Beyond Tumor Suppression: The Multifaceted Functions of HOPX in Tissue Differentiation, Metabolism, and Immunity
Abstract
1. Introduction
2. Identification of the HOPX Gene
3. HOPX in Tissue Differentiation and Proliferation
3.1. HOPX in Epithelial Tissue Differentiation and Development
3.2. HOPX in Connective Tissue Differentiation
3.3. HOPX in Muscle Tissue Differentiation and Development
3.4. HOPX in Nerve Tissue Differentiation
4. HOPX in Metabolism
5. HOPX and Carcinogenesis
5.1. Tumor-Inhibitory Function of HOPX
5.2. Tumor-Promoting Function of HOPX
5.3. HOPX in the Tumor Microenvironment (TME)
6. HOPX and Immunity
6.1. Expression of Hopx in Cells of the Immune System
6.2. Involvement of Hopx in Immune Cell Proliferation and Differentiation
6.3. Hopx in Differentiated CD4+ and CD8+ Cells, as Well as NK Cells: A Potential Enhancer in Anticancer Immunity
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
| AAs | Amino acids |
| ADC | Adenocarcinoma |
| AML | Acute myeloid leukemia |
| BTLA/HVEM | B and T Lymphocyte Associated/herpesvirus entry mediator |
| CAF | Cancer-associated fibroblast |
| CD8 | Cluster of differentiation 8 |
| CRC | Colorectal cancer |
| EGFR-TKI | Epidermal growth factor receptor tyrosine kinase inhibitor |
| FOXG1 | Forkhead box G1 |
| GATA6 | GATA binding protein 6 |
| GBM | Glioblastoma multiforme |
| GRHL3 | Grainyhead-like 3 |
| HOPX | Homeodomain only protein X |
| HSC | Hematopoietic stem cell |
| ITGA4 | Integrin subunit alpha 4 |
| NCAM | Neural cell adhesion molecule |
| NK cells | Nature killer cells |
| NPC | Nasopharyngeal carcinoma |
| NSC | Quiescent neural stem cells |
| SCC | Squamous cell carcinomas |
| scRNA-seq | Single-cell RNA-sequencing |
| SKCM | Skin cutaneous melanoma |
| SRF | Serum response factor |
| T-ALL | T cell acute lymphoblastic leukemia |
| Th cells | T helper cells |
| TME | Tumor microenvironment |
| Treg cells | Regulatory T cell |
References
- Holland, P.W.H. Evolution of Homeobox Genes. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 31–45. [Google Scholar] [CrossRef]
- Akin, Z.N.; Nazarali, A.J. Hox Genes and Their Candidate Downstream Targets in the Developing Central Nervous System. Cell. Mol. Neurobiol. 2005, 25, 697–741. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W. The Role of HOPX in Normal Tissues and Tumor Progression. Biosci. Rep. 2020, 40, BSR20191953. [Google Scholar] [CrossRef]
- Gorski, D.H.; Walsh, K. The Role of Homeobox Genes in Vascular Remodeling and Angiogenesis. Circ. Res. 2000, 87, 865–872. [Google Scholar] [CrossRef]
- Oriente, F.; Perruolo, G.; Cimmino, I.; Cabaro, S.; Liotti, A.; Longo, M.; Miele, C.; Formisano, P.; Beguinot, F. Prep1, A Homeodomain Transcription Factor Involved in Glucose and Lipid Metabolism. Front. Endocrinol. 2018, 9, 346. [Google Scholar] [CrossRef]
- Stoffers, D.A.; Thomas, M.K.; Habener, J.F. Homeodomain Protein IDX-1: A Master Regulator of Pancreas Development and Insulin Gene Expression. Trends Endocrinol. Metab. 1997, 8, 145–151. [Google Scholar] [CrossRef]
- Pramfalk, C.; Eriksson, M.; Parini, P. Role of TG-Interacting Factor (Tgif) in Lipid Metabolism. Biochim. Biophys. Acta BBA—Mol. Cell Biol. Lipids 2015, 1851, 9–12. [Google Scholar] [CrossRef]
- Procino, A.; Cillo, C. The HOX Genes Network in Metabolic Diseases. Cell Biol. Int. 2013, 37, 1145–1148. [Google Scholar] [CrossRef]
- Li, G.; Wan, Y.; Jiao, A.; Jiang, K.; Cui, G.; Tang, J.; Yu, S.; Hu, Z.; Zhao, S.; Yi, Z.; et al. Breaking Boundaries: Chronic Diseases and the Frontiers of Immune Microenvironments. Med Res. 2025, 1, 62–102. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, A.; Yuan, Y.; Zhu, B.; Long, H. Heterogeneity of the Tumor Immune Microenvironment and Its Clinical Relevance. Exp. Hematol. Oncol. 2022, 11, 24. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Sadeghi Rad, H.; Monkman, J.; Warkiani, M.E.; Ladwa, R.; O’Byrne, K.; Rezaei, N.; Kulasinghe, A. Understanding the Tumor Microenvironment for Effective Immunotherapy. Med. Res. Rev. 2021, 41, 1474–1498. [Google Scholar] [CrossRef]
