Exenatide Is Neuroprotective in a New Rabbit Model of Hypoxia-Ischemia
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Surgery
2.3. Exenatide Acetate (ExAc) Administration
2.4. Measurements of Glucose, Ketone Bodies, and Temperature
2.5. Histology Preparation
2.6. Immunohistochemistry
2.7. Immunofluorescence
2.8. Data Analysis
2.9. Statistical Analysis
3. Results
3.1. Hypoxia-Ischemia Titration
3.2. GLP-1R Expression
3.3. ExAc Treatment Is Neuroprotective Following Hypoxia-Ischemia at P3
3.4. ExAc Treatment Is Neuroprotective Following Hypoxia-Ischemia at P4
3.5. Effect of ExAc on Glucose, Ketone Bodies, Body Weight and Temperature
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DAB | 3.3-di-aminobenzidine |
| ExAc | Exenatide acetate |
| GFAP | Glial fibrillary acidic protein |
| GLP-1R | Glucagon-like peptide-1 receptor |
| GMP | Good manufacturing practice |
| IBA1 | Ionized calcium-binding adapter molecule 1 |
| I.P. | Intraperitoneal |
| MAP-2 | Mouse anti-microtubule-associated protein 2 |
| NeuN | Neuronal specific nuclear protein |
| Olig2 | Oligodendrocyte transcription factor 2 |
| P | Postnatal day |
| RUO | Research use only |
References
- Chakkarapani, E.; de Vries, L.S.; Ferriero, D.M.; Gunn, A.J. Neonatal encephalopathy and hypoxic-ischemic encephalopathy: The state of the art. Pediatr. Res. 2025. [Google Scholar] [CrossRef]
- Clancy, B.; Finlay, B.L.; Darlington, R.B.; Anand, K. Extrapolating brain development from experimental species to humans. NeuroToxicology 2007, 28, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Mallard, C.; Vexler, Z.S. Modeling Ischemia in the Immature Brain: How Translational Are Animal Models? Stroke 2015, 46, 3006–3011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Saraswati, M.; Koehler, R.C.; Robertson, C.; Kannan, S. A New Rabbit Model of Pediatric Traumatic Brain Injury. J. Neurotrauma 2015, 32, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- D’Arceuil, H.E.; Hotakainen, M.P.; Liu, C.; Themelis, G.; de Crespigny, A.J.; Franceschini, M.A. Near-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: A combined approach to studying cerebral maturation in neonatal rabbits. J. Biomed. Opt. 2005, 10, 11011. [Google Scholar] [CrossRef]
- Harel, S.; Shapira, Y.; Hartzler, J.; Teng, E.L.; Quiligan, E.; Van Der Meulen, J.P. Neuromotor development in relation to birth weight in rabbits. Biol. Neonatol. 1978, 33, 1–7. [Google Scholar] [CrossRef]
- Ji, X.; Derrick, M.; Tan, S. Cerebral Palsy Model of Uterine Ischemia in Pregnant Rabbits. In Animal Models of Acute Neurological Injuries; Chen, J., Xu, Z.C., Xu, X.M., Zhang, J.H., Eds.; Springer Protocols Handbooks; Humana Press: Totowa, NJ, USA, 2009; pp. 231–246. [Google Scholar] [CrossRef]
- Saadani-Makki, F.; Kannan, S.; Lu, X.; Janisse, J.; Dawe, E.; Edwin, S.; Romero, R.; Chugani, D. Intrauterine administration of endotoxin leads to motor deficits in a rabbit model: A link between prenatal infection and cerebral palsy. Am. J. Obstet. Gynecol. 2008, 199, 651.e1–651.e7. [Google Scholar] [CrossRef]
- Bass, W.T.; Singer, G.A.; Liuzzi, F.J. Transient lectin binding by white matter tract border zone microglia in the foetal rabbit brain. Histochem. J. 1998, 30, 657–666. [Google Scholar] [CrossRef]
- Drobyshevsky, A.; Jiang, R.; Derrick, M.; Luo, K.; Tan, S. Functional correlates of central white matter maturation in perinatal period in rabbits. Exp. Neurol. 2014, 261, 76–86. [Google Scholar] [CrossRef]
