Recent Advances in nccRCC Classification and Therapeutic Approaches
Highlights
- A detailed discussion of the 2022 WHO classification, which integrates molecularly defined entities and reflects a paradigm shift from morphology-driven to molecularly informed diagnostics.
- An in-depth analysis of multi-omics-based subtyping that reveals distinct immune microenvironments, metabolic profiles, and genomic instability patterns across nccRCC variants.
Abstract
1. Introduction
2. Methodology
3. Pathology and Genetics in nccRCC
3.1. Papillary Renal Cell Carcinoma
3.2. Chromophobe Renal Tumors
3.3. Collecting Duct Carcinoma
3.4. Molecularly Defined Renal Carcinomas
4. Treatment of nccRCC
4.1. Cytotoxic Chemotherapy
4.2. Targeted Therapies
4.2.1. mTOR Inhibitors
4.2.2. MET Inhibitors
4.2.3. Multitarget Tyrosine Kinase Inhibitors
4.2.4. Other Targeted Molecular Therapies
4.3. Immune Checkpoint Inhibitors
4.4. Combination Strategies of TKI and ICI
5. Molecular Subtypes Based on Multi-Omics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| nccRCC | non-clear cell renal cell carcinoma |
| ccRCC | clear cell renal cell carcinoma |
| pRCC | papillary renal cell carcinoma |
| chRCC | chromophobe renal cell carcinoma |
| WHO | World Health Organization |
| ORR | objective response rate |
| mOS | median overall survival |
| CDC | collecting duct carcinoma |
| RMC | renal medullary carcinoma |
| HLRCC | Hereditary Leiomyomatosis and Renal Cell Cancer |
| mPFS | median progression-free survival |
| TKI | tyrosine kinase inhibitor |
| DCR | disease control rates |
| ICI | immune checkpoint inhibitor |
| NGS | next-generation sequencing |
| scRNA-seq | single-cell RNA sequencing |
| TME | tumor microenvironment |
| WES | whole-exome sequencing |
| PR | partial response |
| RCC | renal cell carcinoma |
| RTK | receptor tyrosine kinase |
| TAM | Tumor-associated macrophage |
| NAT | normal adjacent tissues |
| NMF | non-negative matrix factorization |
| ctDNA | circulating tumor DNA |
Appendix A
Appendix B
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Lightfoot, N.; Conlon, M.; Kreiger, N.; Bissett, R.; Desai, M.; Warde, P.; Prichard, H.M. Impact of Noninvasive Imaging on Increased Incidental Detection of Renal Cell Carcinoma. Eur. Urol. 2000, 37, 521–527. [Google Scholar] [CrossRef]
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Young, M.; Jackson-Spence, F.; Beltran, L.; Day, E.; Suarez, C.; Bex, A.; Powles, T.; Szabados, B. Renal Cell Carcinoma. Lancet 2024, 404, 476–491. [Google Scholar] [CrossRef]
- Moch, H.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Gill, A.J.; Hartmann, A.; Menon, S.; Raspollini, M.R.; Rubin, M.A.; Srigley, J.R.; et al. The 2022 World Health Organization Classification of Tumours of the Urinary System and Male Genital Organs-Part A: Renal, Penile, and Testicular Tumours. Eur. Urol. 2022, 82, 458–468. [Google Scholar] [CrossRef]
- Pal, S.K.; Tangen, C.; Thompson, I.M.; Balzer-Haas, N.; George, D.J.; Heng, D.Y.C.; Shuch, B.; Stein, M.; Tretiakova, M.; Humphrey, P.; et al. A Comparison of Sunitinib with Cabozantinib, Crizotinib, and Savolitinib for Treatment of Advanced Papillary Renal Cell Carcinoma: A Randomised, Open-Label, Phase 2 Trial. Lancet 2021, 397, 695–703. [Google Scholar] [CrossRef]
- Motzer, R.J.; Tannir, N.M.; McDermott, D.F.; Arén Frontera, O.; Melichar, B.; Choueiri, T.K.; Plimack, E.R.; Barthélémy, P.; Porta, C.; George, S.; et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2018, 378, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Tykodi, S.S.; Gordan, L.N.; Alter, R.S.; Arrowsmith, E.; Harrison, M.R.; Percent, I.; Singal, R.; Van Veldhuizen, P.; George, D.J.; Hutson, T.; et al. Safety and Efficacy of Nivolumab plus Ipilimumab in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma: Results from the Phase 3b/4 CheckMate 920 Trial. J. Immunother. Cancer 2022, 10, e003844. [Google Scholar] [CrossRef]
- Mendhiratta, N.; Muraki, P.; Sisk, A.E.; Shuch, B. Papillary Renal Cell Carcinoma: Review. Urol. Oncol. 2021, 39, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Leroy, X.; Zini, L.; Leteurtre, E.; Zerimech, F.; Porchet, N.; Aubert, J.-P.; Gosselin, B.; Copin, M.-C. Morphologic Subtyping of Papillary Renal Cell Carcinoma: Correlation with Prognosis and Differential Expression of MUC1 between the Two Subtypes. Mod. Pathol. 2002, 15, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network; Linehan, W.M.; Spellman, P.T.; Ricketts, C.J.; Creighton, C.J.; Fei, S.S.; Davis, C.; Wheeler, D.A.; Murray, B.A.; Schmidt, L.; et al. Comprehensive Molecular Characterization of Papillary Renal-Cell Carcinoma. N. Engl. J. Med. 2016, 374, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Naik, P.; Dudipala, H.; Chen, Y.-W.; Rose, B.; Bagrodia, A.; McKay, R.R. The Incidence, Pathogenesis, and Management of Non-Clear Cell Renal Cell Carcinoma. Ther. Adv. Urol. 2024, 16, 17562872241232578. [Google Scholar] [CrossRef] [PubMed]