- Lin, A.; Ye, P.; Li, Z.; Jiang, A.; Liu, Z.; Cheng, Q.; Zhang, J.; Luo, P. Natural Killer Cell Immune Checkpoints and Their Therapeutic Targeting in Cancer Treatment. Research 2025, 8, 723. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Su, J.; Zhang, J.; Liu, S.; Han, L.; Liu, M.; Sun, D. Identification and Validation of a Novel HOX-Related Classifier Signature for Predicting Prognosis and Immune Microenvironment in Pediatric Gliomas. Front. Cell Dev. Biol. 2023, 11, 1203650. [Google Scholar] [CrossRef]
- Pineda, J.M.B.; Bradley, R.K. DUX4 Is a Common Driver of Immune Evasion and Immunotherapy Failure in Metastatic Cancers. eLife 2024, 12, RP89017. [Google Scholar] [CrossRef]
- Goh, W.; Scheer, S.; Jackson, J.T.; Hediyeh-Zadeh, S.; Delconte, R.B.; Schuster, I.S.; Andoniou, C.E.; Rautela, J.; Degli-Esposti, M.A.; Davis, M.J.; et al. Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance. Cell Rep. 2020, 33, 108285. [Google Scholar] [CrossRef]
- Shin, C.H.; Liu, Z.-P.; Passier, R.; Zhang, C.-L.; Wang, D.-Z.; Harris, T.M.; Yamagishi, H.; Richardson, J.A.; Childs, G.; Olson, E.N. Modulation of Cardiac Growth and Development by HOP, an Unusual Homeodomain Protein. Cell 2002, 110, 725–735. [Google Scholar] [CrossRef]
- Chen, F.; Kook, H.; Milewski, R.; Gitler, A.D.; Lu, M.M.; Li, J.; Nazarian, R.; Schnepp, R.; Jen, K.; Biben, C.; et al. Hop Is an Unusual Homeobox Gene That Modulates Cardiac Development. Cell 2002, 110, 713–723. [Google Scholar] [CrossRef]
- Asanoma, K.; Matsuda, T.; Kondo, H.; Kato, K.; Kishino, T.; Niikawa, N.; Wake, N.; Kato, H. NECC1, a Candidate Choriocarcinoma Suppressor Gene That Encodes a Homeodomain Consensus Motif. Genomics 2003, 81, 15–25. [Google Scholar] [CrossRef]
- Difilippantonio, S.; Chen, Y.; Pietas, A.; Schlüns, K.; Pacyna-Gengelbach, M.; Deutschmann, N.; Padilla-Nash, H.M.; Ried, T.; Petersen, I. Gene Expression Profiles in Human Non-Small and Small-Cell Lung Cancers. Eur. J. Cancer Oxf. Engl. 1990 2003, 39, 1936–1947. [Google Scholar] [CrossRef]
- Chen, Y.; Petersen, S.; Pacyna-Gengelbach, M.; Pietas, A.; Petersen, I. Identification of a Novel Homeobox-Containing Gene, LAGY, Which Is Downregulated in Lung Cancer. Oncology 2003, 64, 450–458. [Google Scholar] [CrossRef]
- Pauws, E.; Sijmons, G.G.; Yaka, C.; Ris-Stalpers, C. A Novel Homeobox Gene Overexpressed in Thyroid Carcinoma. Thyroid Off. J. Am. Thyroid Assoc. 2004, 14, 500–505. [Google Scholar] [CrossRef]
- Spurlock, D.M.; McDaneld, T.G.; McIntyre, L.M. Changes in Skeletal Muscle Gene Expression Following Clenbuterol Administration. BMC Genom. 2006, 7, 320. [Google Scholar] [CrossRef]
- Holland, P.W.H.; Booth, H.A.F.; Bruford, E.A. Classification and Nomenclature of All Human Homeobox Genes. BMC Biol. 2007, 5, 47. [Google Scholar] [CrossRef]
- Mariotto, A.; Pavlova, O.; Park, H.-S.; Huber, M.; Hohl, D. HOPX: The Unusual Homeodomain-Containing Protein. J. Investig. Dermatol. 2016, 136, 905–911. [Google Scholar] [CrossRef]
- Jain, R.; Barkauskas, C.E.; Takeda, N.; Bowie, E.J.; Aghajanian, H.; Wang, Q.; Padmanabhan, A.; Manderfield, L.J.; Gupta, M.; Li, D.; et al. Plasticity of Hopx(+) Type I Alveolar Cells to Regenerate Type II Cells in the Lung. Nat. Commun. 2015, 6, 6727. [Google Scholar] [CrossRef]
- Penkala, I.J.; Liberti, D.C.; Pankin, J.; Sivakumar, A.; Kremp, M.M.; Jayachandran, S.; Katzen, J.; Leach, J.P.; Windmueller, R.; Stolz, K.; et al. Age-Dependent Alveolar Epithelial Plasticity Orchestrates Lung Homeostasis and Regeneration. Cell Stem Cell 2021, 28, 1775–1789.e5. [Google Scholar] [CrossRef]
