Polo-like Kinase 1 Activation Regulates Angiotensin II-Induced Contraction in Pudendal and Small Mesenteric Arteries from Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. PLK1 Expression
2.2.1. RNA Extraction and RT-qPCR
Agarose Gel Electrophoresis (Qualitative Verification)
2.2.2. Western Blotting
2.3. Evaluation of the Role of PLK1 in Agonist-Mediated Contractions
2.3.1. Vascular Studies Using SMA and PA
2.3.2. Corpus Cavernosal Studies
2.3.3. Concentration-Response Curves
2.3.4. Corpus Cavernosum Contractile Responses to Electrical Field Stimulation
2.4. Statistical Analysis
3. Results
3.1. PLK1 mRNA and PLK1 Protein Expression
3.2. PLK1 Inhibition Did Not Affect the Contraction Induced by PE in PA and SMA
3.3. The Vascular Contractions Induced by U46619 Were Not Attenuated by PLK1 Inhibitor in PA and SMA
3.4. PLK1 Was Involved in the Contraction Induced by Ang II in PA and SMA
3.5. The Contraction Induced by PE Was Not Changed by PLK1 Inhibition in CC
3.6. PLK1 Was Not Involved in the Contraction Induced by 5-HT in CC
3.7. PLK1 Inhibition in CC Attenuated the Contractile Responses to Electrical Field Stimulation at 2 and 4 Hz
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Sun, Q.; Wang, X. PLK1, A Potential Target for Cancer Therapy. Transl. Oncol. 2017, 10, 22–32. [Google Scholar] [CrossRef]
- Schmucker, S.; Sumara, I. Molecular dynamics of PLK1 during mitosis. Mol. Cell Oncol. 2014, 1, e954507. [Google Scholar] [CrossRef]
- van de Weerdt, B.C.M.; Medema, R.H. Polo-Like Kinases: A Team in Control of the Division. Cell Cycle 2006, 5, 853–864. [Google Scholar] [CrossRef]
- Shakeel, I.; Basheer, N.; Hasan, G.M.; Afzal, M.; Hassan, M.I. Polo-like Kinase 1 as an emerging drug target: Structure, function and therapeutic implications. J. Drug Target. 2021, 29, 168–184. [Google Scholar] [CrossRef] [PubMed]
- Colicino, E.G.; Hehnly, H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton 2018, 75, 481–494. [Google Scholar] [CrossRef]
- Xu, J.; Shen, C.; Wang, T.; Quan, J. Structural basis for the inhibition of Polo-like kinase 1. Nat. Struct. Mol. Biol. 2013, 20, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, R.; Gannon, O.J.; Rezey, A.C.; Jiang, S.; Gerlach, B.D.; Liao, G.; Tang, D.D. Polo-like Kinase 1 Regulates Vimentin Phosphorylation at Ser-56 and Contraction in Smooth Muscle. J. Biol. Chem. 2016, 291, 23693–23703. [Google Scholar] [CrossRef] [PubMed]
- Winkles, J.A.; Alberts, G.F. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues. Oncogene 2005, 24, 260–266. [Google Scholar] [CrossRef]
- Hennenberg, M.; Kuppermann, P.; Yu, Q.; Herlemann, A.; Tamalunas, A.; Wang, Y.; Rutz, B.; Ciotkowska, A.; Strittmatter, F.; Stief, C.G.; et al. Inhibition of Prostate Smooth Muscle Contraction by Inhibitors of Polo-Like Kinases. Front. Physiol. 2018, 9, 734. [Google Scholar] [CrossRef]
- Wilson, J.L.; Wang, L.; Zhang, Z.; Hill, N.S.; Polgar, P. Participation of PLK1 and FOXM1 in the hyperplastic proliferation of pulmonary artery smooth muscle cells in pulmonary arterial hypertension. PLoS ONE 2019, 14, e0221728. [Google Scholar] [CrossRef]