- Dizman, N.; Philip, E.J.; Pal, S.K. Genomic Profiling in Renal Cell Carcinoma. Nat. Rev. Nephrol. 2020, 16, 435–451. [Google Scholar] [CrossRef]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal Cell Carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Henske, E.P.; Cheng, L.; Hakimi, A.A.; Choueiri, T.K.; Braun, D.A. Chromophobe Renal Cell Carcinoma. Cancer Cell 2023, 41, 1383–1388. [Google Scholar] [CrossRef]
- Davis, C.F.; Ricketts, C.J.; Wang, M.; Yang, L.; Cherniack, A.D.; Shen, H.; Buhay, C.; Kang, H.; Kim, S.C.; Fahey, C.C.; et al. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma. Cancer Cell 2014, 26, 319–330. [Google Scholar] [CrossRef]
- Harbin, A.C.; Styskel, B.A.; Patel, V.; Wang, H.; Eun, D.D. Collecting Duct Renal Cell Carcinoma Found to Involve the Collecting System During Partial Nephrectomy: A Case Report. J. Kidney Cancer 2015, 2, 134–139. [Google Scholar] [CrossRef]
- Saad, A.M.; Gad, M.M.; Al-Husseini, M.J.; Ruhban, I.A.; Sonbol, M.B.; Ho, T.H. Trends in Renal-Cell Carcinoma Incidence and Mortality in the United States in the Last 2 Decades: A SEER-Based Study. Clin. Genitourin. Cancer 2019, 17, 46–57.e5. [Google Scholar] [CrossRef]
- Ahrens, M.; Scheich, S.; Hartmann, A.; Bergmann, L.; IAG-N Interdisciplinary Working Group Kidney Cancer of the German Cancer Society. Non-Clear Cell Renal Cell Carcinoma—Pathology and Treatment Options. Oncol. Res. Treat. 2019, 42, 128–135. [Google Scholar] [CrossRef]
- Marchetti, A.; Rosellini, M.; Mollica, V.; Rizzo, A.; Tassinari, E.; Nuvola, G.; Cimadamore, A.; Santoni, M.; Fiorentino, M.; Montironi, R.; et al. The Molecular Characteristics of Non-Clear Cell Renal Cell Carcinoma: What’s the Story Morning Glory? Int. J. Mol. Sci. 2021, 22, 6237. [Google Scholar] [CrossRef]
- Cabanillas, G.; Montoya-Cerrillo, D.; Kryvenko, O.N.; Pal, S.K.; Arias-Stella, J.A. Collecting Duct Carcinoma of the Kidney: Diagnosis and Implications for Management. Urol. Oncol. 2022, 40, 525–536. [Google Scholar] [CrossRef]
- Albadine, R.; Schultz, L.; Illei, P.; Ertoy, D.; Hicks, J.; Sharma, R.; Epstein, J.I.; Netto, G.J. PAX8 (+)/P63 (−) Immunostaining Pattern in Renal Collecting Duct Carcinoma (CDC): A Useful Immunoprofile in the Differential Diagnosis of CDC versus Urothelial Carcinoma of Upper Urinary Tract. Am. J. Surg. Pathol. 2010, 34, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S. Distal Nephron Neoplasms. Semin. Diagn. Pathol. 2015, 32, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Choueiri, T.K.; Wang, K.; Khaira, D.; Karam, J.A.; Van Allen, E.; Palma, N.A.; Stein, M.N.; Johnson, A.; Squillace, R.; et al. Characterization of Clinical Cases of Collecting Duct Carcinoma of the Kidney Assessed by Comprehensive Genomic Profiling. Eur. Urol. 2016, 70, 516–521. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, J.; He, Q.; Luo, Q.; Zhang, X.; Tao, X.; Dong, H.; Tu, X. Persistent Response to a Combination Treatment Featuring a Targeted Agent and an Immune Checkpoint Inhibitor in a Patient With Collecting Duct Renal Carcinoma: A Case Report and Literature Review. Front. Oncol. 2021, 11, 764352. [Google Scholar] [CrossRef]
- Rizzo, M.; Caliò, A.; Brunelli, M.; Pezzicoli, G.; Ganini, C.; Martignoni, G.; Camillo, P. Clinico-Pathological Implications of the 2022 WHO Renal Cell Carcinoma Classification. Cancer Treat Rev. 2023, 116, 102558. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Suh, J.; Jang, D.; Jin, B.-Y.; Cho, J.; Lee, M.; Sim, H.; Kang, M.; Lee, J.; Park, J.H.; et al. Comprehensive Molecular Characterization of TFE3-Rearranged Renal Cell Carcinoma. Exp. Mol. Med. 2024, 56, 1807–1815. [Google Scholar] [CrossRef]
- Gupta, S.; Johnson, S.H.; Vasmatzis, G.; Porath, B.; Rustin, J.G.; Rao, P.; Costello, B.A.; Leibovich, B.C.; Thompson, R.H.; Cheville, J.C.; et al. TFEB-VEGFA (6p21.1) Co-Amplified Renal Cell Carcinoma: A Distinct Entity with Potential Implications for Clinical Management. Mod. Pathol. 2017, 30, 998–1012. [Google Scholar] [CrossRef]
- Launonen, V.; Vierimaa, O.; Kiuru, M.; Isola, J.; Roth, S.; Pukkala, E.; Sistonen, P.; Herva, R.; Aaltonen, L.A. Inherited Susceptibility to Uterine Leiomyomas and Renal Cell Cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 3387–3392. [Google Scholar] [CrossRef]
- Lobo, J.; Ohashi, R.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Cree, I.A.; Gill, A.J.; Hartmann, A.; Menon, S.; Netto, G.J.; et al. WHO 2022 Landscape of Papillary and Chromophobe Renal Cell Carcinoma. Histopathology 2022, 81, 426–438. [Google Scholar] [CrossRef]
- Chen, D.Y.T.; Uzzo, R.G. Optimal Management of Localized Renal Cell Carcinoma: Surgery, Ablation, or Active Surveillance. J. Natl. Compr. Canc Netw. 2009, 7, 635–642, quiz 643. [Google Scholar] [CrossRef] [PubMed]