- Liu, K.; Meng, X.; Liu, Z.; Tang, M.; Lv, Z.; Huang, X.; Jin, H.; Han, X.; Liu, X.; Pu, W.; et al. Tracing the Origin of Alveolar Stem Cells in Lung Repair and Regeneration. Cell 2024, 187, 2428–2445.e20. [Google Scholar] [CrossRef]
- Yin, Z.; Gonzales, L.; Kolla, V.; Rath, N.; Zhang, Y.; Lu, M.M.; Kimura, S.; Ballard, P.L.; Beers, M.F.; Epstein, J.A.; et al. Hop Functions Downstream of Nkx2.1 and GATA6 to Mediate HDAC-Dependent Negative Regulation of Pulmonary Gene Expression. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L191–L199. [Google Scholar] [CrossRef]
- Yang, J.-M.; Sim, S.M.; Kim, H.-Y.; Park, G.T. Expression of the Homeobox Gene, HOPX, Is Modulated by Cell Differentiation in Human Keratinocytes and Is Involved in the Expression of Differentiation Markers. Eur. J. Cell Biol. 2010, 89, 537–546. [Google Scholar] [CrossRef]
- Obarzanek-Fojt, M.; Favre, B.; Kypriotou, M.; Ryser, S.; Huber, M.; Hohl, D. Homeodomain-Only Protein HOP Is a Novel Modulator of Late Differentiation in Keratinocytes. Eur. J. Cell Biol. 2011, 90, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Takeda, N.; Jain, R.; LeBoeuf, M.R.; Wang, Q.; Lu, M.M.; Epstein, J.A. Interconversion between Intestinal Stem Cell Populations in Distinct Niches. Science 2011, 334, 1420–1424. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Katoh, H.; Watanabe, M. The Homeobox Only Protein Homeobox (HOPX) and Colorectal Cancer. Int. J. Mol. Sci. 2013, 14, 23231–23243. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ran, G.; Wang, X.; Jiang, N.; Liang, J.; Lin, X.; Ling, C.; Zhao, B. Gene Manipulation in Liver Ductal Organoids by Optimized Recombinant Adeno-Associated Virus Vectors. J. Biol. Chem. 2019, 294, 14096–14104. [Google Scholar] [CrossRef]
- Asanoma, K.; Kato, H.; Yamaguchi, S.; Shin, C.H.; Liu, Z.-P.; Kato, K.; Inoue, T.; Miyanari, Y.; Yoshikawa, K.; Sonoda, K.; et al. HOP/NECC1, a Novel Regulator of Mouse Trophoblast Differentiation. J. Biol. Chem. 2007, 282, 24065–24074. [Google Scholar] [CrossRef]
- Palpant, N.J.; Wang, Y.; Hadland, B.; Zaunbrecher, R.J.; Redd, M.; Jones, D.; Pabon, L.; Jain, R.; Epstein, J.; Ruzzo, W.L.; et al. Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Rep. 2017, 20, 1597–1608. [Google Scholar] [CrossRef]
- Hng, C.H.; Camp, E.; Anderson, P.; Breen, J.; Zannettino, A.; Gronthos, S. HOPX Regulates Bone Marrow-Derived Mesenchymal Stromal Cell Fate Determination via Suppression of Adipogenic Gene Pathways. Sci. Rep. 2020, 10, 11345. [Google Scholar] [CrossRef]
- Kook, H.; Lepore, J.J.; Gitler, A.D.; Lu, M.M.; Wing-Man Yung, W.; Mackay, J.; Zhou, R.; Ferrari, V.; Gruber, P.; Epstein, J.A. Cardiac Hypertrophy and Histone Deacetylase-Dependent Transcriptional Repression Mediated by the Atypical Homeodomain Protein Hop. J. Clin. Investig. 2003, 112, 863–871. [Google Scholar] [CrossRef]
- Ismat, F.A.; Zhang, M.; Kook, H.; Huang, B.; Zhou, R.; Ferrari, V.A.; Epstein, J.A.; Patel, V.V. Homeobox Protein Hop Functions in the Adult Cardiac Conduction System. Circ. Res. 2005, 96, 898–903. [Google Scholar] [CrossRef]
- Jain, R.; Li, D.; Gupta, M.; Manderfield, L.J.; Ifkovits, J.L.; Wang, Q.; Liu, F.; Liu, Y.; Poleshko, A.; Padmanabhan, A.; et al. HEART DEVELOPMENT. Integration of Bmp and Wnt Signaling by Hopx Specifies Commitment of Cardiomyoblasts. Science 2015, 348, aaa6071. [Google Scholar] [CrossRef]
- Friedman, C.E.; Nguyen, Q.; Lukowski, S.W.; Helfer, A.; Chiu, H.S.; Miklas, J.; Levy, S.; Suo, S.; Han, J.-D.J.; Osteil, P.; et al. Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell 2018, 23, 586–598.e8. [Google Scholar] [CrossRef]