- Sur, S.; Swier, V.J.; Radwan, M.M.; Agrawal, D.K. Increased Expression of Phosphorylated Polo-Like Kinase 1 and Histone in Bypass Vein Graft and Coronary Arteries following Angioplasty. PLoS ONE 2016, 11, e0147937. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.W.; Wang, B.C.; Weng, Z.Q.; Zhu, X.W. Clinicopathological significance of Polo-like kinase 1 (PLK1) expression in human malignant glioma. Acta Histochem. 2012, 114, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Sano, B.; Nagata, T.; Kato, H.; Sugiyama, Y.; Kunieda, K.; Kimura, M.; Okano, Y.; Saji, S. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci. 2003, 94, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Weichert, W.; Schmidt, M.; Gekeler, V.; Denkert, C.; Stephan, C.; Jung, K.; Loening, S.; Dietel, M.; Kristiansen, G. Polo-like kinase 1 is overexpressed in prostate cancer and linked to higher tumor grades. Prostate 2004, 60, 240–245. [Google Scholar] [CrossRef]
- Weichert, W.; Kristiansen, G.; Winzer, K.J.; Schmidt, M.; Gekeler, V.; Noske, A.; Müller, B.-M.; Niesporek, S.; Dietel, M.; Denkert, C. Polo-like kinase isoforms in breast cancer: Expression patterns and prognostic implications. Virchows Arch. 2005, 446, 442–450. [Google Scholar] [CrossRef]
- Liu, X. Targeting Polo-Like Kinases: A Promising Therapeutic Approach for Cancer Treatment. Transl. Oncol. 2015, 8, 185–195. [Google Scholar] [CrossRef]
- Su, S.; Chhabra, G.; Singh, C.K.; Ndiaye, M.A.; Ahmad, N. PLK1 inhibition-based combination therapies for cancer management. Transl. Oncol. 2022, 16, 101332. [Google Scholar] [CrossRef]
- Rudolph, D.; Steegmaier, M.; Hoffmann, M.; Grauert, M.; Baum, A.; Quant, J.; Haslinger, C.; Garin-Chesa, P.; Adolf, G.R. BI 6727, A Polo-like Kinase Inhibitor with Improved Pharmacokinetic Profile and Broad Antitumor Activity. Clin. Cancer Res. 2009, 15, 3094–3102. [Google Scholar] [CrossRef]
- de Cárcer, G.; Wachowicz, P.; Martínez-Martínez, S.; Oller, J.; Méndez-Barbero, N.; Escobar, B.; González-Loyola, A.; Takaki, T.; El Bakkali, A.; A Cámara, J.; et al. Plk1 regulates contraction of postmitotic smooth muscle cells and is required for vascular homeostasis. Nat. Med. 2017, 23, 964–974. [Google Scholar] [CrossRef]
- Calmasini, F.B.; Klee, N.; Webb, R.C.; Priviero, F. Impact of Immune System Activation and Vascular Impairment on Male and Female Sexual Dysfunction. Sex. Med. Rev. 2019, 7, 604–613. [Google Scholar] [CrossRef]
- Manabe, K.; Heaton, J.P.W.; Morales, A.; Kumon, H.; Adams, M.A. Pre-penile arteries are dominant in the regulation of penile vascular resistance in the rat. Int. J. Impot. Res. 2000, 12, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Sangiorgi, G.; Cereda, A.; Benedetto, D.; Bonanni, M.; Chiricolo, G.; Cota, L.; Martuscelli, E.; Greco, F. Anatomy, Pathophysiology, Molecular Mechanisms, and Clinical Management of Erectile Dysfunction in Patients Affected by Coronary Artery Disease: A Review. Biomedicines 2021, 9, 432. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Kabotyanski, E.B.; Shepherd, J.H.; Villegas, E.; Acosta, D.; Hamor, C.; Sun, T.; Montmeyor-Garcia, C.; He, X.; Dobrolecki, L.E.; et al. Tumor Suppressor PLK2 May Serve as a Biomarker in Triple-Negative Breast Cancer for Improved Response to PLK1 Therapeutics. Cancer Res. Commun. 2021, 1, 178–193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, Y.; Xu, N.; Wang, J.; Yao, T.; Xu, Y.; Qiao, D.; Gao, J.; Shen, S.; Ma, J. PLK1 Mitigates Intervertebral Disc Degeneration by Delaying Senescence of Nucleus Pulposus Cells. Front. Cell Dev. Biol. 2022, 10, 819262. [Google Scholar] [CrossRef]
- Du, Y.; Shang, Y.; Qian, Y.; Guo, Y.; Chen, S.; Lin, X.; Cao, W.; Tang, X.; Zhou, A.; Huang, S.; et al. Plk1 promotes renal tubulointerstitial fibrosis by targeting autophagy/lysosome axis. Cell Death Dis. 2023, 14, 571. [Google Scholar] [CrossRef]
- Mulvany, M.J.; Halpern, W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 1977, 41, 19–26. [Google Scholar] [CrossRef]
