Precision Antibody Therapy in Gastric and Gastroesophageal Cancer: Targeting FGFR2b, CLDN18.2, and VEGFR2
Highlights
- Precision-targeted antibodies are transforming treatment for GI cancers.
- Bemarituzumab (FGFR2b), Zolbetuximab (CLDN18.2), and Ramucirumab (VEGFR2) demonstrate clinically meaningful survival benefits in phase II–III trials.
- Biomarker-driven patient selection enhances efficacy but poses challenges related to resistance and access.
- Integration of precision antibody therapy requires balancing clinical benefit, cost, and equitable implementation in oncology practice.
Abstract
1. Introduction
2. Mechanism
- Antibody-dependent cellular cytotoxicity (ADCC): Zolbetuximab binds to CLDN18.2, and its Fc region engages Fc gamma receptor III (FcγRIII)-expressing effector cells, including natural killer (NK) cells and gamma-delta (γδ) T cells [34,35,36]. This interaction activates immune cells to release cytotoxic granules containing perforin and granzymes, leading to pore formation, caspase activation, and apoptosis of tumor cells.
- Complement-dependent cytotoxicity (CDC): Initiated by Fc-mediated C1q recruitment, which activates the classical complement cascade. This cascade culminates in the assembly of the membrane attack complex (MAC), which disrupts cell membrane integrity, causes osmotic imbalance, and ultimately leads to tumor cell lysis [36].
3. Preclinical Evidence
4. Clinical Development and Trial Results
4.1. Phase I Studies
| Monoclonal Antibody | Trial (NCT #) | Patient Population | Design and Treatment | Dose(s) | Safety | Adverse Events (AEs) | Median Progression-Free Survival (PFS) | Median Overall Survival (OS) | Disease Control Rate (DCR)/Objective Response Rate (ORR) | Key Findings |
|---|---|---|---|---|---|---|---|---|---|---|
| Bemarituzumab | NCT02318329 [4] | Advanced solid tumors (dose escalation) FGFR2b+ G/GEJ adenocarcinoma (expansion); HER2–; late-line | First-in-human, open-label Phase I. Dose escalation → expansion in FGFR2b-high/med/low GEA and FGFR2b+ bladder cancer. | 0.3–15 mg/kg IV Q2W | No DLTs. Most AEs mild/moderate. | Grade 2 reversible corneal AEs in ~11% at ≥10 mg/kg. Infrequent Grade 3 AEs (~1–2.5%): nausea, neutropenia, anemia, AST/ALP↑, vomiting, infusion reactions. No Grade ≥4 TRAEs | NA | NA | ORR (FGFR2b-high): 17.9% (5/28 PRs) DCR (FGFR2b-high): 64.3% No responses in FGFR2b-low/negative tumors | Confirmed single-agent activity in late-line FGFR2b+ GEA. Proof-of-concept established. Well tolerated. Supports further development in combo regimens. Recommended dosing of 15 mg/kg Q2W |
| Phase 1/2 Combo Study (NCT05322577) [60] | FGFR2b+, HER2– advanced G/GEJ adenocarcinoma; 1st-line, East Asian patients | Ongoing Phase 1/2 in Japan/Asia. Part 1 (safety): Bemarituzumab + CAPOX or SOX ± nivolumab Part 2 (efficacy): Bemarituzumab + SOX + nivolumab (selected regimen) | Bemarituzumab 15 mg/kg Q2W (all arms) CAPOX/SOX per local standards Nivolumab: 240 mg Q2W or 360 mg Q3W | No DLTs reported yet (Part 1 ongoing). | Expected AEs: FGFR2b-related ocular effects, chemo AEs, and immune-related AEs (nivolumab arm) | NA | NA | NA | Aims to identify optimal chemo/immunotherapy partner regimen for bemarituzumab in East Asia. Results will guide global development. Data pending. | |
| Zolbetuximab | NCT00909025 [36,56,61] | 15 patients with advanced G/GEJ adenocarcinoma ≥1 prior therapy | First-in-human, open-label, single-dose escalation (5 IV dose cohorts) | Single IV infusion: 33–1000 mg/m2 | Treatment was well tolerated; No DLTs or discontinuations. | Common AEs: mild-moderate GI effects (nausea, vomiting) | NA | NA | Response: 1 patient with SD (~2 months) at 600 mg/m2 dose, no ORR | Linear PK (t1/2 ~13–24 days), no anti-drug antibodies. 300–600 mg/m2 Q2W recommended for Phase II |
| NCT01671774 (PILOT) [36,56,61] | 28 CLDN18.2+ patients with advanced G/GEJ adenocarcinoma ≥1 prior therapy, ECOG ≤1 | Open-label with 4 arms:
| Zolbetuximab: 800 mg/m2 LD → 600 mg/m2 IV Q3W ZA: 4 mg IV (Arms 1–3) IL-2 SC: 1 × 106 IU (Arm 2), 3 × 106 IU (Arm 3) | Treatment was well tolerated. | Most common AEs: Nausea (50%), Vomiting (46%), Fatigue (25%). | Overall 12.7 wks; Arm 4 (mono): 37.3 wks | Overall 40 wks; Arm 3: 60.9 wks | DCR: 55% (11/20); SD: 58%, PD: 42%, no CR/PR | Manageable safety across regimens. Confirmed baseline ADCC. No anti-drug antibodies observed. | |
| Ramucirumab | NCT02359058 [58] | 18 Japanese patients with advanced G/GEJ adenocarcinoma; chemo-naïve. | Phase 1b, open-label, multicenter; ramucirumab + one of three chemo regimens:
| Ramucirumab 8 mg/kg on Days 1 and 8 of 3-week cycle + chemo | 1 DLT (Grade 3 enterocolitis, SOX). | Common Grade ≥3 AEs: neutropenia (XP: 17%, SP: 50%, SOX: 33%), hypertension (XP: 33%) Other AEs: nausea, constipation, anorexia, HFS | 7.6 months (95% CI: 6.0–NE) | NA | ORR: 45.5% DCR: 100% | All regimens showed manageable safety and strong antitumor activity. High serum levels of ramucirumab achieved. Results support further study in randomized trials. |
| NCT03008278 [62] | Stage IV G/GEJ adenocarcinoma post ≥1 line of systemic therapy | Phase 1/2, open-label, single-arm; ramucirumab + olaparib (PARP inhibitor) | Ramucirumab + olaparib. Ramucirumab 8 mg/kg Q2W Olaparib twice daily (200/300 mg) Standard 3 + 3 dose-escalation design | 1 DLT (Grade 3 fatigue). 3 discontinuations due to toxicity | 94% experienced treatment-related AEs:
| 2.8 months (95% CI: 2.3–4.2) | 7.3 months (95% CI: 5.7–13.0) | ORR: 14% (6/43) DCR: 40% (16 wks), 17% (24 wks) | Modest activity overall; improved outcomes in homologous recombination deficiency positive (HRD+) tumors. ORR and OS numerically higher than ramucirumab monotherapy benchmarks (ORR 3–8%, OS ~5.2 mo). Supports future biomarker-guided trials. |
4.2. Phase II Studies
| Monoclonal Antibody | Trial (NCT #) | Patient Population | Design and Treatment | Dose(s) | Safety | Adverse Events (AEs) | Median Progression-Free Survival (PFS) | Median Overall Survival (OS) | Disease Control Rate (DCR)/Objective Response Rates (ORR) | Key Findings |
|---|---|---|---|---|---|---|---|---|---|---|
| Bemarituzumab | FIGHT (NCT03694522) [6] | FGFR2b+ (IHC 2+/3+), HER2–, unresectable/metastatic G/GEJ adenocarcinoma; 1st-line | Global, randomized, double-blind Phase 2 (1:1) Bemarituzumab + mFOLFOX6 vs. Placebo + mFOLFOX6 | Bemarituzumab 15 mg/kg Q2W + 7.5 mg/kg Day 8 (Cycle 1) + mFOLFOX6 | Higher discontinuation with Bema (40.8% vs. 5.2%) due to ocular AEs | Grade ≥3 TEAEs: 82.9% (Bema) vs. 75.3% (Placebo) Ocular AEs ~67% (Gr 3 27.6%) vs. 10% | 9.5 vs. 7.4 months (HR 0.72); not statistically significant overall | 19.2 vs. 13.5 months (HR 0.77); trend favoring Bema In FGFR2b ≥ 10% subgroup: | PFS: 14.0 vs. 7.3 months (HR 0.43) OS: 24.7 vs. 11.1 months (HR 0.52) | FGFR2b ≥ 10% subgroup showed marked benefit: ORR 56.5% vs. 36.5%, 2-yr OS 51.3% vs. 21.3%. Justified the ≥10% cutoff for Phase III. Ocular AEs (67%, Gr 3: 27.6%) were the key safety issue. |
| RAINBIRD (WJOG 18524G) (Japan, no NCT #) [66] | FGFR2b+, HER2– G/GEJ cancer refractory/intolerant to 1 L fluoropyrimidine-platinum ECOG 0–1, measurable disease | Open-label, single-arm Phase II (Japan) Bemarituzumab + Ramucirumab + Paclitaxel (2nd-line treatment) | Bema 15 mg/kg Q2W + Ramucirumab 8 mg/kg Q2W + Paclitaxel 80 mg/m2 (Days 1, 8, 15, xsssssz28-day cycle) | Ongoing | AEs expected: FGFR2b-related ocular toxicity (prespecified monitoring), VEGFR2- and taxane-class toxicity. No results yet. | Ongoing—no efficacy data reported yet | Ongoing—no efficacy data reported yet | Ongoing—no efficacy data reported yet | First study to test Bema beyond 1 L. Designed to assess whether Bema can improve outcomes when added to standard 2 L regimen. May extend FGFR2b-targeting benefit to later-line settings. Results pending. | |
| Zolbetuximab | NCT01197885 (MONO) [33,56,61] | 54 patients with recurrent/refractory CLDN18.2+ (≥50%) G/GEJ adenocarcinoma; ECOG 0–1. | Phase IIa, open-label, multicenter 3-cohort monotherapy (dose escalation + expansion). | Cohort 1: 300 mg/m2 Q2W Cohorts 2 and 3: 600 mg/m2 IV Q2W cy | Well tolerated; no DLTs or discontinuations. | Common Grade 1–2 AEs: nausea (61%), vomiting (50%), fatigue (22%) | NA | NA | ORR: 9% (4 PRs; all ≥70% CLDN18.2) DCR: 23% (4 PR + 6 SD) | Activity limited to high CLDN18.2 expressers. No anti-drug antibodies. Supports biomarker-driven selection. |
| NCT01630083 (FAST) [25,56,61] | 252 patients with advanced/metastatic CLDN18.2+ G/GEJ cancer; ECOG 0–1. | Randomized (1:1:1) Phase II trial: Arm 1: EOX Arm 2: Zolbetuximab + EOX Arm 3 (exploratory): Zolbetuximab + EOX Maintenance: Zolbetuximab monotherapy. | Arm 2: 800 mg/m2 (loading, Cycle 1 Day 1) → 600 mg/m2 Q3W Arm 3: 1000 mg/m2 Q3W EOX administered every 3 weeks | Manageable profile. | AEs in ZOL vs. EOX alone: Nausea (75% vs. 52%), vomiting (66% vs. 31%) Grade ≥3 AEs: neutropenia (23% vs. 14%), nausea (8% vs. 4%), vomiting (8% vs. 1%) | Arm 2 vs. 1: 7.5 vs. 5.3 months (HR 0.44, p < 0.0005) ≥70% CLDN18.2: 9.0 vs. 5.7 months (HR 0.38) | Arm 2 vs. 1: 13.0 vs. 8.3 months (HR 0.55, p < 0.0005) ≥70% CLDN18.2: 16.5 vs. 8.9 months (HR 0.50) | ORR: 39% (ZOL + EOX) vs. 25% (EOX) DCR: 83% vs. 76% | Significant efficacy in combination arm, especially in ≥70% CLDN18.2 expressers. Favorable risk-benefit profile supports Phase III development. | |