- Kee, H.J.; Kim, J.-R.; Nam, K.-I.; Park, H.Y.; Shin, S.; Kim, J.C.; Shimono, Y.; Takahashi, M.; Jeong, M.H.; Kim, N.; et al. Enhancer of Polycomb1, a Novel Homeodomain Only Protein-Binding Partner, Induces Skeletal Muscle Differentiation. J. Biol. Chem. 2007, 282, 7700–7709. [Google Scholar] [CrossRef]
- Mühlfriedel, S.; Kirsch, F.; Gruss, P.; Stoykova, A.; Chowdhury, K. A Roof Plate-Dependent Enhancer Controls the Expression of Homeodomain Only Protein in the Developing Cerebral Cortex. Dev. Biol. 2005, 283, 522–534. [Google Scholar] [CrossRef]
- Li, D.; Takeda, N.; Jain, R.; Manderfield, L.J.; Liu, F.; Li, L.; Anderson, S.A.; Epstein, J.A. Hopx Distinguishes Hippocampal from Lateral Ventricle Neural Stem Cells. Stem Cell Res. 2015, 15, 522–529. [Google Scholar] [CrossRef]
- Kelava, I.; Reillo, I.; Murayama, A.Y.; Kalinka, A.T.; Stenzel, D.; Tomancak, P.; Matsuzaki, F.; Lebrand, C.; Sasaki, E.; Schwamborn, J.C.; et al. Abundant Occurrence of Basal Radial Glia in the Subventricular Zone of Embryonic Neocortex of a Lissencephalic Primate, the Common Marmoset Callithrix Jacchus. Cereb. Cortex 1991 2012, 22, 469–481. [Google Scholar] [CrossRef]
- Holst, C.B.; Brøchner, C.B.; Vitting-Seerup, K.; Møllgård, K. The HOPX and BLBP Landscape and Gliogenic Regions in Developing Human Brain. J. Anat. 2023, 243, 23–38. [Google Scholar] [CrossRef]
- Doroszko, M.; Stockgard, R.; Uppman, I.; Heinold, J.; Voukelatou, F.; Mangukiya, H.B.; Millner, T.O.; Skeppås, M.; Ballester Bravo, M.; Elgendy, R.; et al. The Invasion Phenotypes of Glioblastoma Depend on Plastic and Reprogrammable Cell States. Nat. Commun. 2025, 16, 6662. [Google Scholar] [CrossRef]
- Friedman, C.E.; Cheetham, S.W.; Negi, S.; Mills, R.J.; Ogawa, M.; Redd, M.A.; Chiu, H.S.; Shen, S.; Sun, Y.; Mizikovsky, D.; et al. HOPX-Associated Molecular Programs Control Cardiomyocyte Cell States Underpinning Cardiac Structure and Function. Dev. Cell 2024, 59, 91–107.e6. [Google Scholar] [CrossRef]
- Ota, C.; Ng-Blichfeldt, J.-P.; Korfei, M.; Alsafadi, H.N.; Lehmann, M.; Skronska-Wasek, W.; De Santis, M.M.; Guenther, A.; Wagner, D.E.; Königshoff, M. Dynamic Expression of HOPX in Alveolar Epithelial Cells Reflects Injury and Repair during the Progression of Pulmonary Fibrosis. Sci. Rep. 2018, 8, 12983. [Google Scholar] [CrossRef]
- Michot, C.; Mamoune, A.; Vamecq, J.; Viou, M.T.; Hsieh, L.-S.; Testet, E.; Lainé, J.; Hubert, L.; Dessein, A.-F.; Fontaine, M.; et al. Combination of Lipid Metabolism Alterations and Their Sensitivity to Inflammatory Cytokines in Human Lipin-1-Deficient Myoblasts. Biochim. Biophys. Acta 2013, 1832, 2103–2114. [Google Scholar] [CrossRef]
- Dmitrieva-Posocco, O.; Wong, A.C.; Lundgren, P.; Golos, A.M.; Descamps, H.C.; Dohnalová, L.; Cramer, Z.; Tian, Y.; Yueh, B.; Eskiocak, O.; et al. β-Hydroxybutyrate Suppresses Colorectal Cancer. Nature 2022, 605, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Newman, J.C.; Verdin, E. β-Hydroxybutyrate: A Signaling Metabolite. Annu. Rev. Nutr. 2017, 37, 51–76. [Google Scholar] [CrossRef]
- Zhang, H.; Tian, Y.; Xu, C.; Chen, M.; Xiang, Z.; Gu, L.; Xue, H.; Xu, Q. Crosstalk between Gut Microbiotas and Fatty Acid Metabolism in Colorectal Cancer. Cell Death Discov. 2025, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Xiong, M.; Jiang, A.; Huang, L.; Wong, H.Z.H.; Feng, S.; Zhang, C.; Li, Y.; Chen, L.; Chi, H.; et al. The Microbiome in Cancer. iMeta 2025, 4, e70070. [Google Scholar] [CrossRef] [PubMed]
- Cheung, W.K.C.; Zhao, M.; Liu, Z.; Stevens, L.E.; Cao, P.D.; Fang, J.E.; Westbrook, T.F.; Nguyen, D.X. Control of Alveolar Differentiation by the Lineage Transcription Factors GATA6 and HOPX Inhibits Lung Adenocarcinoma Metastasis. Cancer Cell 2013, 23, 725–738. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, L.; Cui, T.; Pacyna-Gengelbach, M.; Petersen, I. HOPX Is Methylated and Exerts Tumour-Suppressive Function through Ras-Induced Senescence in Human Lung Cancer. J. Pathol. 2015, 235, 397–407. [Google Scholar] [CrossRef]