- Priviero, F.; Calmasini, F.; Dela Justina, V.; Wenceslau, C.F.; McCarthy, C.G.; Webb, R.C. Macrophage-Specific Toll Like Receptor 9 (TLR9) Causes Corpus Cavernosum Dysfunction in Mice Fed a High Fat Diet. J. Sex. Med. 2021, 18, 723–731. [Google Scholar] [CrossRef]
- Claudino, M.A.; Delbin, M.A.; Franco-Penteado, C.F.; Priviero, F.B.; De Nucci, G.; Antunes, E.; Zanesco, A. Exercise training ameliorates the impairment of endothelial and nitrergic corpus cavernosum responses in diabetic rats. Life Sci. 2011, 88, 272–277. [Google Scholar] [CrossRef]
- Liu, Z.; Khalil, R.A. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem. Pharmacol. 2018, 153, 91–122. [Google Scholar] [CrossRef]
- Nunes, K.P.; de Oliveira, A.A.; Szasz, T.; Biancardi, V.C.; Webb, R.C. Blockade of Toll-Like Receptor 4 Attenuates Erectile Dysfunction in Diabetic Rats. J. Sex. Med. 2018, 15, 1235–1245. [Google Scholar] [CrossRef]
- Comerma-Steffensen, S.; Prat-Duran, J.; Mogensen, S.; Fais, R.; Pinilla, E.; Simonsen, U. Erectile Dysfunction and Altered Contribution of KCa1.1 and KCa2.3 Channels in the Penile Tissue of Type-2 Diabetic db/db Mice. J. Sex. Med. 2022, 19, 697–710. [Google Scholar] [CrossRef]
- Rodrigues, F.L.; Lopes, R.A.M.; Fais, R.S.; de Oliveira, L.; Prado, C.M.; Tostes, R.C.; Carneiro, F.S. Erectile dysfunction in heart failure rats is associated with increased neurogenic contractions in cavernous tissue and internal pudendal artery. Life Sci. 2016, 145, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Gjertsen, B.T.; Schöffski, P. Discovery and development of the Polo-like kinase inhibitor volasertib in cancer therapy. Leukemia 2015, 29, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Sopko, N.A.; Hannan, J.L.; Bivalacqua, T.J. Understanding and targeting the Rho kinase pathway in erectile dysfunction. Nat. Rev. Urol. 2014, 11, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, F.S.; Giachini, F.R.C.; Lima, V.V.; Carneiro, Z.N.; Leite, R.; Inscho, E.W.; Tostes, R.C.; Webb, R.C. Adenosine Actions are Preserved in Corpus Cavernosum from Obese and Type II Diabetic db/db Mouse. J. Sex. Med. 2008, 5, 1156–1166. [Google Scholar] [CrossRef]
- Perez, D.M. α1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 4188. [Google Scholar] [CrossRef]
- Overgaard, C.B.; Džavík, V. Inotropes and Vasopressors. Circulation 2008, 118, 1047–1056. [Google Scholar] [CrossRef]
- Thiele, R.H.; Nemergut, E.C.; Lynch, C. The Clinical Implications of Isolated Alpha1 Adrenergic Stimulation. Anesth. Analg. 2011, 113, 297–304. [Google Scholar] [CrossRef]
- Grann, M.; Comerma-Steffensen, S.; Arcanjo, D.D.R.; Simonsen, U. Mechanisms Involved in Thromboxane A 2-induced Vasoconstriction of Rat Intracavernous Small Penile Arteries. Basic. Clin. Pharmacol. Toxicol. 2016, 119, 86–95. [Google Scholar] [CrossRef]
- Villalba, N.; Kun, A.; Stankevicius, E.; Simonsen, U. Role for Tyrosine Kinases in Contraction of Rat Penile Small Arteries. J. Sex. Med. 2010, 7, 2086–2095. [Google Scholar] [CrossRef]
- Jin, L. Angiotensin II Signaling and Its Implication in Erectile Dysfunction. J. Sex. Med. 2009, 6, 302–310. [Google Scholar] [CrossRef]
- Ismail, S.B.; Noor, N.M.; Hussain, N.H.N.; Sulaiman, Z.; Shamsudin, M.A.; Irfan, M. Angiotensin Receptor Blockers for Erectile Dysfunction in Hypertensive Men: A Brief Meta-Analysis of Randomized Control Trials. Am. J. Mens. Health 2019, 13, 155798831989273. [Google Scholar] [CrossRef]
- St. Paul, A.; Corbett, C.B.; Okune, R.; Autieri, M.V. Angiotensin II, Hypercholesterolemia, and Vascular Smooth Muscle Cells: A Perfect Trio for Vascular Pathology. Int. J. Mol. Sci. 2020, 21, 4525. [CrossRef]