- Kroeger, N.; Xie, W.; Lee, J.-L.; Bjarnason, G.A.; Knox, J.J.; Mackenzie, M.J.; Wood, L.; Srinivas, S.; Vaishamayan, U.N.; Rha, S.-Y.; et al. Metastatic Non-Clear Cell Renal Cell Carcinoma Treated with Targeted Therapy Agents: Characterization of Survival Outcome and Application of the International mRCC Database Consortium Criteria. Cancer 2013, 119, 2999–3006. [Google Scholar] [CrossRef]
- Luzzago, S.; Palumbo, C.; Rosiello, G.; Knipper, S.; Pecoraro, A.; Mistretta, F.A.; Tian, Z.; Musi, G.; Montanari, E.; Soulières, D.; et al. Association Between Systemic Therapy and/or Cytoreductive Nephrectomy and Survival in Contemporary Metastatic Non-Clear Cell Renal Cell Carcinoma Patients. Eur. Urol. Focus. 2021, 7, 598–607. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Rosmarin, A.; Tickoo, S.K.; Papanicolaou, N.; Nanus, D.M. Active Chemotherapy for Collecting Duct Carcinoma of the Kidney: A Case Report and Review of the Literature. Cancer 2002, 94, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Msaouel, P.; Hong, A.L.; Mullen, E.A.; Atkins, M.B.; Walker, C.L.; Lee, C.-H.; Carden, M.A.; Genovese, G.; Linehan, W.M.; Rao, P.; et al. Updated Recommendations on the Diagnosis, Management, and Clinical Trial Eligibility Criteria for Patients With Renal Medullary Carcinoma. Clin. Genitourin. Cancer 2019, 17, 1–6. [Google Scholar] [CrossRef]
- Oudard, S.; Banu, E.; Vieillefond, A.; Fournier, L.; Priou, F.; Medioni, J.; Banu, A.; Duclos, B.; Rolland, F.; Escudier, B.; et al. Prospective Multicenter Phase II Study of Gemcitabine plus Platinum Salt for Metastatic Collecting Duct Carcinoma: Results of a GETUG (Groupe d’Etudes Des Tumeurs Uro-Génitales) Study. J. Urol. 2007, 177, 1698–1702. [Google Scholar] [CrossRef]
- Sheng, X.; Cao, D.; Yuan, J.; Zhou, F.; Wei, Q.; Xie, X.; Cui, C.; Chi, Z.; Si, L.; Li, S.; et al. Sorafenib in Combination with Gemcitabine plus Cisplatin Chemotherapy in Metastatic Renal Collecting Duct Carcinoma: A Prospective, Multicentre, Single-Arm, Phase 2 Study. Eur. J. Cancer 2018, 100, 1–7. [Google Scholar] [CrossRef]
- Zoumpourlis, P.; Genovese, G.; Tannir, N.M.; Msaouel, P. Systemic Therapies for the Management of Non-Clear Cell Renal Cell Carcinoma: What Works, What Doesn’t, and What the Future Holds. Clin. Genitourin. Cancer 2021, 19, 103–116. [Google Scholar] [CrossRef]
- Walsh, A.; Kelly, D.R.; Vaid, Y.N.; Hilliard, L.M.; Friedman, G.K. Complete Response to Carboplatin, Gemcitabine, and Paclitaxel in a Patient with Advanced Metastatic Renal Medullary Carcinoma. Pediatr. Blood Cancer 2010, 55, 1217–1220. [Google Scholar] [CrossRef] [PubMed]
- Thibault, C.; Fléchon, A.; Albiges, L.; Joly, C.; Barthelemy, P.; Gross-Goupil, M.; Chevreau, C.; Coquan, E.; Rolland, F.; Laguerre, B.; et al. Gemcitabine plus Platinum-Based Chemotherapy in Combination with Bevacizumab for Kidney Metastatic Collecting Duct and Medullary Carcinomas: Results of a Prospective Phase II Trial (BEVABEL-GETUG/AFU24). Eur. J. Cancer 2023, 186, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Linehan, W.M.; Srinivasan, R.; Schmidt, L.S. The Genetic Basis of Kidney Cancer: A Metabolic Disease. Nat. Rev. Urol. 2010, 7, 277–285. [Google Scholar] [CrossRef]
- Karar, J.; Maity, A. PI3K/AKT/mTOR Pathway in Angiogenesis. Front. Mol. Neurosci. 2011, 4, 51. [Google Scholar] [CrossRef]
- Koh, Y.; Lim, H.Y.; Ahn, J.H.; Lee, J.-L.; Rha, S.Y.; Kim, Y.J.; Kim, T.M.; Lee, S.-H. Phase II Trial of Everolimus for the Treatment of Nonclear-Cell Renal Cell Carcinoma. Ann. Oncol. 2013, 24, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Tangen, C.; Ryan, C.W.; Vaishampayan, U.N.; Shuch, B.M.; Barata, P.C.; Pruthi, D.K.; Bergerot, C.D.; Tripathi, A.; Lerner, S.P.; et al. Adjuvant Everolimus in Non-Clear Cell Renal Cell Carcinoma: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2024, 7, e2425288. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, L.; Duh, F.M.; Chen, F.; Kishida, T.; Glenn, G.; Choyke, P.; Scherer, S.W.; Zhuang, Z.; Lubensky, I.; Dean, M.; et al. Germline and Somatic Mutations in the Tyrosine Kinase Domain of the MET Proto-Oncogene in Papillary Renal Carcinomas. Nat. Genet. 1997, 16, 68–73. [Google Scholar] [CrossRef]