- Chen, Y.; Pacyna-Gengelbach, M.; Deutschmann, N.; Niesporek, S.; Petersen, I. Homeobox Gene HOP Has a Potential Tumor Suppressive Activity in Human Lung Cancer. Int. J. Cancer 2007, 121, 1021–1027. [Google Scholar] [CrossRef]
- He, S.; Ding, Y.; Ji, Z.; Yuan, B.; Chen, J.; Ren, W. HOPX Is a Tumor-Suppressive Biomarker That Corresponds to T Cell Infiltration in Skin Cutaneous Melanoma. Cancer Cell Int. 2023, 23, 122. [Google Scholar] [CrossRef]
- Waraya, M.; Yamashita, K.; Katoh, H.; Ooki, A.; Kawamata, H.; Nishimiya, H.; Nakamura, K.; Ema, A.; Watanabe, M. Cancer Specific Promoter CpG Islands Hypermethylation of HOP Homeobox (HOPX) Gene and Its Potential Tumor Suppressive Role in Pancreatic Carcinogenesis. BMC Cancer 2012, 12, 397. [Google Scholar] [CrossRef]
- Ooki, A.; Yamashita, K.; Kikuchi, S.; Sakuramoto, S.; Katada, N.; Kokubo, K.; Kobayashi, H.; Kim, M.S.; Sidransky, D.; Watanabe, M. Potential Utility of HOP Homeobox Gene Promoter Methylation as a Marker of Tumor Aggressiveness in Gastric Cancer. Oncogene 2010, 29, 3263–3275. [Google Scholar] [CrossRef]
- You, Q.; Geng, Y.; Ye, H.; Zhu, G.; Gao, X.; Zhu, H. HOPX Is an Epigenetically Inactivated Tumor Suppressor and Overexpression of HOPX Induce Apoptosis and Cell Cycle Arrest in Breast Cancer. OncoTargets Ther. 2020, 13, 5955–5965. [Google Scholar] [CrossRef]
- Kikuchi, M.; Katoh, H.; Waraya, M.; Tanaka, Y.; Ishii, S.; Tanaka, T.; Nishizawa, N.; Yokoi, K.; Minatani, N.; Ema, A.; et al. Epigenetic Silencing of HOPX Contributes to Cancer Aggressiveness in Breast Cancer. Cancer Lett. 2017, 384, 70–78. [Google Scholar] [CrossRef]
- Katoh, H.; Yamashita, K.; Waraya, M.; Margalit, O.; Ooki, A.; Tamaki, H.; Sakagami, H.; Kokubo, K.; Sidransky, D.; Watanabe, M. Epigenetic Silencing of HOPX Promotes Cancer Progression in Colorectal Cancer. Neoplasia 2012, 14, 559–571. [Google Scholar] [CrossRef] [PubMed]
- De Toni, A.; Zbinden, M.; Epstein, J.A.; Ruiz i Altaba, A.; Prochiantz, A.; Caillé, I. Regulation of Survival in Adult Hippocampal and Glioblastoma Stem Cell Lineages by the Homeodomain-Only Protein HOP. Neural Develop. 2008, 3, 13. [Google Scholar] [CrossRef]
- Ren, X.; Yang, X.; Cheng, B.; Chen, X.; Zhang, T.; He, Q.; Li, B.; Li, Y.; Tang, X.; Wen, X.; et al. HOPX Hypermethylation Promotes Metastasis via Activating SNAIL Transcription in Nasopharyngeal Carcinoma. Nat. Commun. 2017, 8, 14053. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, H.; Hu, C.; Chen, K.; Tang, S.; Wu, X.; Zhang, Q.; Xiang, Q. HOPX Regulates the Invasion and Migration Abilities of Hepatocellular Carcinoma by Targeting SNAIL. Sci. Rep. 2025, 15, 29739. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, S.; Asanoma, K.; Takao, T.; Kato, K.; Wake, N. Homeobox Gene HOPX Is Epigenetically Silenced in Human Uterine Endometrial Cancer and Suppresses Estrogen-Stimulated Proliferation of Cancer Cells by Inhibiting Serum Response Factor. Int. J. Cancer 2009, 124, 2577–2588. [Google Scholar] [CrossRef]
- Lemaire, F.; Millon, R.; Muller, D.; Rabouel, Y.; Bracco, L.; Abecassis, J.; Wasylyk, B. Loss of HOP Tumour Suppressor Expression in Head and Neck Squamous Cell Carcinoma. Br. J. Cancer 2004, 91, 258–261. [Google Scholar] [CrossRef]
- Yap, L.F.; Lai, S.L.; Patmanathan, S.N.; Gokulan, R.; Robinson, C.M.; White, J.B.; Chai, S.J.; Rajadurai, P.; Prepageran, N.; Liew, Y.T.; et al. HOPX Functions as a Tumour Suppressor in Head and Neck Cancer. Sci. Rep. 2016, 6, 38758. [Google Scholar] [CrossRef]
- Ooizumi, Y.; Katoh, H.; Yokota, M.; Watanabe, M.; Yamashita, K. Epigenetic Silencing of HOPX Is Critically Involved in Aggressive Phenotypes and Patient Prognosis in Papillary Thyroid Cancer. Oncotarget 2019, 10, 5906–5918. [Google Scholar] [CrossRef]