| NCT03505320 (ILUSTRO) [54] | 54 HER2–, CLDN18.2+ (≥75%) advanced/metastatic G/GEJ adenocarcinoma. | Open-label multicohort trial: 1A: ZOL monotherapy (≥3rd-line) 2: ZOL + mFOLFOX6 (1st-line) 3A: ZOL + pembrolizumab (≥3rd-line) | NA | Manageable safety across cohorts. | Common AEs: nausea (up to 90.5%), vomiting, anemia, neutropenia. Grade ≥3 (Cohort 2): neutropenia (28.6%), anemia (9.5%), and pain (9.5%) | 1A: 1.54 months 2: 17.8 months 3A: 2.96 months | 1A: 5.62 months 2, 3A: Not yet reached | ORR: 0% (1A), 71.4% (2), 0% (3A) DCR: 44–55.6% (1A), 100% (2), 66.7% (3A) | ZOL + mFOLFOX6 in 1st-line showed high efficacy. Monotherapy and IO combo (3A) less effective in late-line. CLDN18.2 expression remained stable over time (61.1% concordance archival vs. fresh biopsy). | |
| Ramucirumab | NCT03081143 [35] | 111 patients with advanced G/GEJ adenocarcinoma previously treated with platinum/fluoropyrimidine | Phase II, randomized, open-label: FOLFIRI + ramucirumab vs. FOLFIRI alone | Ramucirumab 8 mg/kg IV Q2W + FOLFIRI (irinotecan 180, leucovorin 400, 5-FU bolus 400 + inf. 2400 mg/m2/46 h) Q2W | Well tolerated; consistent with known profiles | Grade ≥3 neutropenia, diarrhea, hypertension in combo arm | HR: 0.73 (27% risk reduction) HR: 0.49 in prior-docetaxel pts | 6-months OS rate: 54% in combo arm HR: 0.97 (similar OS) | ORR: 22% vs. 11% (combo vs. FOLFIRI alone) | Ramucirumab + FOLFIRI improved PFS and doubled ORR, especially in docetaxel-pretreated patients. Feasible and tolerable as second-line option. |
| NCT01246960 [67] | 168 untreated patients with advanced G/GEJ adenocarcinoma | Phase II, randomized, double-blind, placebo-controlled: ramucirumab + mFOLFOX6 vs. placebo + mFOLFOX6. | Ramucirumab 8 mg/kg Q2W + mFOLFOX6 (oxaliplatin 85, leucovorin 400, 5-FU bolus 400 + inf. 2400 mg/m2/46 h) Q2W. | Safety profile manageable and comparable between arms | Common Grade ≥3 AEs: neutropenia, hypertension, thrombocytopenia | 5.6 months (ramu) vs. 6.0 months (placebo); not significant | 11.7 months (ramu) vs. 11.5 months (placebo); not significant | DCR >50% in both arms; ORR not significantly different | Combo was safe but did not improve PFS or OS. Preliminary activity supported further investigation of ramucirumab in first-line setting. |
4.3. Phase III Studies
| Monoclonal Antibody | Trial (NCT #) | Patient Population | Design and Treatment | Dose(s) | Safety | Adverse Events (AEs) | Median Progression-Free Survival (PFS) | Median Overall Survival (OS) | Disease Control Rate (DCR)/Objective Response Rates (ORR) | Key Findings |
|---|---|---|---|---|---|---|---|---|---|---|
| Bemarituzumab | FORTITUDE-101 Phase III (NCT05052801) [15] | FGFR2b-overexpressing, HER2-negative unresectable locally advanced/metastatic G/GEJ adenocarcinoma; no prior advanced therapy | Global, randomized, double-blind Phase III (547 pts, ~300 sites) Bemarituzumab + mFOLFOX6 vs. placebo + mFOLFOX6 (1:1) | Bemarituzumab 15 mg/kg IV Q2W (with initial Day 8 dose) + mFOLFOX6 (standard dosing) | Overall tolerability consistent with Phase 2 No new/unexpected toxicities | Common AEs (>25% with bemarituzumab): Ocular disturbances, (higher frequency/severity vs. placebo) Chemotherapy related: anemia, neutropenia, nausea Other: fatigue, peripheral neuropathy, stomatitis (similar incidence in both arms) | Pending full data | met primary endpoint (significantly improved vs. placebo)—exact median not released yet | Pending full data | First Phase 3 success for FGFR2b-targeted therapy in this setting. Bemarituzumab + chemo significantly improves OS in FGFR2b+, HER2– G/GEJ cancer. Ocular side effects are manageable. Full efficacy data awaited. |
| FORTITUDE-102 Phase III (NCT05111626) [68] | FGFR2b-positive, HER2-negative advanced G/GEJ adenocarcinoma, first-line setting | Phase 1b/3 trial: Part 1: open-label safety run-in of bemarituzumab + mFOLFOX6 + nivolumab Part 2: randomized double-blind Phase 3 comparing triplet vs. placebo + chemo + nivolumab | Bemarituzumab 15 mg/kg Q2W + mFOLFOX6 + nivolumab (standard dose) | Ongoing trial; no unexpected safety issues flagged so far Ocular toxicity monitored closely with addition of nivolumab | Expected AEs similar to FORTITUDE-101 plus potential immune-related effects due to nivolumab Detailed AE data not yet available | NA (ongoing) | NA (ongoing) | NA (ongoing) | No efficacy data reported yet (ongoing) Evaluates benefit of adding bemarituzumab to chemo + anti-PD1 immunotherapy in FGFR2b+ patients. Could establish new triplet regimen if positive. Results anticipated 2025. | |