- Linehan, W.M.; Schmidt, L.S.; Crooks, D.R.; Wei, D.; Srinivasan, R.; Lang, M.; Ricketts, C.J. The Metabolic Basis of Kidney Cancer. Cancer Discov. 2019, 9, 1006–1021. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Vaishampayan, U.; Rosenberg, J.E.; Logan, T.F.; Harzstark, A.L.; Bukowski, R.M.; Rini, B.I.; Srinivas, S.; Stein, M.N.; Adams, L.M.; et al. Phase II and Biomarker Study of the Dual MET/VEGFR2 Inhibitor Foretinib in Patients with Papillary Renal Cell Carcinoma. J. Clin. Oncol. 2013, 31, 181–186. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Hessel, C.; Halabi, S.; Sanford, B.; Michaelson, M.D.; Hahn, O.; Walsh, M.; Olencki, T.; Picus, J.; Small, E.J.; et al. Cabozantinib versus Sunitinib as Initial Therapy for Metastatic Renal Cell Carcinoma of Intermediate or Poor Risk (Alliance A031203 CABOSUN Randomised Trial): Progression-Free Survival by Independent Review and Overall Survival Update. Eur. J. Cancer 2018, 94, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Martínez Chanzá, N.; Xie, W.; Asim Bilen, M.; Dzimitrowicz, H.; Burkart, J.; Geynisman, D.M.; Balakrishnan, A.; Bowman, I.A.; Jain, R.; Stadler, W.; et al. Cabozantinib in Advanced Non-Clear-Cell Renal Cell Carcinoma: A Multicentre, Retrospective, Cohort Study. Lancet Oncol. 2019, 20, 581–590. [Google Scholar] [CrossRef]
- Khoshdel Rad, N.; Vahidyeganeh, M.; Mohammadi, M.; Shpichka, A.; Timashev, P.; Hossein-Khannazer, N.; Vosough, M. Non-Clear Cell Renal Cell Carcinoma: Molecular Pathogenesis, Innovative Modeling, and Targeted Therapeutic Approaches. Int. J. Transl. Med. 2022, 2, 555–573. [Google Scholar] [CrossRef]
- Song, S.H.; Jeong, I.G.; You, D.; Hong, J.H.; Hong, B.; Song, C.; Jung, W.Y.; Cho, Y.M.; Ahn, H.; Kim, C.-S. VEGF/VEGFR2 and PDGF-B/PDGFR-β Expression in Non-Metastatic Renal Cell Carcinoma: A Retrospective Study in 1,091 Consecutive Patients. Int. J. Clin. Exp. Pathol. 2014, 7, 7681–7689. [Google Scholar]
- Abrams, T.J.; Lee, L.B.; Murray, L.J.; Pryer, N.K.; Cherrington, J.M. SU11248 Inhibits KIT and Platelet-Derived Growth Factor Receptor Beta in Preclinical Models of Human Small Cell Lung Cancer. Mol. Cancer Ther. 2003, 2, 471–478. [Google Scholar]
- Abdel-Rahman, O.; Fouad, M. Efficacy and Toxicity of Sunitinib for Non Clear Cell Renal Cell Carcinoma (RCC): A Systematic Review of the Literature. Crit. Rev. Oncol. Hematol. 2015, 94, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Tannir, N.M.; Plimack, E.; Ng, C.; Tamboli, P.; Bekele, N.B.; Xiao, L.; Smith, L.; Lim, Z.; Pagliaro, L.; Araujo, J.; et al. A Phase 2 Trial of Sunitinib in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. Eur. Urol. 2012, 62, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Halabi, S.; Eisen, T.; Broderick, S.; Stadler, W.M.; Jones, R.J.; Garcia, J.A.; Vaishampayan, U.N.; Picus, J.; Hawkins, R.E.; et al. Everolimus versus Sunitinib for Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (ASPEN): A Multicentre, Open-Label, Randomised Phase 2 Trial. Lancet Oncol. 2016, 17, 378–388. [Google Scholar] [CrossRef]
- Tannir, N.M.; Jonasch, E.; Albiges, L.; Altinmakas, E.; Ng, C.S.; Matin, S.F.; Wang, X.; Qiao, W.; Dubauskas Lim, Z.; Tamboli, P.; et al. Everolimus Versus Sunitinib Prospective Evaluation in Metastatic Non-Clear Cell Renal Cell Carcinoma (ESPN): A Randomized Multicenter Phase 2 Trial. Eur. Urol. 2016, 69, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, A.; Rosellini, M.; Rizzo, A.; Mollica, V.; Battelli, N.; Massari, F.; Santoni, M. An Up-to-Date Evaluation of Cabozantinib for the Treatment of Renal Cell Carcinoma. Expert. Opin. Pharmacother. 2021, 22, 2323–2336. [Google Scholar] [CrossRef]
- Yakes, F.M.; Chen, J.; Tan, J.; Yamaguchi, K.; Shi, Y.; Yu, P.; Qian, F.; Chu, F.; Bentzien, F.; Cancilla, B.; et al. Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth. Mol. Cancer Ther. 2011, 10, 2298–2308. [Google Scholar] [CrossRef]
- Procopio, G.; Sepe, P.; Claps, M.; Buti, S.; Colecchia, M.; Giannatempo, P.; Guadalupi, V.; Mariani, L.; Lalli, L.; Fucà, G.; et al. Cabozantinib as First-Line Treatment in Patients With Metastatic Collecting Duct Renal Cell Carcinoma: Results of the BONSAI Trial for the Italian Network for Research in Urologic-Oncology (Meet-URO 2 Study). JAMA Oncol. 2022, 8, 910–913. [Google Scholar] [CrossRef]
- Thouvenin, J.; Alhalabi, O.; Carlo, M.; Carril-Ajuria, L.; Hirsch, L.; Martinez-Chanza, N.; Négrier, S.; Campedel, L.; Martini, D.; Borchiellini, D.; et al. Efficacy of Cabozantinib in Metastatic MiT Family Translocation Renal Cell Carcinomas. Oncologist 2022, 27, 1041–1047. [Google Scholar] [CrossRef]
- Negrier, S.; Rioux-Leclercq, N.; Ferlay, C.; Gross-Goupil, M.; Gravis, G.; Geoffrois, L.; Chevreau, C.; Boyle, H.; Rolland, F.; Blanc, E.; et al. Axitinib in First-Line for Patients with Metastatic Papillary Renal Cell Carcinoma: Results of the Multicentre, Open-Label, Single-Arm, Phase II AXIPAP Trial. Eur. J. Cancer 2020, 129, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Matrana, M.R.; Baiomy, A.; Campbell, M.; Alamri, S.; Shetty, A.; Teegavarapu, P.; Kalra, S.; Xiao, L.; Atkinson, B.; Corn, P.; et al. Outcomes of Patients With Metastatic NoneClear-Cell Renal Cell Carcinoma Treated With Pazopanib. Clin. Genitourin. Cancer 2017, 15, e205–e208. [Google Scholar] [CrossRef]