- Lima, E.U.; Rubio, I.G.S.; Da Silva, J.C.; Galrão, A.L.; Pêssoa, D.; Oliveira, T.C.; Carrijo, F.; Silva Campos, I.; Fonseca Espinheira, L.; Sampaio, L.J.; et al. HOPX Homeobox Methylation in Differentiated Thyroid Cancer and Its Clinical Relevance. Endocr. Connect. 2018, 7, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Georgy, S.R.; Rudiatmoko, D.R.; Auden, A.; Partridge, D.; Butt, T.; Srivastava, S.; Wong, N.; Swaroop, D.; Carpinelli, M.R.; Yan, F.; et al. Identification of a Novel GRHL3/HOPX/Wnt/β-Catenin Proto-Oncogenic Axis in Squamous Cell Carcinoma of the Esophagus. Cell. Mol. Gastroenterol. Hepatol. 2023, 15, 1051–1069. [Google Scholar] [CrossRef]
- Caspa Gokulan, R.; Yap, L.F.; Paterson, I.C. HOPX: A Unique Homeodomain Protein in Development and Tumor Suppression. Cancers 2022, 14, 2764. [Google Scholar] [CrossRef]
- Jin, Y.; Arimura, H.; Cui, Y.; Kodama, T.; Mizuno, S.; Ansai, S. CT Image-Based Biopsy to Aid Prediction of HOPX Expression Status and Prognosis for Non-Small Cell Lung Cancer Patients. Cancers 2023, 15, 2220. [Google Scholar] [CrossRef]
- Tian, Y.; Bhattacharya, R.; Yoo, S.; Jiang, F.; Park, E.; Lara Granados, G.; Shen, Y.; Park, K.-S.; Kaniskan, H.U.; Jin, J.; et al. Epigenomic Analysis Identifies DTP Subpopulation Using HOPX to Develop Targeted Therapy Resistance in Lung Adenocarcinoma. iScience 2025, 28, 112387. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, W. Methyltransferase-like 3-Mediated m6A Modification of miR-1908-5p Contributes to Nasopharyngeal Carcinoma Progression by Targeting Homeodomain-Only Protein Homeobox. Environ. Toxicol. 2024, 39, 1631–1640. [Google Scholar] [CrossRef]
- Liang, Y.; Li, C.; Zou, R.; Ying, L.; Chen, X.; Wang, Z.; Zhang, W.; Hao, M.; Yang, H.; Guo, R.; et al. Three-Dimensional Genome Architecture in Intrahepatic Cholangiocarcinoma. Cell. Oncol. 2025, 48, 617–635. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, O.; Lefort, K.; Mariotto, A.; Huber, M.; Hohl, D. HOPX Exhibits Oncogenic Activity during Squamous Skin Carcinogenesis. J. Investig. Dermatol. 2021, 141, 2354–2368. [Google Scholar] [CrossRef]
- Lin, C.-C.; Hsu, Y.-C.; Li, Y.-H.; Kuo, Y.-Y.; Hou, H.-A.; Lan, K.-H.; Chen, T.-C.; Tzeng, Y.-S.; Kuo, Y.-Y.; Kao, C.-J.; et al. Higher HOPX Expression Is Associated with Distinct Clinical and Biological Features and Predicts Poor Prognosis in de Novo Acute Myeloid Leukemia. Haematologica 2017, 102, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Tu, Y.; Ni, L. Research on the Mechanism of HOPX-HDAC2 Interaction Inducing Differentiation Blockage in Acute Myeloid Leukemia. Hematol. Oncol. 2024, 42, e3307. [Google Scholar] [CrossRef]
- Lin, C.-C.; Hsu, C.-L.; Yao, C.-Y.; Wang, Y.-H.; Yuan, C.-T.; Kuo, Y.-Y.; Lee, J.-Y.; Shih, P.-T.; Kao, C.-J.; Chuang, P.-H.; et al. HOPX as a Tumour-Suppressive Protein in T-Cell Acute Lymphoblastic Leukaemia. Br. J. Haematol. 2025, 206, 505–516. [Google Scholar] [CrossRef]
- Kovárová, D.; Plachy, J.; Kosla, J.; Trejbalová, K.; Čermák, V.; Hejnar, J. Downregulation of HOPX Controls Metastatic Behavior in Sarcoma Cells and Identifies Genes Associated with Metastasis. Mol. Cancer Res. MCR 2013, 11, 1235–1247. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, J.; Cheng, W.; Diao, T.; Liu, H.; Bo, Y.; Liu, C.; Zhou, W.; Chen, M.; Zhang, Y.; et al. Cross-Tissue Human Fibroblast Atlas Reveals Myofibroblast Subtypes with Distinct Roles in Immune Modulation. Cancer Cell 2024, 42, 1764–1783.e10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, F. Cancer-Associated Fibroblast-Derived Gene Signatures Predict Radiotherapeutic Survival in Prostate Cancer Patients. J. Transl. Med. 2022, 20, 453. [Google Scholar] [CrossRef]