- Rice, F.L.; Gomez, C.; Barstow, C.; Burnet, A.; Sands, P. A Comparative analysis of the development of the primary somatosensory cortex: Interspecies similarities during barrel and laminar development. J. Comp. Neurol. 1985, 236, 477–495. [Google Scholar] [CrossRef]
- De Groot, D.; Vrensen, G. Postnatal development of synaptic contact zones in the visual cortex of rabbits. Brain Res. 1978, 147, 362–369. [Google Scholar] [CrossRef]
- McMullen, N.T.; Goldberger, B.; Glaser, E.M. Postnatal development of lamina III/IV nonpyramidal neurons in rabbit auditory cortex: Quantitative and spatial analyses of Golgi-impregnated material. J. Comp. Neurol. 1988, 278, 139–155. [Google Scholar] [CrossRef]
- Derrick, M.; Luo, N.L.; Bregman, J.C.; Jilling, T.; Ji, X.; Fisher, K.; Gladson, C.L.; Beardsley, D.J.; Murdoch, G.; Back, S.A.; et al. Preterm fetal hypoxia-ischemia causes hypertonia and motor deficits in the neonatal rabbit: A model for human cerebral palsy? J. Neurosci. 2004, 24, 24–34. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Esfahani, S.A.; Kohkiloezadeh, M.; Moghaddam, B.H.; Askarian, S.; Tanideh, N.; Tamadon, A. A model of cerebral ischemia induction in neonatal rabbits. J. Appl. Anim. Res. 2012, 40, 37–42. [Google Scholar] [CrossRef]
- D’Arceuil, H.E.; Rhine, W.; de Crespigny, A.; Yenari, M.; Tait, J.F.; Strauss, W.H.; Engelhorn, T.; Kastrup, A.; Moseley, M.; Blankenberg, F.G. 99mTc Annexin V Imaging of Neonatal Hypoxic Brain Injury. Stroke 2000, 32, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- D’Arceuil, H.E.; de Crespigny, A.J.; Röther, J.; Seri, S.; Moseley, M.E.; Stevenson, D.K.; Rhine, W. Diffusion and perfusion magnetic resonance imaging of the evolution of hypoxic ischemic encephalopathy in the neonatal rabbit. J. Magn. Reson. Imaging 1998, 8, 820–828. [Google Scholar] [CrossRef]
- D’aRceuil, H.E.; de Crespigny, A.J.; Röther, J.; Moseley, M.; Rhine, W. Serial magnetic resonance diffusion and hemodynamic imaging in a neonatal rabbit model of hypoxic-ischemic encephalopathy. NMR Biomed. 1999, 12, 505–514. [Google Scholar] [CrossRef]
- Gilland, E.; Bona, E.; Hagber, H. Temporal changes of regional glucose use, blood flow, and microtubule-associated protein 2 immunostaining after hypoxia—Ischemia in the immature rat brain. J. Cereb. Blood Flow Metab. 1998, 18, 222–228. [Google Scholar] [CrossRef]
- Schneider, N.Y.; Datiche, F.; Coureaud, G. Brain anatomy of the 4-day-old European rabbit. J. Anat. 2018, 232, 747–767. [Google Scholar] [CrossRef]
- Rocha-Ferreira, E.; Phillips, E.; Francesch-Domenech, E.; Thei, L.; Peebles, D.; Raivich, G.; Hristova, M. The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic–ischemic brain damage. Neuroscience 2015, 311, 292–307. [Google Scholar] [CrossRef] [PubMed]
- Victor, S.; Rocha-Ferreira, E.; Rahim, A.; Hagberg, H.; Edwards, D. New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. Eur. J. Pediatr. 2022, 181, 875–887. [Google Scholar] [CrossRef]
- Shankaran, S.; Laptook, A.R.; Pappas, A.; McDonald, S.A.; Das, A.; Tyson, J.E.; Poindexter, B.B.; Schibler, K.; Bell, E.F.; Heyne, R.J.; et al. Effect of Depth and Duration of Cooling on Death or Disability at Age 18 Months Among Neonates with Hypoxic-Ischemic Encephalopathy: A Randomized Clinical Trial. JAMA 2017, 318, 57–67. [Google Scholar] [CrossRef]