- Jung, K.S.; Lee, S.J.; Park, S.H.; Lee, J.-L.; Lee, S.-H.; Lim, J.Y.; Kang, J.H.; Lee, S.; Rha, S.Y.; Lee, K.H.; et al. Pazopanib for the Treatment of Non-Clear Cell Renal Cell Carcinoma: A Single-Arm, Open-Label, Multicenter, Phase II Study. Cancer Res. Treat. 2018, 50, 488–494. [Google Scholar] [CrossRef]
- Bersanelli, M.; Brunelli, M.; Gnetti, L.; Maestroni, U.; Buti, S. Pazopanib as a Possible Option for the Treatment of Metastatic Non-Clear Cell Renal Carcinoma Patients: A Systematic Review. Ther. Adv. Med. Oncol. 2020, 12, 1758835920915303. [Google Scholar] [CrossRef]
- Schwartz, C.; Pfanzelter, N.; Kuzel, T.M. The Efficacy of Lenvatinib and Everolimus in Chromophobe-Type Non-Clear-Cell Renal Cell Carcinoma: A Case Report and Literature Review. Clin. Genitourin. Cancer 2017, 15, e903–e906. [Google Scholar] [CrossRef]
- Hutson, T.E.; Michaelson, M.D.; Kuzel, T.M.; Agarwal, N.; Molina, A.M.; Hsieh, J.J.; Vaishampayan, U.N.; Xie, R.; Bapat, U.; Ye, W.; et al. A Single-Arm, Multicenter, Phase 2 Study of Lenvatinib Plus Everolimus in Patients with Advanced Non-Clear Cell Renal Cell Carcinoma. Eur. Urol. 2021, 80, 162–170. [Google Scholar] [CrossRef]
- Ferrara, N.; Hillan, K.J.; Gerber, H.-P.; Novotny, W. Discovery and Development of Bevacizumab, an Anti-VEGF Antibody for Treating Cancer. Nat. Rev. Drug Discov. 2004, 3, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.R.; Ged, Y.; Lee, C.-H.; Knezevic, A.; Molina, A.M.; Chen, Y.-B.; Chaim, J.; Coskey, D.T.; Murray, S.; Tickoo, S.K.; et al. Everolimus plus Bevacizumab Is an Effective First-Line Treatment for Patients with Advanced Papillary Variant Renal Cell Carcinoma: Final Results from a Phase II Trial. Cancer 2020, 126, 5247–5255. [Google Scholar] [CrossRef]
- Voss, M.H.; Molina, A.M.; Chen, Y.-B.; Woo, K.M.; Chaim, J.L.; Coskey, D.T.; Redzematovic, A.; Wang, P.; Lee, W.; Selcuklu, S.D.; et al. Phase II Trial and Correlative Genomic Analysis of Everolimus Plus Bevacizumab in Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2016, 34, 3846–3853. [Google Scholar] [CrossRef]
- Gordon, M.S.; Hussey, M.; Nagle, R.B.; Lara, P.N.; Mack, P.C.; Dutcher, J.; Samlowski, W.; Clark, J.I.; Quinn, D.I.; Pan, C.-X.; et al. Phase II Study of Erlotinib in Patients with Locally Advanced or Metastatic Papillary Histology Renal Cell Cancer: SWOG S0317. J. Clin. Oncol. 2009, 27, 5788–5793. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Gurram, S.; Al Harthy, M.; Singer, E.A.; Sidana, A.; Shuch, B.M.; Ball, M.W.; Friend, J.C.; Mac, L.; Purcell, E.; et al. Results from a Phase II Study of Bevacizumab and Erlotinib in Subjects with Advanced Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC) or Sporadic Papillary Renal Cell Cancer. J. Clin. Oncol. 2020, 38, 5004. [Google Scholar] [CrossRef]
- Zhang, T.; Gong, J.; Maia, M.C.; Pal, S.K. Systemic Therapy for Non-Clear Cell Renal Cell Carcinoma. Am. Soc. Clin. Oncol. Educ. Book. 2017, 37, 337–342. [Google Scholar] [CrossRef]
- Kammerer-Jacquet, S.-F.; Deleuze, A.; Saout, J.; Mathieu, R.; Laguerre, B.; Verhoest, G.; Dugay, F.; Belaud-Rotureau, M.-A.; Bensalah, K.; Rioux-Leclercq, N. Targeting the PD-1/PD-L1 Pathway in Renal Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 1692. [Google Scholar] [CrossRef] [PubMed]
- Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 Pathway in Tolerance and Autoimmunity. Immunol. Rev. 2010, 236, 219–242. [Google Scholar] [CrossRef] [PubMed]
- Jahangir, M.; Yazdani, O.; Kahrizi, M.S.; Soltanzadeh, S.; Javididashtbayaz, H.; Mivefroshan, A.; Ilkhani, S.; Esbati, R. Clinical Potential of PD-1/PD-L1 Blockade Therapy for Renal Cell Carcinoma (RCC): A Rapidly Evolving Strategy. Cancer Cell Int. 2022, 22, 401. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Fay, A.P.; Gray, K.P.; Callea, M.; Ho, T.H.; Albiges, L.; Bellmunt, J.; Song, J.; Carvo, I.; Lampron, M.; et al. PD-L1 Expression in Nonclear-Cell Renal Cell Carcinoma. Ann. Oncol. 2014, 25, 2178–2184. [Google Scholar] [CrossRef]
- Venur, V.A.; Joshi, M.; Nepple, K.G.; Zakharia, Y. Spotlight on Nivolumab in the Treatment of Renal Cell Carcinoma: Design, Development, and Place in Therapy. Drug Des. Devel Ther. 2017, 11, 1175–1182. [Google Scholar] [CrossRef]
- Koshkin, V.S.; Barata, P.C.; Zhang, T.; George, D.J.; Atkins, M.B.; Kelly, W.J.; Vogelzang, N.J.; Pal, S.K.; Hsu, J.; Appleman, L.J.; et al. Clinical Activity of Nivolumab in Patients with Non-Clear Cell Renal Cell Carcinoma. J. Immunother. Cancer 2018, 6, 9. [Google Scholar] [CrossRef]
- Chahoud, J.; Msaouel, P.; Campbell, M.T.; Bathala, T.; Xiao, L.; Gao, J.; Zurita, A.J.; Shah, A.Y.; Jonasch, E.; Sharma, P.; et al. Nivolumab for the Treatment of Patients with Metastatic Non-Clear Cell Renal Cell Carcinoma (nccRCC): A Single-Institutional Experience and Literature Meta-Analysis. Oncologist 2020, 25, 252–258. [Google Scholar] [CrossRef]
