Exosome-Mediated Crosstalk Between Cancer Cells and Tumor Microenvironment
Abstract
1. Introduction
2. Immune Modulation of Tumor Microenvironment (TME) by Cancer Cell-Derived Exosomes
2.1. Suppression of T Cells
2.2. Modulation of Macrophages
2.3. Expansion of Myeloid-Derived Suppressor Cells (MDSCs)
2.4. Toxic Effects on Dendritic Cells
2.5. Reprogramming of Fibroblasts
2.6. B Cell Transformation
2.7. Suppression of NK Cell Activity
2.8. Effect on Tumor-Associated Neutrophils
2.9. Effect on Neighboring Cancer Cells
3. Crosstalk of TME-Released Exosomes with Cancer Cells
3.1. Activation of Tumor Cell Proliferation and Growth
3.2. Escaping Immune Response
3.3. Promoting Metastases
3.4. Promoting Drug Resistance in Cancer Cells
3.5. Antitumor Activities
4. Targeting Exosomes as a Potent Therapeutic Option for Cancer Treatment
4.1. Inhibition of Formation and Release of Cancer Exosomes
4.2. Disrupting Cancer Exosome–Cell Interactions
4.3. Elimination of Cancer Exosomes from the Bloodstream
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EVs | Extracellular vesicles |
| CNS | Central nervous system |
| TME | Tumor microenvironment |
| MDSCs | Myeloid-derived suppressor cells |
| NK | Natural killer |
| DCs | Dendritic cells |
| APCs | Antigen-presenting cells |
| HNC | Head and neck cancer |
| TCR | T cell receptor |
| PD-L1 | Programmed cell Death 1 ligand 1 |
| BTICs | Brain tumor-initiating cells |
| TSHR | Thyroid-stimulating hormone receptor |
| TSH | Thyroid-stimulating hormone |
| CRC | Colorectal cancer |
| Gal-1 | Galectin-1 |
| CCT2 | Chaperonin-containing TCP1 subunit 2 |
| GC | Gastric cancer |
| NPC | Nasopharyngeal carcinoma |
| TAM | Tumor-associated macrophages |
| LLC | Lewis lung carcinoma |
| TRIM59 | Tripartite motif-containing 59 |
| miR-21 | microRNA-21 |
| EMT | Epithelial–mesenchymal transition |
| OS | Osteosarcoma |
| TAFs | Tumor-associated fibroblasts |
| Ig | Immunoglobulin |
| TIM | T cell Ig and mucin domain |
| Breg | Regulatory B cells |
| TLR | Toll-like receptor |
| MAPK | Mitogen-activated protein kinase |
| IFN- γ | Interferon gamma |
| TANs | Tumor-associated neutrophils |
| NETs | Neutrophil extracellular traps |
| TF | Tissue factor |
| OC | Ovarian cancer |
| BCL2L13 | BCL 2-like protein 13 |
| CCA | Cholangiocarcinoma |
| CircRNAs | Circular RNAs |
| siRNA | Small interference RNA |
| NPC | Neural progenitor cells |
| BiP | Binding immunoglobulin protein |
| EC | Esophageal cancer |
| CAF | Cancer-associated fibroblasts |
| PDACs | Pancreatic adenocarcinomas |
| HS | Heparan sulfate |
| EGF | Epidermal growth factor |
| OSCC | Oral squamous cell carcinoma |
| V-type | Vacuolar-type |
| NSCLC | Non-small cell lung cancer |
| CKAP4 | Cytoskeleton-associated protein 4 |
| CLDN7 | Claudin-7 |
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer Statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef] [PubMed]
- Swanton, C.; Bernard, E.; Abbosh, C.; André, F.; Auwerx, J.; Balmain, A.; Bar-Sagi, D.; Bernards, R.; Bullman, S.; DeGregori, J.; et al. Embracing Cancer Complexity: Hallmarks of Systemic Disease. Cell 2024, 187, 1589–1616. [Google Scholar] [CrossRef]
- El Andaloussi, S.; Mäger, I.; Breakefield, X.O.; Wood, M.J.A. Extracellular Vesicles: Biology and Emerging Therapeutic Opportunities. Nat. Rev. Drug Discov. 2013, 12, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Basu, J.; Ludlow, J.W. Exosomes for Repair, Regeneration and Rejuvenation. Expert Opin. Biol. Ther. 2016, 16, 489–506. [Google Scholar] [CrossRef]
- Aharon, A.; Brenner, B. Microparticles, Thrombosis and Cancer. Best. Pract. Res. Clin. Haematol. 2009, 22, 61–69. [Google Scholar] [CrossRef]
- Lo Cicero, A.; Stahl, P.D.; Raposo, G. Extracellular Vesicles Shuffling Intercellular Messages: For Good or for Bad. Curr. Opin. Cell Biol. 2015, 35, 69–77. [Google Scholar] [CrossRef]
- Toth, B.; Lok, C.A.R.; Böing, A.; Diamant, M.; Van Der Post, J.A.M.; Friese, K.; Nieuwland, R. Microparticles and Exosomes: Impact on Normal and Complicated Pregnancy. Am. J. Rep. Immunol. 2007, 58, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ren, L.; Li, S.; Li, W.; Zheng, X.; Yang, Y.; Fu, W.; Yi, J.; Wang, J.; Du, G. The Biology, Function, and Applications of Exosomes in Cancer. Acta Pharm. Sin. B 2021, 11, 2783–2797. [Google Scholar] [CrossRef]
- Whiteside, T.L. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv. Clin. Chem. 2016, 74, 103–141. [Google Scholar] [CrossRef]
- Liu, S.-L.; Sun, P.; Li, Y.; Liu, S.-S.; Lu, Y. Exosomes as Critical Mediators of Cell-to-Cell Communication in Cancer Pathogenesis and Their Potential Clinical Application. Transl. Cancer Res. 2019, 8, 298–311. [Google Scholar] [CrossRef]
- Xie, Q.-H.; Zheng, J.-Q.; Ding, J.-Y.; Wu, Y.-F.; Liu, L.; Yu, Z.-L.; Chen, G. Exosome-Mediated Immunosuppression in Tumor Microenvironments. Cells 2022, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Wu, Y.; Wu, Y.; Wang, P.; Vadgama, J.V. Tumor-Derived Exosomes in Tumor-Induced Immune Suppression. Int. J. Mol. Sci. 2022, 23, 1461. [Google Scholar] [CrossRef]
- Whiteside, T.L. Exosomes Carrying Immunoinhibitory Proteins and Their Role in Cancer. Clin. Exp. Immunol. 2017, 189, 259–267. [Google Scholar] [CrossRef]
- Van Der Pol, E.; Böing, A.N.; Harrison, P.; Sturk, A.; Nieuwland, R. Classification, Functions, and Clinical Relevance of Extracellular Vesicles. Pharmacol. Rev. 2012, 64, 676–705. [Google Scholar] [CrossRef]
- Benito-Martin, A.; Di Giannatale, A.; Ceder, S.; Peinado, H. The New Deal: A Potential Role for Secreted Vesicles in Innate Immunity and Tumor Progression. Front. Immunol. 2015, 6, 66. [Google Scholar] [CrossRef] [PubMed]
- Ricklefs, F.L.; Alayo, Q.; Krenzlin, H.; Mahmoud, A.B.; Speranza, M.C.; Nakashima, H.; Hayes, J.L.; Lee, K.; Balaj, L.; Passaro, C.; et al. Immune Evasion Mediated by PD-L1 on Glioblastoma-Derived Extracellular Vesicles. Sci. Adv. 2018, 4, eaar2766. [Google Scholar] [CrossRef]
- Theodoraki, M.-N.; Yerneni, S.S.; Hoffmann, T.K.; Gooding, W.E.; Whiteside, T.L. Clinical Significance of PD-L1+ Exosomes in Plasma of Head and Neck Cancer Patients. Clin. Cancer Res. 2018, 24, 896–905. [Google Scholar] [CrossRef]