- Kifor, I.; Williams, G.H.; Vickers, M.A.; Sullivan, M.P.; Jodbert, P.; Dluhy, R.G. Tissue angiotensin II as a modulator of erectile function. I. Angiotensin peptide content, secretion and effects in the corpus cavernosum. J. Urol. 1997, 157, 1920–1925. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.J.; Ückert, S.; Stief, C.G.; Truss, M.C.; Machtens, S.; Scheller, F.; Knapp, W.H.; Hartmann, U.; Jonas, U. Possible role of bradykinin and angiotensin II in the regulation of penile erection and detumescence. Urology 2001, 57, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.J.; Ückert, S.; Stief, C.G.; Scheller, F.; Knapp, W.H.; Hartmann, U.; Jonas, U. Plasma levels of angiotensin II during different penile conditions in the cavernous and systemic blood of healthy men and patients with erectile dysfunction. Urology 2001, 58, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Lagoda, G.; Leite, R.; Webb, R.C.; Burnett, A.L. NADPH Oxidase Activation: A Mechanism of Hypertension-Associated Erectile Dysfunction. J. Sex. Med. 2008, 5, 544–551. [Google Scholar] [CrossRef]
- Ertemi, H.; Mumtaz, F.H.; Howie, A.J.; Mikhailidis, D.P.; Thompson, C.S. Effect of Angiotensin II and its Receptor Antagonists on Human Corpus Cavernous Contractility and Oxidative Stress: Modulation of Nitric Oxide Mediated Relaxation. J. Urol. 2011, 185, 2414–2420. [Google Scholar] [CrossRef]
- Comiter, C.; Sullivan, M.; Yalla, S.; Kifor, I. Effect of angiotensin II on corpus cavernosum smooth muscle in relation to nitric oxide environment: In vitro studies in canines. Int. J. Impot. Res. 1997, 9, 135–140. [Google Scholar] [CrossRef]
- Park, J.K.; Kim, S.Z.; Kim, S.H.; Park, Y.K.; Cho, K.W. Renin Angiotensin System in Rabbit Corpus Cavernosum: Functional Characterization of Angiotensin II Receptors. J. Urol. 1997, 158, 653–658. [Google Scholar] [CrossRef]
- Tee, B.H.; Hoe, S.Z.; Cheah, S.H.; Lam, S.K. Effects of Root Extracts of Eurycoma longifolia Jack on Corpus Cavernosum of Rat. Med. Princ. Pract. 2017, 26, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.C.; Wang, C.J.; Chan, P.; Cheng, J.T. Effect of N-(Biphenylyl-Methyl)Imidazole, a Type 1 Angiotensin II Receptor Inhibitor, on the Contractile Function of the Rat Corpus cavernosum. Urol. Int. 2000, 64, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Nunes, K.P.; Bomfim, G.F.; Toque, H.A.; Szasz, T.; Clinton Webb, R. Toll-like receptor 4 (TLR4) impairs nitric oxide contributing to Angiotensin II-induced cavernosal dysfunction. Life Sci. 2017, 191, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.D.; Liao, G.; Gerlach, B.D. Reorganization of the Vimentin Network in Smooth Muscle. J. Eng. Sci. Med. Diagn. Ther. 2019, 2, 010801. [Google Scholar] [CrossRef]
- Tsuda, T.; Griendling, K.K.; Alexander, R.W. Angiotensin II stimulates vimentin phosphorylation via a Ca2+-dependent, protein kinase C-independent mechanism in cultured vascular smooth muscle cells. J. Biol. Chem. 1988, 263, 19758–19763. [Google Scholar] [CrossRef]
- Vazquez-Martin, A.; Cufí, S.; Oliveras-Ferraros, C.; Menendez, J.A. Polo-like kinase 1 directs the AMPK-mediated activation of myosin regulatory light chain at the cytokinetic cleavage furrow independently of energy balance. Cell Cycle 2012, 11, 2422–2426. [Google Scholar] [CrossRef]
- Yu, H.; Chakravorty, S.; Song, W.; Ferenczi, M.A. Phosphorylation of the regulatory light chain of myosin in striated muscle: Methodological perspectives. Eur. Biophys. J. 2016, 45, 779–805. [Google Scholar] [CrossRef]