- Vogelzang, N.J.; Olsen, M.R.; McFarlane, J.J.; Arrowsmith, E.; Bauer, T.M.; Jain, R.K.; Somer, B.; Lam, E.T.; Kochenderfer, M.D.; Molina, A.; et al. Safety and Efficacy of Nivolumab in Patients With Advanced Non-Clear Cell Renal Cell Carcinoma: Results From the Phase IIIb/IV CheckMate 374 Study. Clin. Genitourin. Cancer 2020, 18, 461–468.e3. [Google Scholar] [CrossRef]
- McDermott, D.F.; Lee, J.-L.; Ziobro, M.; Suarez, C.; Langiewicz, P.; Matveev, V.B.; Wiechno, P.; Gafanov, R.A.; Tomczak, P.; Pouliot, F.; et al. Open-Label, Single-Arm, Phase II Study of Pembrolizumab Monotherapy as First-Line Therapy in Patients With Advanced Non-Clear Cell Renal Cell Carcinoma. J. Clin. Oncol. 2021, 39, 1029–1039. [Google Scholar] [CrossRef]
- Campbell, M.T.; Matin, S.F.; Tam, A.L.; Sheth, R.A.; Ahrar, K.; Tidwell, R.S.; Rao, P.; Karam, J.A.; Wood, C.G.; Tannir, N.M.; et al. Pilot Study of Tremelimumab with and without Cryoablation in Patients with Metastatic Renal Cell Carcinoma. Nat. Commun. 2021, 12, 6375. [Google Scholar] [CrossRef]
- Conduit, C.; Davis, I.D.; Goh, J.C.; Kichenadasse, G.; Gurney, H.; Harris, C.A.; Pook, D.; Krieger, L.; Parnis, F.; Underhill, C.; et al. A Phase II Trial of Nivolumab Followed by Ipilimumab and Nivolumab in Advanced Non-Clear-Cell Renal Cell Carcinoma. BJU Int. 2024, 133 (Suppl. S3), 57–67. [Google Scholar] [CrossRef]
- Moussa, M.J.; Khandelwal, J.; Wilson, N.R.; Malikayil, K.L.; Surasi, D.S.; Bathala, T.K.; Lin, Y.; Rao, P.; Tamboli, P.; Sircar, K.; et al. Efficacy and Safety of Nivolumab plus Ipilimumab in Patients with Metastatic Variant Histology (Non-Clear Cell) Renal Cell Carcinoma. J. Immunother. Cancer 2025, 13, e010958. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Yang, H.; Chon, H.J.; Kim, C. Combination of Anti-Angiogenic Therapy and Immune Checkpoint Blockade Normalizes Vascular-Immune Crosstalk to Potentiate Cancer Immunity. Exp. Mol. Med. 2020, 52, 1475–1485. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; McGregor, B.; Suárez, C.; Tsao, C.-K.; Kelly, W.; Vaishampayan, U.; Pagliaro, L.; Maughan, B.L.; Loriot, Y.; Castellano, D.; et al. Cabozantinib in Combination With Atezolizumab for Advanced Renal Cell Carcinoma: Results From the COSMIC-021 Study. J. Clin. Oncol. 2021, 39, 3725–3736. [Google Scholar] [CrossRef]
- Lee, C.-H.; Voss, M.H.; Carlo, M.I.; Chen, Y.-B.; Zucker, M.; Knezevic, A.; Lefkowitz, R.A.; Shapnik, N.; Dadoun, C.; Reznik, E.; et al. Phase II Trial of Cabozantinib Plus Nivolumab in Patients With Non-Clear-Cell Renal Cell Carcinoma and Genomic Correlates. J. Clin. Oncol. 2022, 40, 2333–2341. [Google Scholar] [CrossRef]
- Fitzgerald, K.N.; Lee, C.-H.; Voss, M.H.; Carlo, M.I.; Knezevic, A.; Peralta, L.; Chen, Y.; Lefkowitz, R.A.; Shah, N.J.; Owens, C.N.; et al. Cabozantinib Plus Nivolumab in Patients with Non-Clear Cell Renal Cell Carcinoma: Updated Results from a Phase 2 Trial. Eur. Urol. 2024, 86, 90–94. [Google Scholar] [CrossRef]
- Stellato, M.; Buti, S.; Maruzzo, M.; Bersanelli, M.; Pierantoni, F.; De Giorgi, U.; Di Napoli, M.; Iacovelli, R.; Vitale, M.G.; Ermacora, P.; et al. Pembrolizumab Plus Axitinib for Metastatic Papillary and Chromophobe Renal Cell Carcinoma: NEMESIA (Non Clear MEtaStatic Renal Cell Carcinoma Pembrolizumab Axitinib) Study, a Subgroup Analysis of I-RARE Observational Study (Meet-URO 23a). Int. J. Mol. Sci. 2023, 24, 1096. [Google Scholar] [CrossRef] [PubMed]
- Albiges, L.; Gurney, H.; Atduev, V.; Suarez, C.; Climent, M.A.; Pook, D.; Tomczak, P.; Barthelemy, P.; Lee, J.L.; Stus, V.; et al. Pembrolizumab plus Lenvatinib as First-Line Therapy for Advanced Non-Clear-Cell Renal Cell Carcinoma (KEYNOTE-B61): A Single-Arm, Multicentre, Phase 2 Trial. Lancet Oncol. 2023, 24, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Suárez, C.; Larkin, J.M.G.; Patel, P.; Valderrama, B.P.; Rodriguez-Vida, A.; Glen, H.; Thistlethwaite, F.; Ralph, C.; Srinivasan, G.; Mendez-Vidal, M.J.; et al. Phase II Study Investigating the Safety and Efficacy of Savolitinib and Durvalumab in Metastatic Papillary Renal Cancer (CALYPSO). J. Clin. Oncol. 2023, 41, 2493–2502. [Google Scholar] [CrossRef]
- Nonomura, N.; Ito, T.; Sato, M.; Morita, M.; Kajita, M.; Oya, M. Post-Marketing Surveillance Data for Avelumab + Axitinib Treatment in Patients with Advanced Renal Cell Carcinoma in Japan: Subgroup Analyses by Pathological Classification. Int. J. Urol. 2025, 32, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Huang, T.; Peng, Y.; Wei, W.; Zhang, Z.; Han, H.; Dong, P. Clinical Effectiveness and Safety of Tislelizumab plus TKI as First-Line Therapy in Patients with Metastatic Renal Cell Carcinoma (mRCC): A Single-Center Retrospective Study. World J. Urol. 2025, 43, 99. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Plimack, E.; Arkenau, H.-T.; Jonasch, E.; Heng, D.Y.C.; Powles, T.; Frigault, M.M.; Clark, E.A.; Handzel, A.A.; Gardner, H.; et al. Biomarker-Based Phase II Trial of Savolitinib in Patients With Advanced Papillary Renal Cell Cancer. J. Clin. Oncol. 2017, 35, 2993–3001. [Google Scholar] [CrossRef]