- Poggio, M.; Hu, T.; Pai, C.-C.; Chu, B.; Belair, C.D.; Chang, A.; Montabana, E.; Lang, U.E.; Fu, Q.; Fong, L.; et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-Tumor Immunity and Memory. Cell 2019, 177, 414–427.e13. [Google Scholar] [CrossRef]
- Xie, F.; Xu, M.; Lu, J.; Mao, L.; Wang, S. The Role of Exosomal PD-L1 in Tumor Progression and Immunotherapy. Mol. Cancer 2019, 18, 146. [Google Scholar] [CrossRef]
- Chen, G.; Huang, A.C.; Zhang, W.; Zhang, G.; Wu, M.; Xu, W.; Yu, Z.; Yang, J.; Wang, B.; Sun, H.; et al. Exosomal PD-L1 Contributes to Immunosuppression and Is Associated with Anti-PD-1 Response. Nature 2018, 560, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Abusamra, A.J.; Zhong, Z.; Zheng, X.; Li, M.; Ichim, T.E.; Chin, J.L.; Min, W.-P. Tumor Exosomes Expressing Fas Ligand Mediate CD8+ T-Cell Apoptosis. Blood Cells Mol. Dis. 2005, 35, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Wieckowski, E.; Taylor, D.D.; Reichert, T.E.; Watkins, S.; Whiteside, T.L. Fas Ligand-Positive Membranous Vesicles Isolated from Sera of Patients with Oral Cancer Induce Apoptosis of Activated T Lymphocytes. Clin. Cancer Res. 2005, 11, 1010–1020. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.W.; Sceneay, J.; Lima, L.G.; Wong, C.S.F.; Becker, M.; Krumeich, S.; Lobb, R.J.; Castillo, V.; Wong, K.N.; Ellis, S.; et al. The Biodistribution and Immune Suppressive Effects of Breast Cancer–Derived Exosomes. Cancer Res. 2016, 76, 6816–6827. [Google Scholar] [CrossRef]
- Maybruck, B.T.; Pfannenstiel, L.W.; Diaz-Montero, M.; Gastman, B.R. Tumor-Derived Exosomes Induce CD8+ T Cell Suppressors. J. Immunother. Cancer 2017, 5, 65. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Tai, S.-K.; Yang, M.-H. Snail-Overexpressing Cancer Cells Promote M2-Like Polarization of Tumor-Associated Macrophages by Delivering MiR-21-Abundant Exosomes. Neoplasia 2018, 20, 775–788. [Google Scholar] [CrossRef]
- Ye, S.; Li, Z.-L.; Luo, D.; Huang, B.; Chen, Y.-S.; Zhang, X.; Cui, J.; Zeng, Y.; Li, J. Tumor-Derived Exosomes Promote Tumor Progression and T-Cell Dysfunction through the Regulation of Enriched Exosomal microRNAs in Human Nasopharyngeal Carcinoma. Oncotarget 2014, 5, 5439–5452. [Google Scholar] [CrossRef]
- Mirzaei, R.; Sarkar, S.; Dzikowski, L.; Rawji, K.S.; Khan, L.; Faissner, A.; Bose, P.; Yong, V.W. Brain Tumor-Initiating Cells Export Tenascin-C Associated with Exosomes to Suppress T Cell Activity. OncoImmunology 2018, 7, e1478647. [Google Scholar] [CrossRef]
- Jachetti, E.; Caputo, S.; Mazzoleni, S.; Brambillasca, C.S.; Parigi, S.M.; Grioni, M.; Piras, I.S.; Restuccia, U.; Calcinotto, A.; Freschi, M.; et al. Tenascin-C Protects Cancer Stem–like Cells from Immune Surveillance by Arresting T-Cell Activation. Cancer Res. 2015, 75, 2095–2108. [Google Scholar] [CrossRef]
- Dong, X.; Li, C.; Deng, C.; Liu, J.; Li, D.; Zhou, T.; Yang, X.; Liu, Y.; Guo, Q.; Feng, Y.; et al. Regulated Secretion of Mutant P53 Negatively Affects T Lymphocytes in the Tumor Microenvironment. Oncogene 2024, 43, 92–105. [Google Scholar] [CrossRef]
- Zeng, S.; Hu, H.; Li, Z.; Hu, Q.; Shen, R.; Li, M.; Liang, Y.; Mao, Z.; Zhang, Y.; Zhan, W.; et al. Local TSH/TSHR Signaling Promotes CD8+ T Cell Exhaustion and Immune Evasion in Colorectal Carcinoma. Cancer Commun. 2024, 44, 1287–1310. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Yin, H.; Li, X.; Zhu, G.; He, W.; Gou, X. Bladder Cancer Cell-secreted Exosomal miR-21 Activates the PI3K/AKT Pathway in Macrophages to Promote Cancer Progression. Int. J. Oncol. 2019, 56, 151–164. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, Y.; Zhang, Y.; Jia, Z.; Zhang, Z.; Yang, J. Cancer Derived Exosomes Induce Macrophages Immunosuppressive Polarization to Promote Bladder Cancer Progression. Cell Commun. Signal 2021, 19, 93. [Google Scholar] [CrossRef]
- Guo, X.; Qiu, W.; Liu, Q.; Qian, M.; Wang, S.; Zhang, Z.; Gao, X.; Chen, Z.; Xue, H.; Li, G. Immunosuppressive Effects of Hypoxia-Induced Glioma Exosomes through Myeloid-Derived Suppressor Cells via the miR-10a/Rora and miR-21/Pten Pathways. Oncogene 2018, 37, 4239–4259. [Google Scholar] [CrossRef]
- Bruns, H.; Böttcher, M.; Qorraj, M.; Fabri, M.; Jitschin, S.; Dindorf, J.; Busch, L.; Jitschin, R.; Mackensen, A.; Mougiakakos, D. CLL-Cell-Mediated MDSC Induction by Exosomal miR-155 Transfer Is Disrupted by Vitamin D. Leukemia 2017, 31, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Chen, X.; Wang, L.; Qin, L.; Wang, H.; Sun, Z.; Zhao, W.; Geng, B. Cancer-Derived Exosomal TRIM59 Regulates Macrophage NLRP3 Inflammasome Activation to Promote Lung Cancer Progression. J. Exp. Clin. Cancer Res. 2020, 39, 176. [Google Scholar] [CrossRef] [PubMed]
- Xiang, X.; Poliakov, A.; Liu, C.; Liu, Y.; Deng, Z.; Wang, J.; Cheng, Z.; Shah, S.V.; Wang, G.; Zhang, L.; et al. Induction of Myeloid-derived Suppressor Cells by Tumor Exosomes. Int. J. Cancer 2009, 124, 2621–2633. [Google Scholar] [CrossRef]
- Chalmin, F.; Ladoire, S.; Mignot, G.; Vincent, J.; Bruchard, M.; Remy-Martin, J.-P.; Boireau, W.; Rouleau, A.; Simon, B.; Lanneau, D.; et al. Membrane-Associated Hsp72 from Tumor-Derived Exosomes Mediates STAT3-Dependent Immunosuppressive Function of Mouse and Human Myeloid-Derived Suppressor Cells. J. Clin. Investig. 2010, 120, 457–471. [Google Scholar] [CrossRef]
- Ning, Y.; Shen, K.; Wu, Q.; Sun, X.; Bai, Y.; Xie, Y.; Pan, J.; Qi, C. Tumor Exosomes Block Dendritic Cells Maturation to Decrease the T Cell Immune Response. Immunol. Lett. 2018, 199, 36–43. [Google Scholar] [CrossRef]
- Cocozza, F.; Martin-Jaular, L.; Lippens, L.; Di Cicco, A.; Arribas, Y.A.; Ansart, N.; Dingli, F.; Richard, M.; Merle, L.; Jouve San Roman, M.; et al. Extracellular Vesicles and Co-isolated Endogenous Retroviruses from Murine Cancer Cells Differentially Affect Dendritic Cells. EMBO J. 2023, 42, e113590. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wu, S.; Zheng, X.; Zheng, P.; Fu, Y.; Wu, C.; Lu, B.; Ju, J.; Jiang, J. Immune Suppressed Tumor Microenvironment by Exosomes Derived from Gastric Cancer Cells via Modulating Immune Functions. Sci. Rep. 2020, 10, 14749. [Google Scholar] [CrossRef]