| Zolbetuximab | NCT03504397 (SPOTLIGHT) [33] | 565 untreated, CLDN18.2+ (≥75%), HER2− G/GEJ adenocarcinoma ECOG 0–1 | Phase III, randomized, double-blind, placebo-controlled Zolbetuximab + mFOLFOX6 vs. Placebo + mFOLFOX6 | Zolbetuximab: 800 mg/m2 LD → 600 mg/m2 Q3W mFOLFOX6: biweekly | ≥Grade 3 TEAEs: 87% (Z) vs. 78% (P) Serious AEs: ~45% both arms Treatment-related deaths: 5 (Z) vs. 4 (P) Discontinuation due to AEs: 9% (Z) vs. 4% (P) | Nausea: 81% vs. 61% (≥G3: 8.7% vs. 2.4%) Vomiting: 64.5% vs. 34.5% (≥G3: 12.2% vs. 3.6%) Decreased appetite: 47% vs. 33.5% Other common AEs: anemia, neutropenia, stomatitis, fatigue, neuropathy Grade ≥3 anemia/neutropenia: similar between groups | 10.61 vs. 8.67 months | 18.23 vs. 15.54 months | ORR: 60.7% vs. 62.1% DCR: Not reported | Zolbetuximab + mFOLFOX6 significantly prolonged PFS and OS despite similar ORR. Benefit driven by durable disease control. Supports use of zolbetuximab as 1L therapy in CLDN18.2+ G/GEJ cancers. |
| NCT03653507 (GLOW) [69,73] | 507 untreated, CLDN18.2+ (≥75%), HER2− G/GEJ adenocarcinoma ECOG 0–1 | Phase III, randomized, double-blind, placebo-controlled Zolbetuximab + CAPOX vs. Placebo + CAPOX | Zolbetuximab: 800 mg/m2 LD → 600 mg/m2 Q3W CAPOX: Q3W for 8 cycles | ≥Grade 3 TEAEs: 72.8% (Z) vs. 69.9% (P) Discontinuation due to AEs: 7.1% (Z) vs. 4.4% (P) No new safety signals; toxicity manageable | Vomiting: 12.2% vs. 3.6% (≥G3) Nausea: 8.7% vs. 2.4% (≥G3) Anemia: 10.6% vs. 11.2% Neutropenia: 10.2% vs. 9.6% | 8.21 vs. 6.80 months (HR = 0.687; p = 0.0007) 12-months PFS rate: 29% vs. 17% | 14.39 vs. 12.16 months (HR = 0.771; p = 0.0118) | ORR: 42.5% vs. 40.3% DCR: 3.1%/50.8% vs. 1.5%/47.3% | Zolbetuximab + CAPOX significantly prolonged PFS and OS. Benefits driven by disease stabilization rather than tumor shrinkage. Confirms CLDN18.2 as a relevant target in 1L G/GEJ cancer. | |
| Ramucirumab | NCT00917384 [64] | 355 patients with advanced G/GEJ cancer, post-first-line platinum/fluoropyrimidine | Phase III, randomized, double-blind, placebo-controlled (Ramucirumab vs. placebo) | Ramucirumab 8 mg/kg IV Q2W | Well tolerated overall | Grade ≥3 AEs: Hypertension (8%), Abdominal pain (6%), Asthenia (6%), Anemia (6%) | 2.1 vs. 1.3 mo (HR 0.48; p < 0.0001) | 5.2 vs. 3.8 mo (HR 0.77; p = 0.047) | DCR: 28% vs. 16% ORR: Low | Ramucirumab significantly improved PFS and OS. While ORR was low, disease stabilization was clinically meaningful. First anti-VEGFR agent to show survival benefit in gastric cancer. |
| NCT01170663 [72] | 665 patients with advanced G/GEJ adenocarcinoma progressing after first-line therapy | Phase III, randomized, double-blind (Ramucirumab + paclitaxel vs. placebo + paclitaxel) | Ramucirumab 8 mg/kg IV (Days 1 and 15) + Paclitaxel 80 mg/m2 (Days 1, 8, 15) of 28-day cycle | Toxicities were manageable and consistent with known profiles | Grade ≥3 AEs: Neutropenia (41% vs. 19%), Hypertension (14% vs. 2%), Leukopenia, Fatigue, Anemia | 4.4 vs. 2.9 mo (HR 0.64; p < 0.0001) | 9.6 vs. 7.4 mo (HR 0.81; p = 0.017) | ORR: 28% vs. 16% DCR: 80% vs. 64% | Ramucirumab + paclitaxel significantly improved survival and became the standard second-line regimen. Benefits were consistent across subgroups, including patients with poor ECOG status and across regions. |
5. Discussion
5.1. Limitations and Challenges
5.1.1. Biomarker Complexity and Patient Selection
5.1.2. Therapeutic Resistance
5.1.3. Safety Considerations
5.1.4. Economic and Access Barriers
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| ADCC | antibody-dependent cellular cytotoxicity |
| AE | adverse event |
| AKT | protein kinase B |
| CAPOX | capecitabine + oxaliplatin |
| CDC | complement-dependent cytotoxicity |
| CI | confidence interval |
| CLDN18.2 | claudin-18 isoform 2 |
| CPS | combined positive score (PD-L1 scoring method) |
| CR | complete response |
| DAG | diacylglycerol |
| DCR | disease control rate |
| DLT | dose-limiting toxicity |
| ECOG | Eastern Cooperative Oncology Group performance status |
| ERK | extracellular signal-regulated kinase |
| FGFR2b | fibroblast growth factor receptor 2b isoform (IIIb) |