- Li, M.; Li, L.; Zheng, J.; Li, Z.; Li, S.; Wang, K.; Chen, X. Liquid Biopsy at the Frontier in Renal Cell Carcinoma: Recent Analysis of Techniques and Clinical Application. Mol. Cancer 2023, 22, 37. [Google Scholar] [CrossRef]
- Francini, E.; Fanelli, G.N.; Pederzoli, F.; Spisak, S.; Minonne, E.; Raffo, M.; Pakula, H.; Tisza, V.; Scatena, C.; Naccarato, A.G.; et al. Circulating Cell-Free DNA in Renal Cell Carcinoma: The New Era of Precision Medicine. Cancers 2022, 14, 4359. [Google Scholar] [CrossRef]
- Barthélémy, P.; Rioux-Leclercq, N.; Thibault, C.; Saldana, C.; Borchiellini, D.; Chevreau, C.; Desmoulins, I.; Gobert, A.; Hilgers, W.; Khalil, A.; et al. Non-Clear Cell Renal Carcinomas: Review of New Molecular Insights and Recent Clinical Data. Cancer Treat. Rev. 2021, 97, 102191. [Google Scholar] [CrossRef]
- Albini, A.; Sporn, M.B. The Tumour Microenvironment as a Target for Chemoprevention. Nat. Rev. Cancer 2007, 7, 139–147. [Google Scholar] [CrossRef]
- Chen, W.-J.; Cao, H.; Cao, J.-W.; Zuo, L.; Qu, F.-J.; Xu, D.; Zhang, H.; Gong, H.-Y.; Chen, J.-X.; Ye, J.-Q.; et al. Heterogeneity of Tumor Microenvironment Is Associated with Clinical Prognosis of Non-Clear Cell Renal Cell Carcinoma: A Single-Cell Genomics Study. Cell Death Dis. 2022, 13, 50. [Google Scholar] [CrossRef] [PubMed]
- Barata, P.; Gulati, S.; Elliott, A.; Hammers, H.J.; Burgess, E.; Gartrell, B.A.; Darabi, S.; Bilen, M.A.; Basu, A.; Geynisman, D.M.; et al. Renal Cell Carcinoma Histologic Subtypes Exhibit Distinct Transcriptional Profiles. J. Clin. Investig. 2024, 134, e178915. [Google Scholar] [CrossRef]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale. Nat. Methods 2014, 11, 333–337. [Google Scholar] [CrossRef]
- Menyhárt, O.; Győrffy, B. Multi-Omics Approaches in Cancer Research with Applications in Tumor Subtyping, Prognosis, and Diagnosis. Comput. Struct. Biotechnol. J. 2021, 19, 949–960. [Google Scholar] [CrossRef]
- Hu, J.; Wang, S.-G.; Hou, Y.; Chen, Z.; Liu, L.; Li, R.; Li, N.; Zhou, L.; Yang, Y.; Wang, L.; et al. Multi-Omic Profiling of Clear Cell Renal Cell Carcinoma Identifies Metabolic Reprogramming Associated with Disease Progression. Nat. Genet. 2024, 56, 442–457. [Google Scholar] [CrossRef]
- Clark, D.J.; Dhanasekaran, S.M.; Petralia, F.; Pan, J.; Song, X.; Hu, Y.; Da Veiga Leprevost, F.; Reva, B.; Lih, T.-S.M.; Chang, H.-Y.; et al. Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma. Cell 2019, 179, 964–983.e31. [Google Scholar] [CrossRef]
- Motzer, R.J.; Banchereau, R.; Hamidi, H.; Powles, T.; McDermott, D.; Atkins, M.B.; Escudier, B.; Liu, L.-F.; Leng, N.; Abbas, A.R.; et al. Molecular Subsets in Renal Cancer Determine Outcome to Checkpoint and Angiogenesis Blockade. Cancer Cell 2020, 38, 803–817.e4. [Google Scholar] [CrossRef]
- Kim, C.G.; Koo, H.; Kwon, W.S.; Bae, W.K.; Hwang, E.C.; Ham, W.S.; Hoon Cho, N.; Sa, J.; Park, J.B.; Rha, S.Y. Use of Integrated Multi-Omics Profiling in Renal Cell Carcinoma to Identify Molecular Subtypes and Associated Clinical Outcomes and Therapeutic Vulnerabilities. J. Clin. Oncol. 2025, 43, 588. [Google Scholar] [CrossRef]
- Lee, S.H.; Hu, W.; Matulay, J.T.; Silva, M.V.; Owczarek, T.B.; Kim, K.; Chua, C.W.; Barlow, L.J.; Kandoth, C.; Williams, A.B.; et al. Tumor Evolution and Drug Response in Patient-Derived Organoid Models of Bladder Cancer. Cell 2018, 173, 515–528.e17. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Cheng, J.; Zhuang, H.; Xu, H.; Wang, Y.; Zhang, T.; Yang, Y.; Qian, H.; Lu, Y.; Han, F.; et al. Pharmacogenomic Profiling of Intra-Tumor Heterogeneity Using a Large Organoid Biobank of Liver Cancer. Cancer Cell 2024, 42, 535–551.e8. [Google Scholar] [CrossRef] [PubMed]
- Jose, A.; Kulkarni, P.; Thilakan, J.; Munisamy, M.; Malhotra, A.G.; Singh, J.; Kumar, A.; Rangnekar, V.M.; Arya, N.; Rao, M. Integration of Pan-Omics Technologies and Three-Dimensional in Vitro Tumor Models: An Approach toward Drug Discovery and Precision Medicine. Mol. Cancer 2024, 23, 50. [Google Scholar] [CrossRef]
- Yoon, H.; Lee, S. Integration of Genomic Profiling and Organoid Development in Precision Oncology. Int. J. Mol. Sci. 2021, 23, 216. [Google Scholar] [CrossRef] [PubMed]



| Study/Author Name | PMID | Phase | Histology | No. of Patients | Treatments | ORR (%) | mPFS (Months) | mOS (Months) |
|---|---|---|---|---|---|---|---|---|
| NCT01762150 [37] | 29933095 | phase II | mCDC | 26 | Sorafenib + Gemcitabine + Cisplatin | 30.8 | 8.8 | 12.5 |
| BEVABEL-GETUG/AFU24 [40] | 37054556 | phase II | mCDC RMC | 31 3 | Gemcitabine + Bevacizumab + Cisplatin (Carboplatin) | 41.2 | 5.9 | 11.1 |
| NCT00830895 [43] | 23180114 | phase II | nccRCC | 49 | Everolimus | 10.2 | 5.2 | 14.0 |