- Watanabe, F.; Hollingsworth, E.W.; Bartley, J.M.; Wisehart, L.; Desai, R.; Hartlaub, A.M.; Hester, M.E.; Schiapparelli, P.; Quiñones-Hinojosa, A.; Imitola, J. Patient-Derived Organoids Recapitulate Glioma-Intrinsic Immune Program and Progenitor Populations of Glioblastoma. PNAS Nexus 2024, 3, pgae051. [Google Scholar] [CrossRef]
- Zhan, Y.; Ma, S.; Zhang, T.; Zhang, L.; Zhao, P.; Yang, X.; Liu, M.; Cheng, W.; Li, Y.; Wang, J. Identification of a Novel Monocyte/Macrophage-Related Gene Signature for Predicting Survival and Immune Response in Acute Myeloid Leukemia. Sci. Rep. 2024, 14, 14012. [Google Scholar] [CrossRef]
- Albrecht, I.; Niesner, U.; Janke, M.; Menning, A.; Loddenkemper, C.; Kühl, A.A.; Lepenies, I.; Lexberg, M.H.; Westendorf, K.; Hradilkova, K.; et al. Persistence of Effector Memory Th1 Cells Is Regulated by Hopx. Eur. J. Immunol. 2010, 40, 2993–3006. [Google Scholar] [CrossRef]
- Hawiger, D.; Wan, Y.Y.; Eynon, E.E.; Flavell, R.A. The Transcription Cofactor Hopx Is Required for Regulatory T Cell Function in Dendritic Cell–Mediated Peripheral T Cell Unresponsiveness. Nat. Immunol. 2010, 11, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.; Opejin, A.; Henderson, J.G.; Gross, C.; Jain, R.; Epstein, J.A.; Flavell, R.A.; Hawiger, D. Peripherally Induced Tolerance Depends on Peripheral Regulatory T Cells That Require Hopx To Inhibit Intrinsic IL-2 Expression. J. Immunol. Baltim. Md 1950 2015, 195, 1489–1497. [Google Scholar] [CrossRef]
- Bourque, J.; Opejin, A.; Surnov, A.; Iberg, C.A.; Gross, C.; Jain, R.; Epstein, J.A.; Hawiger, D. Landscape of Hopx Expression in Cells of the Immune System. Heliyon 2021, 7, e08311. [Google Scholar] [CrossRef]
- Baas, M.; Besançon, A.; Goncalves, T.; Valette, F.; Yagita, H.; Sawitzki, B.; Volk, H.-D.; Waeckel-Enée, E.; Rocha, B.; Chatenoud, L.; et al. TGFβ-Dependent Expression of PD-1 and PD-L1 Controls CD8(+) T Cell Anergy in Transplant Tolerance. eLife 2016, 5, e08133. [Google Scholar] [CrossRef]
- Patil, V.S.; Madrigal, A.; Schmiedel, B.J.; Clarke, J.; O’Rourke, P.; de Silva, A.D.; Harris, E.; Peters, B.; Seumois, G.; Weiskopf, D.; et al. Precursors of Human CD4+ Cytotoxic T Lymphocytes Identified by Single-Cell Transcriptome Analysis. Sci. Immunol. 2018, 3, eaan8664. [Google Scholar] [CrossRef]
- Capone, A.; Naro, C.; Bianco, M.; De Bardi, M.; Noël, F.; Macchi, P.; Battistini, L.; Soumelis, V.; Volpe, E.; Sette, C. Systems Analysis of Human T Helper17 Cell Differentiation Uncovers Distinct Time-Regulated Transcriptional Modules. iScience 2021, 24, 102492. [Google Scholar] [CrossRef]
- Descatoire, M.; Weller, S.; Irtan, S.; Sarnacki, S.; Feuillard, J.; Storck, S.; Guiochon-Mantel, A.; Bouligand, J.; Morali, A.; Cohen, J.; et al. Identification of a Human Splenic Marginal Zone B Cell Precursor with NOTCH2-Dependent Differentiation Properties. J. Exp. Med. 2014, 211, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Bezman, N.A.; Kim, C.C.; Sun, J.C.; Min-Oo, G.; Hendricks, D.W.; Kamimura, Y.; Best, J.A.; Goldrath, A.W.; Lanier, L.L.; Immunological Genome Project Consortium. Molecular Definition of the Identity and Activation of Natural Killer Cells. Nat. Immunol. 2012, 13, 1000–1009. [Google Scholar] [CrossRef] [PubMed]
- Gordy, L.E.; Bezbradica, J.S.; Flyak, A.I.; Spencer, C.T.; Dunkle, A.; Sun, J.; Stanic, A.K.; Boothby, M.R.; He, Y.-W.; Zhao, Z.; et al. IL-15 Regulates Homeostasis and Terminal Maturation of NKT Cells. J. Immunol. Baltim. Md 1950 2011, 187, 6335–6345. [Google Scholar] [CrossRef]
- Lin, C.-C.; Yao, C.-Y.; Hsu, Y.-C.; Hou, H.-A.; Yuan, C.-T.; Li, Y.-H.; Kao, C.-J.; Chuang, P.-H.; Chiu, Y.-C.; Chen, Y.; et al. Knock-out of Hopx Disrupts Stemness and Quiescence of Hematopoietic Stem Cells in Mice. Oncogene 2020, 39, 5112–5123. [Google Scholar] [CrossRef] [PubMed]