| FOLFIRI | folinic acid + 5-fluorouracil + irinotecan |
| FOLFOX/mFOLFOX6 | (modified) folinic acid + 5-fluorouracil + oxaliplatin |
| G/GEJ | gastric/gastroesophageal junction |
| HER2 | human epidermal growth factor receptor 2 |
| HR | hazard ratio |
| HRD | homologous recombination deficiency |
| IHC | immunohistochemistry |
| IL-2 | interleukin-2 |
| IP3 | inositol-1,4,5-trisphosphate |
| IV | intravenous |
| LD | loading dose |
| MAC | membrane attack complex |
| MAPK | mitogen-activated protein kinase |
| mAb | monoclonal antibody |
| NA | not applicable |
| NK cell | natural killer cell |
| ORR | objective response rate |
| OS | overall survival |
| PD-1 | programmed cell death protein-1 |
| PD-L1 | programmed death-ligand 1 |
| PFS | progression-free survival |
| PI3K | phosphoinositide 3-kinase |
| PIP2 | phosphatidylinositol-4,5-bisphosphate |
| PIP3 | phosphatidylinositol-3,4,5-trisphosphate |
| PKC | protein kinase C |
| PLCγ | phospholipase C-gamma |
| PR | partial response |
| Q2W/Q3W | every 2 weeks/every 3 weeks |
| RP2D | recommended Phase 2 dose |
| SAE | serious adverse event |
| SOX | S-1 (tegafur/gimeracil/oteracil) + oxaliplatin |
| SP | S-1 + cisplatin |
| TEAE | treatment-emergent adverse event |
| TRAE | treatment-related adverse event |
| VEGF | vascular endothelial growth factor |
| VEGFR2 (KDR) | vascular endothelial growth factor receptor-2 |
| XP | capecitabine + cisplatin |
| ZA | zoledronic acid |
| ZOL | zolbetuximab |
References
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Karimi, P.; Islami, F.; Anandasabapathy, S.; Freedman, N.D.; Kamangar, F. Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiol. Biomark. Prev. 2014, 23, 700–713. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Mathias-Machado, M.C.; De Jesus, V.H.F.; Jácome, A.; Donadio, M.D.; Aruquipa, M.P.S.; Fogacci, J.; Cunha, R.G.; Silva, L.M.D.; Peixoto, R.D. Claudin 18.2 as a New Biomarker in Gastric Cancer—What Should We Know? Cancers 2024, 16, 679. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.K.; Qin, S.; Yamaguchi, K.; Kim, I.H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Kang, Y.K.; Lee, K.W.; Qin, S.; Yamaguchi, K.; Kim, I.H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab as first-line treatment for locally advanced or metastatic gastric/gastroesophageal junction adenocarcinoma: Final analysis of the randomized phase 2 FIGHT trial. Gastric Cancer. 2024, 27, 558–570. [Google Scholar] [CrossRef]
- Joshi, S.S.; Badgwell, B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021, 71, 264–279. [Google Scholar] [CrossRef]
- Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: An emerging paradigm. Nat. Rev. Clin. Oncol. 2021, 18, 473–487. [Google Scholar] [CrossRef]
- Lau, D.K.; Collin, J.P.; Mariadason, J.M. Clinical Developments and Challenges in Treating FGFR2-Driven Gastric Cancer. Biomedicines. 2024, 12, 1117. [Google Scholar] [CrossRef]
- Ahn, S.; Lee, J.; Hong, M.; Kim, S.T.; Park, S.H.; Choi, M.G.; Lee, J.-H.; Sohn, T.S.; Bae, J.M.; Kim, S.; et al. FGFR2 in gastric cancer: Protein overexpression predicts gene amplification and high H-index predicts poor survival. Mod. Pathol. 2016, 29, 1095–1103. [Google Scholar] [CrossRef]
- Yashiro, M.; Kuroda, K.; Masuda, G.; Okuno, T.; Miki, Y.; Yamamoto, Y.; Sera, T.; Sugimoto, A.; Kushiyama, S.; Nishimura, S.; et al. Clinical difference between fibroblast growth factor receptor 2 subclass, type IIIb and type IIIc, in gastric cancer. Sci. Rep. 2021, 11, 4698. [Google Scholar] [CrossRef]
- Seraji, N.; Berger, I. FGFR as a Predictive Marker for Targeted Therapy in Gastrointestinal Malignancies: A Systematic Review. J. Gastrointest. Cancer. 2025, 56, 96. [Google Scholar] [CrossRef]
- Su, X.; Zhan, P.; Gavine, P.R.; Morgan, S.; Womack, C.; Ni, X.; Shen, D.; Bang, Y.J.; Im, S.A.; Ho Kim, W.; et al. FGFR2 amplification has prognostic significance in gastric cancer: Results from a large international multicentre study. Br. J. Cancer 2014, 110, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Minashi, K.; Yamada, T.; Hosaka, H.; Amagai, K.; Shimizu, Y.; Kiyozaki, H.; Sato, M.; Soeda, A.; Endo, S.; Ishida, H.; et al. Cancer-related FGFR2 overexpression and gene amplification in Japanese patients with gastric cancer. Jpn. J. Clin. Oncol. 2021, 51, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Rha, S.Y.; Zhang, Y.; Elme, A.; Pazo Cid, R.; Alacacioglu, A.; Ziogas, D.C.; Shitara, K.; Ranceva, A.; Nemecek, R.; Santoro, A.; et al. Prevalence of FGFR2b Protein Overexpression in Advanced Gastric Cancers During Prescreening for the Phase III FORTITUDE-101 Trial. JCO Precis. Oncol. 2025, 9, e2400710. [Google Scholar] [CrossRef]