| NCT00726323 [47] | 23213094 | phase II | pRCC | 74 | Foretinib | 13.5 | 9.3 | NR |
| SWOG 1500 [6] | 33592176 | randomized phase II | pRCC | 152 | Cabozantinib vs. Sunitinib | 23 (cabozantinib) | 9.0 (cabozantinib) | 20 (cabozantinib) |
| vs. Crizotinib vs. Savolitinib (halted) | 4 (sunitinib) | 5.6 (sunitinib) | 16.4 (sunitinib) | |||||
| Tannir [54] | 22771265 | phase II | nccRCC | 57 | Sunitinib | 5 | 2.7 | 16.8 |
| ASPEN [55] | 26794930 | randomized phase II | nccRCC | 108 | Sunitinib vs. Everolimus | 18 vs. 8 | 8.3 vs. 5.6 | 31.5 vs. 13.2 |
| ESPN [56] | 26626617 | randomized phase II | nccRCC | 56 | Sunitinib vs. Everolimus | 11 vs. 3 | 6.1 vs. 4.1 | 16.2 vs. 14.9 |
| NCT01835158 [48] | 29550566 | randomized phase II | RCC | 157 | Cabozantinib vs. Sunitinib | 20 vs. 9 | 8.6 vs. 5.3 | 26.6 vs. 21.2 |
| NCT02982954 [49] | 30827746 | retrospective | nccRCC | 112 | Cabozantinib | 27 | 7.0 | 12 |
| BONSAI [59] | 35420628 | phase II | mCDC | 23 | Cabozantinib | 35 | 4 | 7 |
| Thouvenin [60] | 35979929 | retrospective | tRCC | 52 | Cabozantinib | 17.3 | 6.8 | 18.3 |
| AXIPAP [61] | 32146304 | phase II | pRCC | 44 | Axitinib | 28.6 | 6.6 | 18.9 |
| Matrana [62] | 27568124 | retrospective | nccRCC | 29 | Pazopanib | 33 (Frontline) | 8.1 (Frontline) | 31 (Frontline) |
| 6 (secondline) | 4 (secondline) | 13.6 (secondline) | ||||||
| Jung [63] | 28546525 | phase II | nccRCC | 29 | Pazopanib | 28 | 16.5 | NR |
| CREATE [66] | 33867192 | phase II | nccRCC | 31 | Lenvatinib + Everolimus | 26 | 9.2 | 15.6 |
| Voss [69] | 27601542 | phase II | nccRCC | 34 | Bevacizumab + Everolimus | 29 | 11 | 18.5 |
| NCT01130519 [71] | prospective | pRCC | 83 | Bevacizumab + Erlotinib | 51 | 14.2 | NR | |
| SWOG S0317 [70] | 19884559 | phase II | pRCC | 45 | Erlotinib | 11 | NE | 27 |
| Koshkin [79] | 29378660 | retrospective | nccRCC | 41 | Nivolumab | 20 | 3.5 | NR |
| CheckMate 374 [81] | 32718906 | Phase IIIb/IV | nccRCC | 44 | Nivolumab | 13.6 | 2.2 | 16.3 |
| KEYNOTE 427 [82] | 33529058 | phase II | nccRCC | 165 | Pembrolizumab | 26.7 | 4.2 | 28.9 |
| NCT02626130 [83] | 34737281 | pilot study | nccRCC | 11 | Tremelimumab + Cryoablation | NR | 3.0 | 22.7 |
| vs. Tremelimumab | vs. 5.0 | vs. 33.7 | ||||||
| CheckMate 920 [8] | 35210307 | phase IIIb/IV | nccRCC | 52 | Nivolumab + Ipilimumab+ | 19.6 | 3.7 | 21.2 |
| RMC | 3 | Platinum-based chemotherapy | ||||||
| Moussa [85] | 39939142 | retrospective | pRCC | 25 | Nivolumab + Ipilimumab | 48 | 10.6 | 36.7 |
| chRCC | 12 | 25 | 3.6 | 25.7 | ||||
| uRCC | 18 | 27.8 | 3 | 11.1 | ||||
| COSMIC-021 [87] | 34491815 | Phase Ib | nccRCC | 32 | Cabozantinib + Atezolizumab | 31 | 9.5 | NR |
| Lee [88] | 35298296 | phase II | nccRCC | 40 | Cabozantinib + Nivolumab | 47.5 | 12.5 | 28 |
| NEMESIA [90] | 36674615 | observational | nccRCC | 32 | Pembrolizumab + Axitinib | 43.7 | 10.8 | NR |
| KEYNOTE-B61 [91] | 37451291 | phase II | nccRCC | 158 | Pembrolizumab + Lenvatinib | 49 | 18 | NR |
| CALYPSO32 [92] | 36809050 | phase II | pRCC | 41 | Savolitinib + Durvalumab | 29 | 4.9 | 14.1 |
| MET-driven | 27 | 53 | 12.0 | 27.4 | ||||
| Nonomura [93] | 39699015 | observational | nccRCC | 22 | Avelumab + Axitinib | 22.7 | 7.5 | NR |
| Zhong [94] | 39903308 | retrospective | nccRCC | 39 | Tislelizumab + TKI | 40 | 11.9 | NR |
| Clinical Trial | Study Design | Enrollment | Histology | Treatment | Primary Endpoint |
|---|---|---|---|---|---|
| NCT06053658 | phase II | 48 | nccRCC | Tivozanib + Nivolumab | Safety |
| NCT05831891 | phase II | 39 | nccRCC | Fruquintinib + Serplulimab | PFS |
| FRONTIER | |||||
| NCT05678673 | randomized | 317 | nccRCC | Sunitinib vs. XL092 + Nivolumab | PFS, ORR |
| STELLAR-304 | phase III | ||||
| NCT04413123 | phase II | 60 | nccRCC | Cabozantinib + Nivolumab + Ipilimumab | ORR |
| NCT05808608 | phase I/II | 33 | ssRCC | AK104 + Axitinib | ORR |
| NCT06302569 | phase II | 23 | CDC | Pembrolizumab + enfortumab | ORR |
| REPRINT | RMC | ||||
| NCT05411081 | randomized | 200 | pRCC | Cabozantinib vs. | PFS |
| PAPMET2 | phase II | Atezolizumab + cabozantinib |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chang, Y.; Wang, K.; Liu, R. Recent Advances in nccRCC Classification and Therapeutic Approaches. Cells 2025, 14, 1781. https://doi.org/10.3390/cells14221781
Wang H, Chang Y, Wang K, Liu R. Recent Advances in nccRCC Classification and Therapeutic Approaches. Cells. 2025; 14(22):1781. https://doi.org/10.3390/cells14221781
Chicago/Turabian StyleWang, Hewei, Yiyuan Chang, Kaiyan Wang, and Rong Liu. 2025. "Recent Advances in nccRCC Classification and Therapeutic Approaches" Cells 14, no. 22: 1781. https://doi.org/10.3390/cells14221781
APA StyleWang, H., Chang, Y., Wang, K., & Liu, R. (2025). Recent Advances in nccRCC Classification and Therapeutic Approaches. Cells, 14(22), 1781. https://doi.org/10.3390/cells14221781