- Matsui, T.S.; Deguchi, S. Spatially selective myosin regulatory light chain regulation is absent in dedifferentiated vascular smooth muscle cells but is partially induced by fibronectin and Klf4. Am. J. Physiol.-Cell Physiol. 2019, 316, C509–C521. [Google Scholar] [CrossRef]
- Moon, J.H.; Oh, C.; Kim, H. Serotonin in the regulation of systemic energy metabolism. J. Diabetes Investig. 2022, 13, 1639–1645. [Google Scholar] [CrossRef]
- Lau, D.H.W.; Thompson, C.S.; Mumtaz, F.H.; Morgan, R.J.; Mikhailidis, D.P. Serotonin Induces a Biphasic Response in Rabbit Cavernosal Smooth Muscle: Relevance to the Erectile Process. Urol. Int. 2007, 79, 255–261. [Google Scholar] [CrossRef]
- Ückert, S.; Fuhlenriede, M.H.; Becker, A.J.; Stief, C.G.; Scheller, F.; Knapp, W.H.; Forssmann, W.G.; Jonas, U. Is serotonin significant for the control of penile flaccidity and detumescence in the human male? Urol. Res. 2003, 31, 55–60. [Google Scholar] [CrossRef]
- Murat, N.; Soner, B.C.; Demir, O.; Esen, A.; Gidener, S. Contractility of Diabetic Human Corpus Cavernosum Smooth Muscle in Response to Serotonin Mediated via Rho-Kinase. Pharmacology 2009, 84, 24–28. [Google Scholar] [CrossRef]
- Furukawa, K.; Nagao, K.; Ishii, N.; Uchiyama, T. Responses to serotonin (5HT) in isolated corpus cavernosum penis of rabbit. Int. J. Impot. Res. 2003, 15, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.R.; Mercer, M.; Harraz, O.F.; Hollywood, M.A.; Sergeant, G.P.; Thornbury, K.D. Evidence of an excitatory purinergic innervation in mouse corpus cavernosum smooth muscle. J. Sex. Med. 2024, 21, 977–985. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, Y.; Qian, J.; Si, Y.; Wang, C.; Wang, J.; He, Q.; Ma, J. Animal models in the study of diabetic erectile dysfunction: Mechanisms and applications. Front. Endocrinol. 2025, 16, 1512360. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Ryu, J.; Shin, H.; Han, J.; Lee, H.; Suh, J. The mouse as a model for the study of penile erection: Moving towards a smaller animal. Int. J. Androl. 2007, 30, 452–457. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moraes, R.A.; Arishe, O.O.; Pratt, J.; Wilczynski, S.; dos Passos, R.R.; Silva-Velasco, D.L.; Gonçalves, T.T.; Zhang, T.; Silva, D.F.; Webb, R.C.; et al. Polo-like Kinase 1 Activation Regulates Angiotensin II-Induced Contraction in Pudendal and Small Mesenteric Arteries from Mice. Cells 2025, 14, 1741. https://doi.org/10.3390/cells14211741
Moraes RA, Arishe OO, Pratt J, Wilczynski S, dos Passos RR, Silva-Velasco DL, Gonçalves TT, Zhang T, Silva DF, Webb RC, et al. Polo-like Kinase 1 Activation Regulates Angiotensin II-Induced Contraction in Pudendal and Small Mesenteric Arteries from Mice. Cells. 2025; 14(21):1741. https://doi.org/10.3390/cells14211741
Chicago/Turabian StyleMoraes, Raiana Anjos, Olufunke O. Arishe, James Pratt, Stephanie Wilczynski, Rinaldo Rodrigues dos Passos, Diana L. Silva-Velasco, Tiago Tomazini Gonçalves, Tianxin Zhang, Darizy Flavia Silva, R. Clinton Webb, and et al. 2025. "Polo-like Kinase 1 Activation Regulates Angiotensin II-Induced Contraction in Pudendal and Small Mesenteric Arteries from Mice" Cells 14, no. 21: 1741. https://doi.org/10.3390/cells14211741
APA StyleMoraes, R. A., Arishe, O. O., Pratt, J., Wilczynski, S., dos Passos, R. R., Silva-Velasco, D. L., Gonçalves, T. T., Zhang, T., Silva, D. F., Webb, R. C., & Priviero, F. (2025). Polo-like Kinase 1 Activation Regulates Angiotensin II-Induced Contraction in Pudendal and Small Mesenteric Arteries from Mice. Cells, 14(21), 1741. https://doi.org/10.3390/cells14211741