- Ringuette Goulet, C.; Bernard, G.; Tremblay, S.; Chabaud, S.; Bolduc, S.; Pouliot, F. Exosomes Induce Fibroblast Differentiation into Cancer-Associated Fibroblasts through TGFβ Signaling. Mol. Cancer Res. 2018, 16, 1196–1204. [Google Scholar] [CrossRef]
- Baroni, S.; Romero-Cordoba, S.; Plantamura, I.; Dugo, M.; D’Ippolito, E.; Cataldo, A.; Cosentino, G.; Angeloni, V.; Rossini, A.; Daidone, M.G.; et al. Exosome-Mediated Delivery of miR-9 Induces Cancer-Associated Fibroblast-like Properties in Human Breast Fibroblasts. Cell Death Dis. 2016, 7, e2312. [Google Scholar] [CrossRef]
- Yoshii, S.; Hayashi, Y.; Iijima, H.; Inoue, T.; Kimura, K.; Sakatani, A.; Nagai, K.; Fujinaga, T.; Hiyama, S.; Kodama, T.; et al. Exosomal Micro RNA s Derived from Colon Cancer Cells Promote Tumor Progression by Suppressing Fibroblast TP 53 Expression. Cancer Sci. 2019, 110, 2396–2407. [Google Scholar] [CrossRef]
- Ye, L.; Zhang, Q.; Cheng, Y.; Chen, X.; Wang, G.; Shi, M.; Zhang, T.; Cao, Y.; Pan, H.; Zhang, L.; et al. Tumor-Derived Exosomal HMGB1 Fosters Hepatocellular Carcinoma Immune Evasion by Promoting TIM-1+ Regulatory B Cell Expansion. J. Immunother. Cancer 2018, 6, 145. [Google Scholar] [CrossRef]
- Clayton, A.; Mitchell, J.P.; Court, J.; Linnane, S.; Mason, M.D.; Tabi, Z. Human Tumor-Derived Exosomes Down-Modulate NKG2D Expression. J. Immunol. 2008, 180, 7249–7258. [Google Scholar] [CrossRef]
- Szczepanski, M.J.; Szajnik, M.; Welsh, A.; Whiteside, T.L.; Boyiadzis, M. Blast-Derived Microvesicles in Sera from Patients with Acute Myeloid Leukemia Suppress Natural Killer Cell Function via Membrane-Associated Transforming Growth Factor-β1. Haematologica 2011, 96, 1302–1309. [Google Scholar] [CrossRef]
- Leal, A.C.; Mizurini, D.M.; Gomes, T.; Rochael, N.C.; Saraiva, E.M.; Dias, M.S.; Werneck, C.C.; Sielski, M.S.; Vicente, C.P.; Monteiro, R.Q. Tumor-Derived Exosomes Induce the Formation of Neutrophil Extracellular Traps: Implications For The Establishment of Cancer-Associated Thrombosis. Sci. Rep. 2017, 7, 6438. [Google Scholar] [CrossRef] [PubMed]
- McCready, J.; Sims, J.D.; Chan, D.; Jay, D.G. Secretion of Extracellular Hsp90alpha via Exosomes Increases Cancer Cell Motility: A Role for Plasminogen Activation. BMC Cancer 2010, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Sakha, S.; Muramatsu, T.; Ueda, K.; Inazawa, J. Exosomal microRNA miR-1246 Induces Cell Motility and Invasion through the Regulation of DENND2D in Oral Squamous Cell Carcinoma. Sci. Rep. 2016, 6, 38750. [Google Scholar] [CrossRef]
- Yang, E.; Wang, X.; Gong, Z.; Yu, M.; Wu, H.; Zhang, D. Exosome-Mediated Metabolic Reprogramming: The Emerging Role in Tumor Microenvironment Remodeling and Its Influence on Cancer Progression. Signal Transduct. Target. Ther. 2020, 5, 242. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, S.; Sharma, P.; Theodoraki, M.-N.; Pietrowska, M.; Yerneni, S.S.; Lang, S.; Ferrone, S.; Whiteside, T.L. Molecular and Functional Profiles of Exosomes From HPV(+) and HPV(−) Head and Neck Cancer Cell Lines. Front. Oncol. 2018, 8, 445. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, X.; Xu, W.; Chen, Y.; Mu, C.; Zhao, X.; Yang, T.; Wang, G.; Wei, L.; Ma, B. Prostate Cancer Cells Synergistically Defend against CD8+ T Cells by Secreting Exosomal PD-L1. Cancer Med. 2023, 12, 16405–16415. [Google Scholar] [CrossRef] [PubMed]
- Aviles, D.H.; Vehaskari, M.V.; Culotta, K.S.; Manning, J.; Ochoa, A.C.; Zea, A.H. T Cell CD3 Receptor Zeta (TCRζ)-Chain Expression in Children with Idiopathic Nephrotic Syndrome. Pediatr. Nephrol. 2009, 24, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wen, X.; Su, C.; You, Y.; Jiang, Z.; Fan, Q.; Zhu, D. The Role of Tenascin-C in Tumor Microenvironments and Its Potential as a Therapeutic Target. Front. Cell Dev. Biol. 2025, 13, 1554312. [Google Scholar] [CrossRef]
- Wu, Y.-Y.; Hsu, Y.-L.; Huang, Y.-C.; Su, Y.-C.; Wu, K.-L.; Chang, C.-Y.; Ong, C.-T.; Lai, J.-C.; Shen, T.-Y.; Lee, T.-H.; et al. Characterization of the Pleural Microenvironment Niche and Cancer Transition Using Single-Cell RNA Sequencing in EGFR-Mutated Lung Cancer. Theranostics 2023, 13, 4412–4429. [Google Scholar] [CrossRef]
- Nagaharu, K.; Zhang, X.; Yoshida, T.; Katoh, D.; Hanamura, N.; Kozuka, Y.; Ogawa, T.; Shiraishi, T.; Imanaka-Yoshida, K. Tenascin C Induces Epithelial-Mesenchymal Transition–Like Change Accompanied by SRC Activation and Focal Adhesion Kinase Phosphorylation in Human Breast Cancer Cells. Am. J. Pathol. 2011, 178, 754–763. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, C.; Gu, P.; Chen, J.; Liu, X.; Shen, J. The Tumor Microenvironment and Prognostic Role of Autophagy- and Immune-Related Genes in Bladder Cancer. Cancer Biomark. 2022, 35, 293–303. [Google Scholar] [CrossRef]
- Guan, Z.; Sun, Y.; Mu, L.; Jiang, Y.; Fan, J. Tenascin-C Promotes Bladder Cancer Progression and Its Action Depends on Syndecan-4 and Involves NF-κB Signaling Activation. BMC Cancer 2022, 22, 240. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Z.; Chen, M.; Li, D.; Li, Z.; Xiong, Y.; Dong, J.; Li, X. Role of Fibrillar Tenascin-C in Metastatic Pancreatic Cancer. Int. J. Oncol. 2009, 34, 1029–1036. [Google Scholar] [CrossRef]
- Furuhashi, S.; Morita, Y.; Matsumoto, A.; Ida, S.; Muraki, R.; Kitajima, R.; Takeda, M.; Kikuchi, H.; Hiramatsu, Y.; Takeuchi, H. Tenascin C in Pancreatic Cancer-Associated Fibroblasts Enhances Epithelial Mesenchymal Transition and Is Associated with Resistance to Immune Checkpoint Inhibitor. Am. J. Cancer Res. 2023, 13, 5641–5655. [Google Scholar]
- Yang, Z.; Zhang, C.; Feng, Y.; Quan, M.; Cui, Y.; Xuan, Y. Tenascin-C Predicts Poor Outcomes for Patients with Colorectal Cancer and Drives Cancer Stemness via Hedgehog Signaling Pathway. Cancer Cell Int. 2020, 20, 122. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Cao, X. The Exosomes in Tumor Immunity. Oncoimmunology 2015, 4, e1027472. [Google Scholar] [CrossRef]
- Chen, X.; Ma, C.; Li, Y.; Liang, Y.; Chen, T.; Han, D.; Luo, D.; Zhang, N.; Zhao, W.; Wang, L.; et al. Trim21-Mediated CCT2 Ubiquitination Suppresses Malignant Progression and Promotes CD4+T Cell Activation in Breast Cancer. Cell Death Dis. 2024, 15, 542. [Google Scholar] [CrossRef]