- Xiang, H.; Chan, A.G.; Ahene, A.; Bellovin, D.I.; Deng, R.; Hsu, A.W.; Jeffry, U.; Palencia, S.; Powers, J.; Zanghi, J.; et al. Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer. mAbs 2021, 13, 1981202. [Google Scholar] [CrossRef]
- Giacomini, A.; Taranto, S.; Gazzaroli, G.; Faletti, J.; Capoferri, D.; Marcheselli, R.; Sciumè, M.; Presta, M.; Sacco, A.; Roccaro, A.M. The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma. J. Exp. Clin. Cancer Res. 2024, 43, 294. [Google Scholar] [CrossRef]
- Katoh, M.; Katoh, M. FGF signaling network in the gastrointestinal tract (Review). Int. J. Oncol. 2006, 29, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, H.R.; Smith, M.P.; Francavilla, C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021, 10, 1201. [Google Scholar] [CrossRef]
- Szymczyk, J.; Sluzalska, K.D.; Materla, I.; Opalinski, L.; Otlewski, J.; Zakrzewska, M. FGF/FGFR-Dependent Molecular Mechanisms Underlying Anti-Cancer Drug Resistance. Cancers 2021, 13, 5796. [Google Scholar] [CrossRef]
- Huang, T.; Wang, L.; Liu, D.; Li, P.; Xiong, H.; Zhuang, L.; Sun, L.; Yuan, X.; Qiu, H. FGF7/FGFR2 signal promotes invasion and migration in human gastric cancer through upregulation of thrombospondin-1. Int. J. Oncol. 2017, 50, 1501–1512. [Google Scholar] [CrossRef]
- Grizzi, G.; Venetis, K.; Denaro, N.; Bonomi, M.; Celotti, A.; Pagkali, A.; Hahne, J.C.; Tomasello, G.; Petrelli, F.; Fusco, N.; et al. Anti-Claudin Treatments in Gastroesophageal Adenocarcinoma: Mainstream and Upcoming Strategies. J. Clin. Med. 2023, 12, 2973. [Google Scholar] [CrossRef] [PubMed]
- McHugh, K.E.; Pai, R.K.; Grant, R.C.; Gallinger, S.; Davison, J.; Ma, C.; Pai, R.K. Claudin 18.2 Expression in 1404 Digestive Tract Adenocarcinomas Including 1175 Colorectal Carcinomas: Distinct Colorectal Carcinoma Subtypes Are Claudin 18.2 Positive. Mod Pathol. 2025, 38, 100712. [Google Scholar] [CrossRef] [PubMed]
- Fassan, M.; Kuwata, T.; Matkowskyj, K.A.; Röcken, C.; Rüschoff, J. Claudin-18.2 Immunohistochemical Evaluation in Gastric and Gastroesophageal Junction Adenocarcinomas to Direct Targeted Therapy: A Practical Approach. Mod. Pathol. 2024, 37, 100589. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B.; et al. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef]
- Nishibata, T.; Weng, J.; Omori, K.; Sato, Y.; Nakazawa, T.; Suzuki, T.; Yamada, T.; Nakajo, I.; Kinugasa, F.; Türeci, Ö.; et al. Effect of anti-claudin 18.2 monoclonal antibody zolbetuximab alone or combined with chemotherapy or programmed cell death-1 blockade in syngeneic and xenograft gastric cancer models. J. Pharmacol. Sci. 2024, 155, 84–93. [Google Scholar] [CrossRef]
- Shitara, K.; Xu, R.H.; Ajani, J.A.; Moran, D.; Guerrero, A.; Li, R.; Pavese, J.; Matsangou, M.; Bhattacharya, P.; Ueno, Y.; et al. Global prevalence of claudin 18 isoform 2 in tumors of patients with locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma. Gastric Cancer 2024, 27, 1058–1068. [Google Scholar] [CrossRef]
- Tada, Y.; Togashi, Y.; Kotani, D.; Kuwata, T.; Sato, E.; Kawazoe, A.; Doi, T.; Wada, H.; Nishikawa, H.; Shitara, K. Targeting VEGFR2 with Ramucirumab strongly impacts effector/ activated regulatory T cells and CD8+ T cells in the tumor microenvironment. J. Immunother. Cancer 2018, 6, 106. [Google Scholar] [CrossRef]
- Baek, J.H.; Park, D.J.; Kim, G.Y.; Cheon, J.; Kang, B.W.; Cha, H.J.; Kim, J.G. Clinical Implications of Claudin18.2 Expression in Patients With Gastric Cancer. Anticancer. Res. 2019, 39, 6973–6979. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, Z.; Jiang, L.; Zhang, M.; Zhang, C.; Shen, L. Claudin-18.2 mediated interaction of gastric Cancer cells and Cancer-associated fibroblasts drives tumor progression. Cell Commun. Signal. 2024, 22, 27. [Google Scholar] [CrossRef]
- Darwish, I.A.; Zhang, D.; Alsalhi, M.S. A novel highly sensitive inner filter effect-based fluorescence immunoassay with quantum dots for bioanalysis of zolbetuximab, a monoclonal antibody used for immunotherapy of gastric and gastroesophageal junction adenocarcinoma. Heliyon 2024, 10, e34611. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, L.; Li, W.; Lai, H.; Li, L.; Wu, J.; Zhang, H.; Fang, C. Efficacy and safety of zolbetuximab for first-line treatment of advanced Claudin 18. 2-positive gastric or gastro-esophageal junction adenocarcinoma: A systematic review and meta-analysis of randomized controlled trials. Front. Oncol. 2023, 13, 1258347. [Google Scholar] [CrossRef]