- Bourque, J.; Kousnetsov, R.; Hawiger, D. Roles of Hopx in the Differentiation and Functions of Immune Cells. Eur. J. Cell Biol. 2022, 101, 151242. [Google Scholar] [CrossRef]
- Surnov, A.; Hawiger, D. The Formation of Pre-Effectors in the Steady State Opens a New Perspective for Cancer Immunosurveillance. Oncotarget 2021, 12, 1318–1320. [Google Scholar] [CrossRef]
- Opejin, A.; Surnov, A.; Misulovin, Z.; Pherson, M.; Gross, C.; Iberg, C.A.; Fallahee, I.; Bourque, J.; Dorsett, D.; Hawiger, D. A Two-Step Process of Effector Programming Governs CD4+ T Cell Fate Determination Induced by Antigenic Activation in the Steady State. Cell Rep. 2020, 33, 108424. [Google Scholar] [CrossRef]
- Yang, Q.; Patrick, M.; Lu, J.; Chen, J.; Zhang, Y.; Hemani, H.; Lehrmann, E.; De, S.; Weng, N.-P. Homeodomain-Only Protein Suppresses Proliferation and Contributes to Differentiation- and Age-Related Reduced CD8+ T Cell Expansion. Front. Immunol. 2024, 15, 1360229. [Google Scholar] [CrossRef]
- Cano-Gamez, E.; Soskic, B.; Roumeliotis, T.I.; So, E.; Smyth, D.J.; Baldrighi, M.; Willé, D.; Nakic, N.; Esparza-Gordillo, J.; Larminie, C.G.C.; et al. Single-Cell Transcriptomics Identifies an Effectorness Gradient Shaping the Response of CD4+ T Cells to Cytokines. Nat. Commun. 2020, 11, 1801. [Google Scholar] [CrossRef]
- Zheng, C.; Fass, J.N.; Shih, Y.-P.; Gunderson, A.J.; Sanjuan Silva, N.; Huang, H.; Bernard, B.M.; Rajamanickam, V.; Slagel, J.; Bifulco, C.B.; et al. Transcriptomic Profiles of Neoantigen-Reactive T Cells in Human Gastrointestinal Cancers. Cancer Cell 2022, 40, 410–423.e7. [Google Scholar] [CrossRef]
- Yu, X.; Ou, J.; Wang, L.; Li, Z.; Ren, Y.; Xie, L.; Chen, Z.; Liang, J.; Shen, G.; Zou, Z.; et al. Gut Microbiota Modulate CD8+ T Cell Immunity in Gastric Cancer through Butyrate/GPR109A/HOPX. Gut Microbes 2024, 16, 2307542. [Google Scholar] [CrossRef] [PubMed]
- Berrien-Elliott, M.M.; Foltz, J.A.; Russler-Germain, D.A.; Neal, C.C.; Tran, J.; Gang, M.; Wong, P.; Fisk, B.; Cubitt, C.C.; Marin, N.D.; et al. Hematopoietic Cell Transplantation Donor-Derived Memory-like NK Cells Functionally Persist after Transfer into Patients with Leukemia. Sci. Transl. Med. 2022, 14, eabm1375. [Google Scholar] [CrossRef] [PubMed]
- Foltz, J.A.; Berrien-Elliott, M.M.; Russler-Germain, D.A.; Neal, C.C.; Tran, J.; Gang, M.; Wong, P.; Mosior, M.; Bednarski, J.J.; Zimmerman, C.; et al. Cytokine-Induced Memory-like NK Cells Have a Distinct Single Cell Transcriptional Profile and Persist for Months in Adult and Pediatric Leukemia Patients after Adoptive Transfer. Blood 2021, 138, 3825. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munzert, F.; Nenkov, M.; Berndt, A.; Sandhaus, T.; Lang, S.; Gaßler, N.; Chen, Y. Beyond Tumor Suppression: The Multifaceted Functions of HOPX in Tissue Differentiation, Metabolism, and Immunity. Cells 2025, 14, 1718. https://doi.org/10.3390/cells14211718
Munzert F, Nenkov M, Berndt A, Sandhaus T, Lang S, Gaßler N, Chen Y. Beyond Tumor Suppression: The Multifaceted Functions of HOPX in Tissue Differentiation, Metabolism, and Immunity. Cells. 2025; 14(21):1718. https://doi.org/10.3390/cells14211718
Chicago/Turabian StyleMunzert, Fabian, Miljana Nenkov, Alexander Berndt, Tim Sandhaus, Susanne Lang, Nikolaus Gaßler, and Yuan Chen. 2025. "Beyond Tumor Suppression: The Multifaceted Functions of HOPX in Tissue Differentiation, Metabolism, and Immunity" Cells 14, no. 21: 1718. https://doi.org/10.3390/cells14211718
APA StyleMunzert, F., Nenkov, M., Berndt, A., Sandhaus, T., Lang, S., Gaßler, N., & Chen, Y. (2025). Beyond Tumor Suppression: The Multifaceted Functions of HOPX in Tissue Differentiation, Metabolism, and Immunity. Cells, 14(21), 1718. https://doi.org/10.3390/cells14211718