- Shen, Y.; Lin, J.; Jiang, T.; Shen, X.; Li, Y.; Fu, Y.; Xu, P.; Fang, L.; Chen, Z.; Huang, H.; et al. GC-Derived Exosomal circMAN1A2 Promotes Cancer Progression and Suppresses T-Cell Antitumour Immunity by Inhibiting FBXW11-Mediated SFPQ Degradation. J. Exp. Clin. Cancer Res. 2025, 44, 24. [Google Scholar] [CrossRef] [PubMed]
- Patras, L.; Shaashua, L.; Matei, I.; Lyden, D. Immune Determinants of the Pre-Metastatic Niche. Cancer Cell 2023, 41, 546–572. [Google Scholar] [CrossRef]
- Park, M.D.; Silvin, A.; Ginhoux, F.; Merad, M. Macrophages in Health and Disease. Cell 2022, 185, 4259–4279. [Google Scholar] [CrossRef] [PubMed]
- Brancewicz, J.; Wójcik, N.; Sarnowska, Z.; Robak, J.; Król, M. The Multifaceted Role of Macrophages in Biology and Diseases. Int. J. Mol. Sci. 2025, 26, 2107. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Pamer, E.G. Monocyte Recruitment during Infection and Inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef]
- Paik, S.; Kim, J.K.; Silwal, P.; Sasakawa, C.; Jo, E.-K. An Update on the Regulatory Mechanisms of NLRP3 Inflammasome Activation. Cell Mol. Immunol. 2021, 18, 1141–1160. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Ma, L.; Chen, Y.; Liu, J.; Guo, Y.; Yu, T.; Zhang, L.; Zhu, L.; Shu, Y. Role of Exosomal Non-Coding RNAs from Tumor Cells and Tumor-Associated Macrophages in the Tumor Microenvironment. Mol. Ther. 2022, 30, 3133–3154. [Google Scholar] [CrossRef]
- Hsu, D.S.-S.; Wang, H.-J.; Tai, S.-K.; Chou, C.-H.; Hsieh, C.-H.; Chiu, P.-H.; Chen, N.-J.; Yang, M.-H. Acetylation of Snail Modulates the Cytokinome of Cancer Cells to Enhance the Recruitment of Macrophages. Cancer Cell 2014, 26, 534–548. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Y.; Chen, C.; Guo, H.; Zhou, C.; Wang, H.; Liu, Z. PITX1 Suppresses Osteosarcoma Metastasis through Exosomal LINC00662-Mediated M2 Macrophage Polarization. Clin. Exp. Metastasis 2023, 40, 79–93. [Google Scholar] [CrossRef]
- Kortylewski, M.; Yu, H. Role of Stat3 in Suppressing Anti-Tumor Immunity. Curr. Opin. Immunol. 2008, 20, 228–233. [Google Scholar] [CrossRef]
- Xing, F.; Liu, Y.; Wu, S.-Y.; Wu, K.; Sharma, S.; Mo, Y.-Y.; Feng, J.; Sanders, S.; Jin, G.; Singh, R.; et al. Loss of XIST in Breast Cancer Activates MSN-c-Met and Reprograms Microglia via Exosomal miRNA to Promote Brain Metastasis. Cancer Res. 2018, 78, 4316–4330. [Google Scholar] [CrossRef] [PubMed]
- Gabrilovich, D.I.; Nagaraj, S. Myeloid-Derived Suppressor Cells as Regulators of the Immune System. Nat. Rev. Immunol. 2009, 9, 162–174. [Google Scholar] [CrossRef]
- Chen, X.; Song, M.; Zhang, B.; Zhang, Y. Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. Oxidative Med. Cell. Longev. 2016, 2016, 1580967. [Google Scholar] [CrossRef]
- Tian, X.; Shen, H.; Li, Z.; Wang, T.; Wang, S. Tumor-Derived Exosomes, Myeloid-Derived Suppressor Cells, and Tumor Microenvironment. J. Hematol. Oncol. 2019, 12, 84. [Google Scholar] [CrossRef]
- Veglia, F.; Perego, M.; Gabrilovich, D. Myeloid-Derived Suppressor Cells Coming of Age. Nat. Immunol. 2018, 19, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiang, X.; Zhuang, X.; Zhang, S.; Liu, C.; Cheng, Z.; Michalek, S.; Grizzle, W.; Zhang, H.-G. Contribution of MyD88 to the Tumor Exosome-Mediated Induction of Myeloid Derived Suppressor Cells. Am. J. Pathol. 2010, 176, 2490–2499. [Google Scholar] [CrossRef] [PubMed]
- Rašková, M.; Lacina, L.; Kejík, Z.; Venhauerová, A.; Skaličková, M.; Kolář, M.; Jakubek, M.; Rosel, D.; Smetana, K.; Brábek, J. The Role of IL-6 in Cancer Cell Invasiveness and Metastasis—Overview and Therapeutic Opportunities. Cells 2022, 11, 3698. [Google Scholar] [CrossRef]
- Bautch, V.L. VEGF-Directed Blood Vessel Patterning: From Cells to Organism. Cold Spring Harb. Perspect. Med. 2012, 2, a006452. [Google Scholar] [CrossRef]
- Asea, A. Initiation of the Immune Response by Extracellular Hsp72: Chaperokine Activity of Hsp72. Curr. Immunol. Rev. 2006, 2, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Campisi, J.; Leem, T.H.; Fleshner, M. Stress-Induced Extracellular Hsp72 Is a Functionally Significant Danger Signal to the Immune System. Cell Stress. Chaperones 2003, 8, 272. [Google Scholar] [CrossRef]
- Wang, J.; De Veirman, K.; De Beule, N.; Maes, K.; De Bruyne, E.; Van Valckenborgh, E.; Vanderkerken, K.; Menu, E. The Bone Marrow Microenvironment Enhances Multiple Myeloma Progression by Exosome-Mediated Activation of Myeloid-Derived Suppressor Cells. Oncotarget 2015, 6, 43992–44004. [Google Scholar] [CrossRef] [PubMed]
- Ridder, K.; Sevko, A.; Heide, J.; Dams, M.; Rupp, A.-K.; Macas, J.; Starmann, J.; Tjwa, M.; Plate, K.H.; Sültmann, H.; et al. Extracellular Vesicle-Mediated Transfer of Functional RNA in the Tumor Microenvironment. OncoImmunology 2015, 4, e1008371. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Qiu, W.; Wang, J.; Liu, Q.; Qian, M.; Wang, S.; Zhang, Z.; Gao, X.; Chen, Z.; Guo, Q.; et al. Glioma Exosomes Mediate the Expansion and Function of Myeloid-derived Suppressor Cells through microRNA-29a/ Hbp1 and microRNA-92a/Prkar1a Pathways. Int. J. Cancer 2019, 144, 3111–3126. [Google Scholar] [CrossRef]
- Leung, A.K.L.; Sharp, P.A. MicroRNA Functions in Stress Responses. Mol. Cell 2010, 40, 205–215. [Google Scholar] [CrossRef]
- Li, L.; Cao, B.; Liang, X.; Lu, S.; Luo, H.; Wang, Z.; Wang, S.; Jiang, J.; Lang, J.; Zhu, G. Microenvironmental Oxygen Pressure Orchestrates an Anti- and pro-Tumoral Γδ T Cell Equilibrium via Tumor-Derived Exosomes. Oncogene 2019, 38, 2830–2843. [Google Scholar] [CrossRef]
- Ferrari, V.; Tarke, A.; Fields, H.; Tanaka, T.N.; Searles, S.; Zanetti, M. Tumor-Specific T Cell-Mediated Upregulation of PD-L1 in Myelodysplastic Syndrome Cells Does Not Affect T-Cell Killing. Front. Oncol. 2022, 12, 915629. [Google Scholar] [CrossRef]
- Alvarez, D.; Vollmann, E.H.; Von Andrian, U.H. Mechanisms and Consequences of Dendritic Cell Migration. Immunity 2008, 29, 325–342. [Google Scholar] [CrossRef]
- Chudnovskiy, A.; Pasqual, G.; Victora, G.D. Studying Interactions between Dendritic Cells and T Cells in Vivo. Curr. Opin. Immunol. 2019, 58, 24–30. [Google Scholar] [CrossRef]