- Rocha-Ferreira, E.; Poupon, L.; Zelco, A.; Leverin, A.-L.; Nair, S.; Jonsdotter, A.; Carlsson, Y.; Thornton, C.; Hagberg, H.; Rahim, A.A. Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy. Brain 2018, 141, 2925–2942. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Galleguillos, D.; Jank, L.; Sotirchos, E.S.; Smith, M.D.; Garton, T.; Kumar, S.; Hussein, O.; Potluri, S.; Taylor, M.; et al. The Effects of NLY01, a Novel Glucagon-Like Peptide-1 Receptor Agonist, on Cuprizone-Induced Demyelination and Remyelination: Challenges and Future Perspectives. Neurotherapeutics 2023, 20, 1229–1240. [Google Scholar] [CrossRef] [PubMed]
- Ziemka-Nalecz, M.; Janowska, J.; Strojek, L.; Jaworska, J.; Zalewska, T.; Frontczak-Baniewicz, M.; Sypecka, J. Impact of neonatal hypoxia-ischaemia on oligodendrocyte survival, maturation and myelinating potential. J. Cell. Mol. Med. 2018, 22, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Teramoto, S.; Miyamoto, N.; Yatomi, K.; Tanaka, Y.; Oishi, H.; Arai, H.; Hattori, N.; Urabe, T. Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J. Cereb. Blood Flow Metab. 2011, 31, 1696–1705. [Google Scholar] [CrossRef]
- Caba, M.; González-Mariscal, G. The rabbit pup, a natural model of nursing-anticipatory activity. Eur. J. Neurosci. 2009, 30, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Hepprich, M.; Romberg, C.; Mudry, J.; Refardt, J.; Wild, D.; Antwi, K.; Christ, E. Exenatide for diagnosing endogenous hyperinsulinemic hypoglycemia: A randomized placebo-controlled, double-blind, cross-over proof-of-principle study. Eur. J. Endocrinol. 2025, 193, 247–254. [Google Scholar] [CrossRef]
- Basolo, A.; Burkholder, J.; Osgood, K.; Graham, A.; Bundrick, S.; Frankl, J.; Piaggi, P.; Thearle, M.S.; Krakoff, J. Exenatide has a pronounced effect on energy intake but not energy expenditure in non-diabetic subjects with obesity: A randomized, double-blind, placebo-controlled trial. Metabolism 2018, 85, 116–125. [Google Scholar] [CrossRef]
- Robertson, N.J.; Nakakeeto, M.; Hagmann, C.; Cowan, F.M.; Acolet, D.; Iwata, O.; Allen, E.; Elbourne, D.; Costello, A.; Jacobs, I. Therapeutic hypothermia for birth asphyxia in low-resource settings: A pilot randomised controlled trial. Lancet 2008, 372, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Thayyil, S.; Pant, S.; Montaldo, P.; Shukla, D.; Oliveira, V.; Ivain, P.; Bassett, P.; Swamy, R.; Mendoza, J.; Moreno-Morales, M.; et al. Hypothermia for moderate or severe neonatal encephalopathy in low-income and middle-income countries (HELIX): A randomised controlled trial in India, Sri Lanka, and Bangladesh. Lancet Glob. Health 2021, 9, e1273–e1285. [Google Scholar] [CrossRef] [PubMed]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha-Ferreira, E.; Carlsson, M.; Svedin, P.; Ebefors, K.; Herrock, O.; Leverin, A.-L.; Hagberg, H. Exenatide Is Neuroprotective in a New Rabbit Model of Hypoxia-Ischemia. Cells 2025, 14, 1715. https://doi.org/10.3390/cells14211715
Rocha-Ferreira E, Carlsson M, Svedin P, Ebefors K, Herrock O, Leverin A-L, Hagberg H. Exenatide Is Neuroprotective in a New Rabbit Model of Hypoxia-Ischemia. Cells. 2025; 14(21):1715. https://doi.org/10.3390/cells14211715
Chicago/Turabian StyleRocha-Ferreira, Eridan, Malin Carlsson, Pernilla Svedin, Kerstin Ebefors, Owen Herrock, Anna-Lena Leverin, and Henrik Hagberg. 2025. "Exenatide Is Neuroprotective in a New Rabbit Model of Hypoxia-Ischemia" Cells 14, no. 21: 1715. https://doi.org/10.3390/cells14211715
APA StyleRocha-Ferreira, E., Carlsson, M., Svedin, P., Ebefors, K., Herrock, O., Leverin, A.-L., & Hagberg, H. (2025). Exenatide Is Neuroprotective in a New Rabbit Model of Hypoxia-Ischemia. Cells, 14(21), 1715. https://doi.org/10.3390/cells14211715

