inflammatory sites. J. Immunol. 1994, 153, 2021–2028. [Google Scholar] [CrossRef] [PubMed]
- Funda, D.P.; Tučková, L.; Farré, M.A.; Iwase, T.; Moro, I.; Tlaskalová-Hogenová, H. CD14 Is Expressed and Released as Soluble CD14 by Human Intestinal Epithelial Cells In Vitro: Lipopolysaccharide Activation of Epithelial Cells Revisited. Infect. Immun. 2001, 69, 3772–3781, Erratum in Infect. Immun. 2001, 69, 5216. [Google Scholar] [CrossRef]
- Schilling, J.D.; Martin, S.M.; Hunstad, D.A.; Patel, K.P.; Mulvey, M.A.; Justice, S.S.; Lorenz, R.G.; Hultgren, S.J. CD14- and Toll-Like Receptor-Dependent Activation of Bladder Epithelial Cells by Lipopolysaccharide and Type 1 Piliated Escherichia coli. Infect. Immun. 2003, 71, 1470–1480. [Google Scholar] [CrossRef] [PubMed]
- Vorup-Jensen, T.; Jensen, R.K. Structural Immunology of Complement Receptors 3 and 4. Front. Immunol. 2018, 9, 2716. [Google Scholar] [CrossRef] [PubMed]
- Piedra-Quintero, Z.L.; Wilson, Z.; Nava, P.; Guerau-de-Arellano, M. CD38: An Immunomodulatory Molecule in Inflammation and Autoimmunity. Front. Immunol. 2020, 11, 597959. [Google Scholar] [CrossRef]
- Viegas, M.S.; do Carmo, A.; Silva, T.; Seco, F.; Serra, V.; Lacerda, M.; Martins, T.C. CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microbes Infect. 2007, 9, 847–854. [Google Scholar] [CrossRef]
- Ochoa, S.; Ding, L.; Kreuzburg, S.; Treat, J.; Holland, S.M.; Zerbe, C.S. Daratumumab (Anti-CD38) for Treatment of Disseminated Nontuberculous Mycobacteria in a Patient with Anti–Interferon-γ Autoantibodies. Clin. Infect. Dis. 2021, 72, 2206–2208. [Google Scholar] [CrossRef] [PubMed]
- Kaneider, N.C.; Leger, A.J.; Kuliopulos, A. Therapeutic targeting of molecules involved in leukocyte–endothelial cell interactions. FEBS J. 2006, 273, 4416–4424. [Google Scholar] [CrossRef]
- Chang, C.-M.; Huang, J.; Tsai, I.-F.; Lu, Y.-T. 263 ASD141, an innate checkpoint inhibitor, modulates tumor associated myeloid cells through CD11b and enhances current immune checkpoint blockade in preclinical model. J. Immunother. Cancer 2021, 9, A1–A1054. [Google Scholar] [CrossRef]
- Lewis, T.S.; Olson, D.; Gordon, K.; Sandall, S.; Quick, M.; Finn, M.; Westendorf, L.; Linares, G.; Leiske, C.; Nesterova, A.; et al. SGN-CD48A: A Novel Humanized Anti-CD48 Antibody-Drug Conjugate for the Treatment of Multiple Myeloma. Blood 2016, 128, 4470. [Google Scholar] [CrossRef]
- Wang, H.; Koob, T.; Fromm, J.R.; Gopal, A.; Carter, D.; Lieber, A. CD46 and CD59 inhibitors enhance complement-dependent cytotoxicity of anti-CD38 monoclonal antibodies daratumumab and isatuximab in multiple myeloma and other B-cell malignancy cells. Cancer Biol. Ther. 2024, 25, 2314322. [Google Scholar] [CrossRef]
- Shin, S.H.; Jhun, B.W.; Kim, S.-Y.; Choe, J.; Jeon, K.; Huh, H.J.; Ki, C.-S.; Lee, N.Y.; Shin, S.J.; Daley, C.L.; et al. Nontuberculous Mycobacterial Lung Diseases Caused by Mixed Infection with Mycobacterium avium Complex and Mycobacterium abscessus Complex. Antimicrob. Agents Chemother. 2018, 62, e01105-18. [Google Scholar] [CrossRef] [PubMed]
- Campo-Pérez, V.; Julián, E.; Torrents, E. Interplay of Mycobacterium abscessus and Pseudomonas aeruginosa in experimental models of coinfection: Biofilm dynamics and host immune response. Virulence 2025, 16, 2493221. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Trujillo, I.; Diez-Echave, P.; Tontini, C.; Bulfone-Paus, S. The Crosstalk Between Mycobacterium abscessus and Immune Cells: Exploring Novel Interaction Modalities. Cells 2025, 14, 1829. https://doi.org/10.3390/cells14221829
Mendoza-Trujillo I, Diez-Echave P, Tontini C, Bulfone-Paus S. The Crosstalk Between Mycobacterium abscessus and Immune Cells: Exploring Novel Interaction Modalities. Cells. 2025; 14(22):1829. https://doi.org/10.3390/cells14221829
Chicago/Turabian StyleMendoza-Trujillo, Ilse, Patricia Diez-Echave, Chiara Tontini, and Silvia Bulfone-Paus. 2025. "The Crosstalk Between Mycobacterium abscessus and Immune Cells: Exploring Novel Interaction Modalities" Cells 14, no. 22: 1829. https://doi.org/10.3390/cells14221829
APA StyleMendoza-Trujillo, I., Diez-Echave, P., Tontini, C., & Bulfone-Paus, S. (2025). The Crosstalk Between Mycobacterium abscessus and Immune Cells: Exploring Novel Interaction Modalities. Cells, 14(22), 1829. https://doi.org/10.3390/cells14221829