- Beenen, A.C.; Sauerer, T.; Schaft, N.; Dörrie, J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int. J. Mol. Sci. 2022, 23, 8599. [Google Scholar] [CrossRef]
- Valenti, R.; Huber, V.; Iero, M.; Filipazzi, P.; Parmiani, G.; Rivoltini, L. Tumor-Released Microvesicles as Vehicles of Immunosuppression. Cancer Res. 2007, 67, 2912–2915. [Google Scholar] [CrossRef]
- Batlle, E.; Massagué, J. Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019, 50, 924–940. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Zou, L.; Zhu, Z. Role of Exosomes in Crosstalk Between Cancer-Associated Fibroblasts and Cancer Cells. Front. Oncol. 2019, 9, 356. [Google Scholar] [CrossRef]
- Tang, X.; Hou, Y.; Yang, G.; Wang, X.; Tang, S.; Du, Y.-E.; Yang, L.; Yu, T.; Zhang, H.; Zhou, M.; et al. Stromal miR-200s Contribute to Breast Cancer Cell Invasion through CAF Activation and ECM Remodeling. Cell Death Differ. 2016, 23, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.K.; Zillhardt, M.; Hua, Y.; Tiwari, P.; Murmann, A.E.; Peter, M.E.; Lengyel, E. MicroRNAs Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts in Ovarian Cancer. Cancer Discov. 2012, 2, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Asgarpour, K.; Shojaei, Z.; Amiri, F.; Ai, J.; Mahjoubin-Tehran, M.; Ghasemi, F.; ArefNezhad, R.; Hamblin, M.R.; Mirzaei, H. Exosomal microRNAs Derived from Mesenchymal Stem Cells: Cell-to-Cell Messages. Cell Commun. Signal 2020, 18, 149. [Google Scholar] [CrossRef] [PubMed]
- Orimo, A.; Weinberg, R.A. Stromal Fibroblasts in Cancer: A Novel Tumor-Promoting Cell Type. Cell Cycle 2006, 5, 1597–1601. [Google Scholar] [CrossRef]
- Yang, D.; Liu, J.; Qian, H.; Zhuang, Q. Cancer-Associated Fibroblasts: From Basic Science to Anticancer Therapy. Exp. Mol. Med. 2023, 55, 1322–1332. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Yao, W.; Shi, D.; Shao, X.; Lu, Z.; Chai, Y.; Song, J.; Tang, W.; Wang, X. Mechanism Insights and Therapeutic Intervention of Tumor Metastasis: Latest Developments and Perspectives. Sig. Transduct. Target. Ther. 2024, 9, 192. [Google Scholar] [CrossRef]
- Goldmann, O.; Nwofor, O.V.; Chen, Q.; Medina, E. Mechanisms Underlying Immunosuppression by Regulatory Cells. Front. Immunol. 2024, 15, 1328193. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, R.; Sarvnaz, H.; Arabpour, M.; Ramshe, S.M.; Asef-Kabiri, L.; Yousefi, H.; Akbari, M.E.; Eskandari, N. Cancer Exosomes and Natural Killer Cells Dysfunction: Biological Roles, Clinical Significance and Implications for Immunotherapy. Mol. Cancer 2022, 21, 15. [Google Scholar] [CrossRef] [PubMed]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Malech, H.L.; DeLeo, F.R.; Quinn, M.T. The Role of Neutrophils in the Immune System: An Overview. In Neutrophil Methods and Protocols; Quinn, M.T., DeLeo, F.R., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2014; Volume 1124, pp. 3–10. ISBN 978-1-62703-844-7. [Google Scholar]
- Wolach, O.; Martinod, K. Casting a NET on Cancer: The Multiple Roles for Neutrophil Extracellular Traps in Cancer. Curr. Opin. Hematol. 2022, 29, 53–62. [Google Scholar] [CrossRef]
- Masucci, M.T.; Minopoli, M.; Del Vecchio, S.; Carriero, M.V. The Emerging Role of Neutrophil Extracellular Traps (NETs) in Tumor Progression and Metastasis. Front. Immunol. 2020, 11, 1749. [Google Scholar] [CrossRef]
- Thomas, G.M.; Brill, A.; Mezouar, S.; Crescence, L.; Gallant, M.; Dubois, C.; Wagner, D.D. Tissue Factor Expressed by Circulating Cancer Cell-derived Microparticles Drastically Increases the Incidence of Deep Vein Thrombosis in Mice. J. Thromb. Haemost. 2015, 13, 1310–1319. [Google Scholar] [CrossRef]
- Osaki, M.; Okada, F. Exosomes and Their Role in Cancer Progression. Yonago Acta Med. 2019, 62, 182–190. [Google Scholar] [CrossRef]
- Guo, D.; Lui, G.Y.L.; Lai, S.L.; Wilmott, J.S.; Tikoo, S.; Jackett, L.A.; Quek, C.; Brown, D.L.; Sharp, D.M.; Kwan, R.Y.Q.; et al. RAB27A Promotes Melanoma Cell Invasion and Metastasis via Regulation of Pro-Invasive Exosomes. Int. J. Cancer 2019, 144, 3070–3085. [Google Scholar] [CrossRef]
- Sui, H.; Cui, X.; Shi, C.; Yan, Z.; Li, H.; Wang, F. LRRC75A-AS1 Delivered by M2 Macrophage Exosomes Promotes Cervical Cancer Progression via Enhancing SIX1 Expression. Cancer Sci. 2023, 114, 2634–2649. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; He, Y.; Shao, W. TAM-Derived Exosomal miR-589-3p Accelerates Ovarian Cancer Progression through BCL2L13. J. Ovarian Res. 2025, 18, 36. [Google Scholar] [CrossRef]
- Chen, Y.; Kleeff, J.; Sunami, Y. Pancreatic Cancer Cell- and Cancer-Associated Fibroblast-Derived Exosomes in Disease Progression, Metastasis, and Therapy. Discov. Oncol. 2024, 15, 253. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Cheng, Z.; Xue, K.; Xiong, C.; Zheng, Z.; Jin, X.; Li, J. Tumor-Associated Macrophage-Derived Exosomes LINC01592 Induce the Immune Escape of Esophageal Cancer by Decreasing MHC-I Surface Expression. J. Exp. Clin. Cancer Res. 2023, 42, 289. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, R.; Luo, L.; Hong, J.; Chen, X.; Shen, K.; Wang, Y.; Huang, R.; Wang, Z. An Exosome-Based Specific Transcriptomic Signature for Profiling Regulation Patterns and Modifying Tumor Immune Microenvironment Infiltration in Triple-Negative Breast Cancer. Front. Immunol. 2023, 14, 1295558. [Google Scholar] [CrossRef]
- Zheng, P.; Luo, Q.; Wang, W.; Li, J.; Wang, T.; Wang, P.; Chen, L.; Zhang, P.; Chen, H.; Liu, Y.; et al. Tumor-Associated Macrophages-Derived Exosomes Promote the Migration of Gastric Cancer Cells by Transfer of Functional Apolipoprotein E. Cell Death Dis. 2018, 9, 434. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Chen, L.; Yuan, X.; Luo, Q.; Liu, Y.; Xie, G.; Ma, Y.; Shen, L. Exosomal Transfer of Tumor-Associated Macrophage-Derived miR-21 Confers Cisplatin Resistance in Gastric Cancer Cells. J. Exp. Clin. Cancer Res. 2017, 36, 53. [Google Scholar] [CrossRef]
- Zheng, N.; Wang, T.; Luo, Q.; Liu, Y.; Yang, J.; Zhou, Y.; Xie, G.; Ma, Y.; Yuan, X.; Shen, L. M2 Macrophage-Derived Exosomes Suppress Tumor Intrinsic Immunogenicity to Confer Immunotherapy Resistance. OncoImmunology 2023, 12, 2210959. [Google Scholar] [CrossRef]