- Türeci, O.; Sahin, U.; Schulze-Bergkamen, H.; Zvirbule, Z.; Lordick, F.; Koeberle, D.; Thuss-Patience, P.; Ettrich, T.; Arnold, D.; Bassermann, F.; et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: The MONO study. Ann. Oncol. 2019, 30, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Thuss-Patience, P.; Bitzer, M.; Maurus, D.; Sahin, U.; Türeci, Ö. Immunological effects and activity of multiple doses of zolbetuximab in combination with zoledronic acid and interleukin-2 in a phase 1 study in patients with advanced gastric and gastroesophageal junction cancer. J. Cancer Res. Clin. Oncol. 2023, 149, 5937–5950. [Google Scholar] [CrossRef]
- Lorenzen, S.; Thuss-Patience, P.; Pauligk, C.; Gökkurt, E.; Ettrich, T.; Lordick, F.; Stahl, M.; Reichardt, P.; Sökler, M.; Pink, D.; et al. FOLFIRI plus ramucirumab versus paclitaxel plus ramucirumab as second-line therapy for patients with advanced or metastatic gastroesophageal adenocarcinoma with or without prior docetaxel—results from the phase II RAMIRIS Study of the German Gastric Cancer Study Group at AIO. Eur. J. Cancer 2022, 165, 48–57. [Google Scholar]
- Samanta, A.; Ghosh, A.; Sarma, M. Zolbetuximab for Unresectable and Metastatic Gastric and Gastroesophageal Junction Adenocarcinoma: A Review of Literature. Cureus 2024, 16, e75206. Available online: https://www.cureus.com/articles/317230-zolbetuximab-for-unresectable-and-metastatic-gastric-and-gastroesophageal-junction-adenocarcinoma-a-review-of-literature (accessed on 25 August 2025).
- Liu, Y.; Li, Y.; Wang, Y.; Lin, C.; Zhang, D.; Chen, J.; Ouyang, L.; Wu, F.; Zhang, J.; Chen, L. Recent progress on vascular endothelial growth factor receptor inhibitors with dual targeting capabilities for tumor therapy. J. Hematol. Oncol. J. Hematol. Oncol. 2022, 15, 89. [Google Scholar] [CrossRef]
- Lian, L.; Li, X.L.; Xu, M.D.; Li, X.M.; Wu, M.Y.; Zhang, Y.; Tao, M.; Li, W.; Shen, X.-M.; Zhou, C.; et al. VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer 2019, 19, 183. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular endothelial growth factor and its receptor system: Physiological functions in angiogenesis and pathological roles in various diseases. J. Biochem. 2013, 153, 13–19. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.; Roberts, O.L.; Thomas, A.M.; Cross, M.J. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007, 19, 2003–2012. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhai, E.; Liao, B.; Xu, L.; Zhang, X.; Peng, S.; He, Y.; Cai, S.; Zeng, Z.; Chen, M. Autocrine VEGF signaling promotes cell proliferation through a PLC-dependent pathway and modulates Apatinib treatment efficacy in gastric cancer. Oncotarget. 2017, 8, 11990–12002. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yu, J.; Luo, X.; Ren, W.; Zhang, Y.; Cao, B. VEGFR-2 as a novel predictor of survival in gastric cancer: A systematic review and meta-analysis. Pathol. Res. Pract. 2018, 214, 560–564. [Google Scholar] [CrossRef]
- Shibuya, M. VEGF-VEGFR Signals in Health and Disease. Biomol. Ther. 2014, 22, 1–9. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef]
- Jayson, G.C.; Kerbel, R.; Ellis, L.M.; Harris, A.L. Antiangiogenic therapy in oncology: Current status and future directions. Lancet 2016, 388, 518–529. [Google Scholar] [CrossRef]
- Wang, X.; Bove, A.M.; Simone, G.; Ma, B. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role. Front Cell Dev. Biol. 2020, 8, 599281. [Google Scholar] [CrossRef]
- Olsson, A.K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling? In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular endothelial growth factor receptor-2: Its unique signaling and specific ligand, VEGF-E. Cancer Sci. 2003, 94, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Bagri, A.; Kouros-Mehr, H.; Leong, K.G.; Plowman, G.D. Use of anti-VEGF adjuvant therapy in cancer: Challenges and rationale. Trends Mol. Med. 2010, 16, 122–132. [Google Scholar] [CrossRef]
- D’Alessandro, R.; Refolo, M.G.; Schirizzi, A.; De Leonardis, G.; Donghia, R.; Guerra, V.; Giannelli, G.; Lolli, I.R.; Laterza, M.M.; De Vita, F.; et al. Variations in Circulating Levels of Angiopoietin-2 Over Time Are Predictive of Ramucirumab–Paclitaxel Therapy Outcome in Advanced Gastric Cancer: Results of Prospective Study. Front. Oncol. 2022, 12, 862116. [Google Scholar] [CrossRef]