- Richards, K.E.; Zeleniak, A.E.; Fishel, M.L.; Wu, J.; Littlepage, L.E.; Hill, R. Cancer-Associated Fibroblast Exosomes Regulate Survival and Proliferation of Pancreatic Cancer Cells. Oncogene 2017, 36, 1770–1778. [Google Scholar] [CrossRef]
- Boelens, M.C.; Wu, T.J.; Nabet, B.Y.; Xu, B.; Qiu, Y.; Yoon, T.; Azzam, D.J.; Twyman-Saint Victor, C.; Wiemann, B.Z.; Ishwaran, H.; et al. Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell 2014, 159, 499–513. [Google Scholar] [CrossRef]
- Jia, Z.-H.; Jia, Y.; Guo, F.-J.; Chen, J.; Zhang, X.-W.; Cui, M.-H. Phosphorylation of STAT3 at Tyr705 Regulates MMP-9 Production in Epithelial Ovarian Cancer. PLoS ONE 2017, 12, e0183622. [Google Scholar] [CrossRef]
- Shi, F.; He, R.; Zhu, J.; Lu, T.; Zhong, L. miR-589-3p Promoted Osteogenic Differentiation of Periodontal Ligament Stem Cells through Targeting ATF1. J. Orthop. Surg. Res. 2022, 17, 221. [Google Scholar] [CrossRef]
- Garzon, R.; Marcucci, G.; Croce, C.M. Targeting microRNAs in Cancer: Rationale, Strategies and Challenges. Nat. Rev. Drug Discov. 2010, 9, 775–789. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Z.; Li, Z.; Li, S.; Wen, Z.; Cao, L.; Chen, Y.; Xue, P.; Li, H.; Zhang, D. Tumor-Associated Macrophages Promote Cholangiocarcinoma Progression via Exosomal Circ_0020256. Cell Death Dis. 2022, 13, 94. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Pfeifer, K.; Park, K.-S. Circular RNAs and Competing Endogenous RNA (ceRNA) Networks. Transl. Cancer Res. 2018, 7, S624–S628. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Xu, H.; Huang, G.; Lin, B. Nasopharyngeal Carcinoma Derived Exosomes Regulate the Proliferation and Migration of Nasopharyngeal Carcinoma Cells by Mediating the miR-99a-5p BAZ2A Axis. Braz. J. Otorhinolaryngol. 2024, 90, 101343. [Google Scholar] [CrossRef]
- Sun, L.-H.; Tian, D.; Yang, Z.-C.; Li, J.-L. Exosomal miR-21 Promotes Proliferation, Invasion and Therapy Resistance of Colon Adenocarcinoma Cells through Its Target PDCD4. Sci. Rep. 2020, 10, 8271. [Google Scholar] [CrossRef] [PubMed]
- Gambari, R.; Brognara, E.; Spandidos, D.A.; Fabbri, E. Targeting oncomiRNAs and Mimicking Tumor Suppressor miRNAs: New Trends in the Development of miRNA Therapeutic Strategies in Oncology (Review). Int. J. Oncol. 2016, 49, 5–32. [Google Scholar] [CrossRef]
- Lyu, C.; Sun, H.; Sun, Z.; Liu, Y.; Wang, Q. Roles of Exosomes in Immunotherapy for Solid Cancers. Cell Death Dis. 2024, 15, 106. [Google Scholar] [CrossRef]
- Wang, X.; Shen, H.; He, Q.; Tian, W.; Xia, A.; Lu, X.-J. Exosomes Derived from Exhausted CD8+ T Cells Impaired the Anticancer Function of Normal CD8+ T Cells. J. Med. Genet. 2019, 56, 29–31. [Google Scholar] [CrossRef]
- Zhang, L.-Z.; Yang, J.-G.; Chen, G.-L.; Xie, Q.-H.; Fu, Q.-Y.; Xia, H.-F.; Li, Y.-C.; Huang, J.; Li, Y.; Wu, M.; et al. PD-1/CD80+ Small Extracellular Vesicles from Immunocytes Induce Cold Tumours Featured with Enhanced Adaptive Immunosuppression. Nat. Commun. 2024, 15, 3884. [Google Scholar] [CrossRef]
- Ye, Z.; Li, G.; Lei, J. Influencing Immunity: Role of Extracellular Vesicles in Tumor Immune Checkpoint Dynamics. Exp. Mol. Med. 2024, 56, 2365–2381. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, W.; Wang, P.; Zhang, Q.; Cong, A.; Yang, X.; Sang, K. LncRNA SNHG11 Aggravates Cell Proliferation and Migration in Triple-negative Breast Cancer via Sponging miR-2355-5p and Targeting CBX5. Exp. Ther. Med. 2021, 22, 892. [Google Scholar] [CrossRef] [PubMed]
- Noreen, S.; Simonelli, N.; Benedetti, R.; Carafa, V.; Grieco, M.; Ambrosino, C.; Dell’Aversana, C.; Nebbioso, A.; Conte, M.; Del Gaudio, N.; et al. Unravelling the Impact of the Chromobox Proteins in Human Cancers. Cell Death Dis. 2025, 16, 238. [Google Scholar] [CrossRef]
- Chapman, N.A.; Dupré, D.J.; Rainey, J.K. The Apelin Receptor: Physiology, Pathology, Cell Signalling, and Ligand Modulation of a Peptide-Activated Class A GPCR. Biochem. Cell Biol. 2014, 92, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Saiki, H.; Hayashi, Y.; Yoshii, S.; Kimura, E.; Nakagawa, K.; Kato, M.; Uema, R.; Inoue, T.; Sakatani, A.; Yoshihara, T.; et al. The Apelin-apelin Receptor Signaling Pathway in Fibroblasts Is Involved in Tumor Growth via P53 Expression of Cancer Cells. Int. J. Oncol. 2023, 63, 139. [Google Scholar] [CrossRef] [PubMed]
- Krishna, B.M.; Jana, S.; Singhal, J.; Horne, D.; Awasthi, S.; Salgia, R.; Singhal, S.S. Notch Signaling in Breast Cancer: From Pathway Analysis to Therapy. Cancer Lett. 2019, 461, 123–131. [Google Scholar] [CrossRef]
- Kahlert, C.; Kalluri, R. Exosomes in Tumor Microenvironment Influence Cancer Progression and Metastasis. J. Mol. Med. 2013, 91, 431–437. [Google Scholar] [CrossRef]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the Immune System in Cancer: From Tumor Initiation to Metastatic Progression. Genes. Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; Huang, L. Exosomes from M1-Polarized Macrophages Potentiate the Cancer Vaccine by Creating a Pro-Inflammatory Microenvironment in the Lymph Node. Mol. Ther. 2017, 25, 1665–1675. [Google Scholar] [CrossRef]
- Roseblade, A.; Luk, F.; Ung, A.; Bebawy, M. Targeting Microparticle Biogenesis: A Novel Approach to the Circumvention of Cancer Multidrug Resistance. Curr. Cancer Drug Targets 2015, 15, 205–214. [Google Scholar] [CrossRef]
- Miallot, R.; Millet, V.; Roger, A.; Fenouil, R.; Tardivel, C.; Martin, J.-C.; Tranchida, F.; Shintu, L.; Berchard, P.; Sousa Lanza, J.; et al. The Coenzyme A Precursor Pantethine Enhances Antitumor Immunity in Sarcoma. Life Sci. Alliance 2023, 6, e202302200. [Google Scholar] [CrossRef] [PubMed]
- Shamseddine, A.A.; Airola, M.V.; Hannun, Y.A. Roles and Regulation of Neutral Sphingomyelinase-2 in Cellular and Pathological Processes. Adv. Biol. Regul. 2015, 57, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Trajkovic, K.; Hsu, C.; Chiantia, S.; Rajendran, L.; Wenzel, D.; Wieland, F.; Schwille, P.; Brügger, B.; Simons, M. Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes. Science 2008, 319, 1244–1247. [Google Scholar] [CrossRef] [PubMed]
- Arenz, C. Small Molecule Inhibitors of Acid Sphingomyelinase. Cell Physiol. Biochem. 2010, 26, 1–8. [Google Scholar] [CrossRef]
- Pisanti, S.; Malfitano, A.M.; Ciaglia, E.; Lamberti, A.; Ranieri, R.; Cuomo, G.; Abate, M.; Faggiana, G.; Proto, M.C.; Fiore, D.; et al. Cannabidiol: State of the Art and New Challenges for Therapeutic Applications. Pharmacol. Ther. 2017, 175, 133–150. [Google Scholar] [CrossRef] [PubMed]
- Im, E.-J.; Lee, C.-H.; Moon, P.-G.; Rangaswamy, G.G.; Lee, B.; Lee, J.M.; Lee, J.-C.; Jee, J.-G.; Bae, J.-S.; Kwon, T.-K.; et al. Sulfisoxazole Inhibits the Secretion of Small Extracellular Vesicles by Targeting the Endothelin Receptor A. Nat. Commun. 2019, 10, 1387. [Google Scholar] [CrossRef]
- Baietti, M.F.; Zhang, Z.; Mortier, E.; Melchior, A.; Degeest, G.; Geeraerts, A.; Ivarsson, Y.; Depoortere, F.; Coomans, C.; Vermeiren, E.; et al. Syndecan–Syntenin–ALIX Regulates the Biogenesis of Exosomes. Nat. Cell Biol. 2012, 14, 677–685. [Google Scholar] [CrossRef]
- Bianco, F.; Perrotta, C.; Novellino, L.; Francolini, M.; Riganti, L.; Menna, E.; Saglietti, L.; Schuchman, E.H.; Furlan, R.; Clementi, E.; et al. Acid Sphingomyelinase Activity Triggers Microparticle Release from Glial Cells. EMBO J. 2009, 28, 1043–1054. [Google Scholar] [CrossRef]
- Kulshreshtha, A.; Singh, S.; Ahmad, M.; Khanna, K.; Ahmad, T.; Agrawal, A.; Ghosh, B. Simvastatin Mediates Inhibition of Exosome Synthesis, Localization and Secretion via Multicomponent Interventions. Sci. Rep. 2019, 9, 16373. [Google Scholar] [CrossRef]
- Datta, A.; Kim, H.; McGee, L.; Johnson, A.E.; Talwar, S.; Marugan, J.; Southall, N.; Hu, X.; Lal, M.; Mondal, D.; et al. High-Throughput Screening Identified Selective Inhibitors of Exosome Biogenesis and Secretion: A Drug Repurposing Strategy for Advanced Cancer. Sci. Rep. 2018, 8, 8161. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Kim, H.; Lal, M.; McGee, L.; Johnson, A.; Moustafa, A.A.; Jones, J.C.; Mondal, D.; Ferrer, M.; Abdel-Mageed, A.B. Manumycin A Suppresses Exosome Biogenesis and Secretion via Targeted Inhibition of Ras/Raf/ERK1/2 Signaling and hnRNP H1 in Castration-Resistant Prostate Cancer Cells. Cancer Lett. 2017, 408, 73–81. [Google Scholar] [CrossRef]
- Sasabe, E.; Tomomura, A.; Liu, H.; Sento, S.; Kitamura, N.; Yamamoto, T. Epidermal Growth Factor/Epidermal Growth Factor Receptor Signaling Blockage Inhibits Tumor Cell-derived Exosome Uptake by Oral Squamous Cell Carcinoma through Macropinocytosis. Cancer Sci. 2022, 113, 609–621. [Google Scholar] [CrossRef]
- De Milito, A.; Fais, S. Tumor Acidity, Chemoresistance and Proton Pump Inhibitors. Future Oncol. 2005, 1, 779–786. [Google Scholar] [CrossRef]
- Wu, B.; Huang, X.; Shi, X.; Jiang, M.; Liu, H.; Zhao, L. LAMTOR1 Decreased Exosomal PD-L1 to Enhance Immunotherapy Efficacy in Non-Small Cell Lung Cancer. Mol. Cancer 2024, 23, 184. [Google Scholar] [CrossRef] [PubMed]
- Federici, C.; Petrucci, F.; Caimi, S.; Cesolini, A.; Logozzi, M.; Borghi, M.; D’Ilio, S.; Lugini, L.; Violante, N.; Azzarito, T.; et al. Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin. PLoS ONE 2014, 9, e88193. [Google Scholar] [CrossRef] [PubMed]
- Hertel, A.; Alves, L.M.; Dutz, H.; Tascher, G.; Bonn, F.; Kaulich, M.; Dikic, I.; Eimer, S.; Steinberg, F.; Bremm, A. USP32-Regulated LAMTOR1 Ubiquitination Impacts mTORC1 Activation and Autophagy Induction. Cell Rep. 2022, 41, 111653. [Google Scholar] [CrossRef] [PubMed]
- Nishida-Aoki, N.; Tominaga, N.; Takeshita, F.; Sonoda, H.; Yoshioka, Y.; Ochiya, T. Disruption of Circulating Extracellular Vesicles as a Novel Therapeutic Strategy against Cancer Metastasis. Mol. Ther. 2017, 25, 181–191. [Google Scholar] [CrossRef]
- Santos, M.F.; Rappa, G.; Fontana, S.; Karbanová, J.; Aalam, F.; Tai, D.; Li, Z.; Pucci, M.; Alessandro, R.; Morimoto, C.; et al. Anti-Human CD9 Fab Fragment Antibody Blocks the Extracellular Vesicle-Mediated Increase in Malignancy of Colon Cancer Cells. Cells 2022, 11, 2474. [Google Scholar] [CrossRef]
- Nigri, J.; Leca, J.; Tubiana, S.-S.; Finetti, P.; Guillaumond, F.; Martinez, S.; Lac, S.; Iovanna, J.L.; Audebert, S.; Camoin, L.; et al. CD9 Mediates the Uptake of Extracellular Vesicles from Cancer-Associated Fibroblasts That Promote Pancreatic Cancer Cell Aggressiveness. Sci. Signal 2022, 15, eabg8191. [Google Scholar] [CrossRef]
- Suwatthanarak, T.; Ito, K.; Tanaka, M.; Sugiura, K.; Hoshino, A.; Miyamoto, Y.; Miyado, K.; Okochi, M. A Peptide Binding to the Tetraspanin CD9 Reduces Cancer Metastasis. Biomater. Adv. 2023, 146, 213283. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Christianson, H.C.; Svensson, K.J.; van Kuppevelt, T.H.; Li, J.-P.; Belting, M. Cancer Cell Exosomes Depend on Cell-Surface Heparan Sulfate Proteoglycans for Their Internalization and Functional Activity. Proc. Natl. Acad. Sci. USA 2013, 110, 17380–17385. [Google Scholar] [CrossRef]
- Atai, N.A.; Balaj, L.; van Veen, H.; Breakefield, X.O.; Jarzyna, P.A.; Van Noorden, C.J.F.; Skog, J.; Maguire, C.A. Heparin Blocks Transfer of Extracellular Vesicles between Donor and Recipient Cells. J. Neurooncol 2013, 115, 343–351. [Google Scholar] [CrossRef]
- Kimura, H.; Yamamoto, H.; Harada, T.; Fumoto, K.; Osugi, Y.; Sada, R.; Maehara, N.; Hikita, H.; Mori, S.; Eguchi, H.; et al. CKAP4, a DKK1 Receptor, Is a Biomarker in Exosomes Derived from Pancreatic Cancer and a Molecular Target for Therapy. Clin. Cancer Res. 2019, 25, 1936–1947. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, V.; Burger, J.A. Bendamustine in B-Cell Malignancies: The New 46-Year-Old Kid on the Block. Clin. Cancer Res. 2009, 15, 7456–7461. [Google Scholar] [CrossRef] [PubMed]
- Batista, B.S.; Eng, W.S.; Pilobello, K.T.; Hendricks-Muñoz, K.D.; Mahal, L.K. Identification of a Conserved Glycan Signature for Microvesicles. J. Proteome Res. 2011, 10, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Lentz, M.R. The Role of Therapeutic Apheresis in the Treatment of Cancer: A Review. Ther. Apher. 1999, 3, 40–49. [Google Scholar] [CrossRef]
- Brodowicz, T.; Wiltschke, C.; Budinsky, A.C.; Krainer, M.; Steger, G.G.; Zielinski, C.C. Soluble HER-2/Neu Neutralizes Biologic Effects of Anti-HER-2/Neu Antibody on Breast Cancer Cells In Vitro. Int. J. Cancer 1997, 73, 875–879. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Montgomery, K.C.; Jiang, L.; Lyon, C.J.; Hu, T.Y. Advanced Technologies for Molecular Diagnosis of Cancer: State of Pre-Clinical Tumor-Derived Exosome Liquid Biopsies. Mater. Today Bio 2023, 18, 100538. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Chen, Z. Emerging Role of Exosomes in Cancer Therapy: Progress and Challenges. Mol. Cancer 2025, 24, 13. [Google Scholar] [CrossRef]
- Kibria, G.; Ramos, E.K.; Wan, Y.; Gius, D.R.; Liu, H. Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Mol. Pharm. 2018, 15, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jang, H.; Cho, H.; Choi, J.; Hwang, K.Y.; Choi, Y.; Kim, S.H.; Yang, Y. Recent Advances in Exosome-Based Drug Delivery for Cancer Therapy. Cancers 2021, 13, 4435. [Google Scholar] [CrossRef]
- Johnsen, K.B.; Gudbergsson, J.M.; Skov, M.N.; Pilgaard, L.; Moos, T.; Duroux, M. A Comprehensive Overview of Exosomes as Drug Delivery Vehicles—Endogenous Nanocarriers for Targeted Cancer Therapy. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2014, 1846, 75–87. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S.; Sun, M.; Cui, Y.; Xing, J.; Teng, L.; Xi, Z.; Yang, Z. Exosomes as Smart Drug Delivery Vehicles for Cancer Immunotherapy. Front. Immunol. 2023, 13, 1093607. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, Y.; Xue, Z.; Li, P.; Li, J.; Li, F. Roles of Exosomes as Drug Delivery Systems in Cancer Immunotherapy: A Mini-Review. Discov. Onc 2022, 13, 74. [Google Scholar] [CrossRef]
- Kim, H.I.; Park, J.; Zhu, Y.; Wang, X.; Han, Y.; Zhang, D. Recent Advances in Extracellular Vesicles for Therapeutic Cargo Delivery. Exp. Mol. Med. 2024, 56, 836–849. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, H.; Tang, K.; Huang, B. Tumor-derived Microparticles in Tumor Immunology and Immunotherapy. Eur. J. Immunol. 2020, 50, 1653–1662. [Google Scholar] [CrossRef] [PubMed]


| Immune Cell | Upregulated EV Cargo | Effect/Mechanism | Relevant Studies |
|---|---|---|---|
| T cells | PD-L1 | Inhibits T cell activation/cytotoxicity via PD-1 pathway, promotes exhaustion, immune evasion | [16,17,18,19,20] |
| Fas Ligand (FasL) | Induces apoptosis of activated or CD8+ T cells | [21,22] | |
| TGF-β, miR-503, miR-21, miR-24 | Promotes T cell dysfunction, arrest of activation, exhaustion or suppressor phenotype | [23,24,25,26] | |
| Tenascin-C | Blocks T cell activation, cytokine release, and supports immune escape | [27,28] | |
| Mutant p53 | Inhibits T cell proliferation and activation | [29] | |
| TSH/TSHR signaling | Drives T cell exhaustion phenotype, promoting immune evasion | [30] | |
| Various miRNAs | Directly induce T cell suppression, exhaustion, or apoptosis | [19,24,26] | |
| Macrophages and MDSCs | miR-21, miR-155, miR-10a | Induces M2 (protumor) polarization, activates immunosuppressive phenotype | [25,31,32,33,34] |
| TRIM59 | Activates NLRP3 inflammasome, supports tumor growth | [35] | |
| HSP72, TGF-β | Activates STAT3 in myeloid cells, expands/improves MDSC activity | [36,37] | |
| Dendritic Cells | TGF-β, miRNAs | Inhibit maturation, antigen presentation; promote tolerogenic phenotype | [38,39,40] |
| Fibroblasts | TGF-β, miR-9, miR-21, miR-200 | Induce transdifferentiation into CAFs and promote tumor-supportive microenvironment | [41,42,43] |
| Regulatory B Cells | HMGB1 | Expands TIM-1+ regulatory B cells, promotes immunosuppression | [44] |
| Natural Killer Cells | MICA/B, TGF-β | Downregulates NKG2D, impairs cytotoxicity; TGF-β drives dysfunction | [45,46] |
| Neutrophils | Tissue Factor (TF), NET components | Induces NET formation, enhances thrombosis, and supports metastasis | [47] |
| Neighboring Cancer Cells | HSP90α, miR-342-3p, miR-1246 | Promotes cancer cell proliferation and migration. | [48,49] |
| Donor Cells | Upregulated EV Cargo | Impact on Cancer Cells | Cancer Type | Relevant Studies |
|---|---|---|---|---|
| M2 and TAM | lncRNA LRRC75A-AS1 | Enhances SIX1 expression, promoting proliferation and invasion | Cervical cancer | [111] |
| miR-589-3p | Targets BCL2L13 to promote proliferation and metastasis | Ovarian cancer | [112] | |
| circ_0020256 | Activates MEK/ERK signaling, increasing proliferation and migration | Cholangiocarcinoma | [113] | |
| LINC01592 | Decreases MHC-I surface expression, inducing immune escape | Esophageal cancer | [114] | |
| miR-223-3p | Promotes pulmonary metastasis | Breast cancer | [115] | |
| Apolipoprotein E | Promotes cancer cell migration | Gastric cancer | [116] | |
| miR-21 | Confers cisplatin resistance | Gastric cancer | [117] | |
| Immunosuppressive miRNAs | Suppresses tumor immunogenicity and induces immunotherapy resistance | Multiple cancers | [118] | |
| CAF and Stromal | Pro-survival miRNAs and proteins | Enhance survival and proliferation of pancreatic cancer cells | Pancreatic cancer | [119] |
| Integrins, regulatory miRNAs, and proteins | Promote metastasis and treatment resistance | Pancreatic cancer | [113] | |
| RNA and protein cargos activating DNA damage repair pathways | Induce therapy resistance via stromal-to-tumor EV transfer | Breast cancer | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad, S.H.; Kashanchi, A.; Zadeh, M.A.; Williams, A.; Batrakova, E.V. Exosome-Mediated Crosstalk Between Cancer Cells and Tumor Microenvironment. Cells 2025, 14, 1750. https://doi.org/10.3390/cells14221750
Saad SH, Kashanchi A, Zadeh MA, Williams A, Batrakova EV. Exosome-Mediated Crosstalk Between Cancer Cells and Tumor Microenvironment. Cells. 2025; 14(22):1750. https://doi.org/10.3390/cells14221750
Chicago/Turabian StyleSaad, Sara H., Alex Kashanchi, Mohammad Asad Zadeh, Anastasia Williams, and Elena V. Batrakova. 2025. "Exosome-Mediated Crosstalk Between Cancer Cells and Tumor Microenvironment" Cells 14, no. 22: 1750. https://doi.org/10.3390/cells14221750
APA StyleSaad, S. H., Kashanchi, A., Zadeh, M. A., Williams, A., & Batrakova, E. V. (2025). Exosome-Mediated Crosstalk Between Cancer Cells and Tumor Microenvironment. Cells, 14(22), 1750. https://doi.org/10.3390/cells14221750