- Catenacci, D.V.T.; Rasco, D.; Lee, J.; Rha, S.Y.; Lee, K.W.; Bang, Y.J.; Bendell, J.; Enzinger, P.; Marina, N.; Xiang, H.; et al. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients with Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J. Clin. Oncol. 2020, 38, 2418–2426. [Google Scholar] [CrossRef]
- Sato, S.; Rhodes, S.L.; Aoki, Y.; Nakayama, I.; Hashimoto, T.; Hawkins, J.; Yanes, R.E.; Chang, C.H.; Nakamura, Y.; Kawazoe, A.; et al. Clinical characterization of FGFR2b expression in patients with advanced gastric or gastroesophageal junction adenocarcinoma. ESMO Open 2025, 10, 105322. [Google Scholar] [CrossRef]
- Klempner, S.J.; Lee, K.W.; Shitara, K.; Metges, J.P.; Lonardi, S.; Ilson, D.H.; Fazio, N.; Kim, T.Y.; Bai, L.-Y.; Moran, D.; et al. ILUSTRO: Phase II Multicohort Trial of Zolbetuximab in Patients with Advanced or Metastatic Claudin 18.2–Positive Gastric or Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2023, 29, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Van Cutsem, E.; Shitara, K.; Xu, R.H.; Ajani, J.A.; Shah, M.A.; Oh, M.; Ganguli, A.; Chang, L.; Rhoten, S.; et al. Health-related quality of life in patients with CLDN18.2-positive, locally advanced unresectable or metastatic gastric or gastroesophageal junction adenocarcinoma: Results from the SPOTLIGHT and GLOW clinical trials. ESMO Open 2024, 9, 103663. [Google Scholar] [CrossRef]
- Rogers, J.E.; Ajani, J. Evidence to Date on the Therapeutic Potential of Zolbetuximab in Advanced Gastroesophageal Adenocarcinoma. Curr. Oncol. 2024, 31, 769–777. [Google Scholar] [CrossRef]
- Lordick, F.; Al-Batran, S.E.; Ganguli, A.; Morlock, R.; Sahin, U.; Türeci, Ö. Patient-reported outcomes from the phase II FAST trial of zolbetuximab plus EOX compared to EOX alone as first-line treatment of patients with metastatic CLDN18.2+ gastroesophageal adenocarcinoma. Gastric Cancer. 2021, 24, 721–730. [Google Scholar] [CrossRef]
- Shitara, K.; Kadowaki, S.; Nishina, T.; Sakai, D.; Yoshikawa, R.; Piao, Y.; Ozeki, A.; Inoue, K.; Gritli, I.; Muro, K. Safety, pharmacokinetic, and clinical activity profiles of ramucirumab in combination with three platinum/fluoropyrimidine doublets in Japanese patients with chemotherapy-naïve metastatic gastric/gastroesophageal junction cancer. Gastric Cancer 2018, 21, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Shitara, K.; Kawazoe, A.; Hirakawa, A.; Nakanishi, Y.; Furuki, S.; Fukuda, M.; Ueno, Y.; Raizer, J.; Arozullah, A. Phase 1 trial of zolbetuximab in Japanese patients with CLDN18.2+ gastric or gastroesophageal junction adenocarcinoma. Cancer Sci. 2023, 114, 1606–1615. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Kang, Y.K.; Chen, M.H.; Hirano, H.; Sunakawa, Y.; Kim, S.T.; Lin, C.-C.; Yong, W.-P.; Kawakami, T.; Oshima, T.; et al. 146P Phase (ph) Ib results of bemarituzumab (BEMA) added to capecitabine/oxaliplatin (CAPOX) or S-1/oxaliplatin (SOX) with or without nivolumab (NIVO) for previously untreated advanced gastric/gastroesophageal junction cancer (G/GEJC): FORTITUDE-103 study. Ann. Oncol. 2023, 34, S1530. [Google Scholar] [CrossRef]
- Rogers, J.E.; Ajani, J.A. Contemporary management of advanced gastric and gastroesophageal adenocarcinomas. Expert. Rev. Anticancer. Ther. 2025, 25, 193–199. [Google Scholar] [CrossRef]
- Cecchini, M.; Cleary, J.M.; Shyr, Y.; Chao, J.; Uboha, N.; Cho, M.; Shields, A.; Pant, S.; Goff, L.; Spencer, K.; et al. NCI10066: A Phase 1/2 study of olaparib in combination with ramucirumab in previously treated metastatic gastric and gastroesophageal junction adenocarcinoma. Br. J. Cancer 2024, 130, 476–482. [Google Scholar] [CrossRef]
- De Moraes, F.C.A.; Pasqualotto, E.; Chavez, M.P.; Ferreira, R.O.M.; De Castria, T.B.; Burbano, R.M.R. Efficacy and safety of Zolbetuximab plus chemotherapy for advanced CLDN18.2-positive gastric or gastro-oesophageal adenocarcinoma: A meta-analysis of randomized clinical trials. BMC Cancer 2024, 24, 240. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; Dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet Lond. Engl. 2014, 383, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lai, S.; Luo, S.; Huang, Q.; Lin, S.; Huang, X.; Xue, H.; Cai, Y.; Xu, X.; Weng, X. The cost–effectiveness of zolbetuximab in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma. Pharmacogenomics 2024, 25, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Shimozaki, K.; Hirata, K.; Hayashi, H.; Sato, Y.; Komatsu, Y.; Taniguchi, S.; Takahashi, N.; Yamaguchi, K.; Furuta, M.; Kawakami, T.; et al. WJOG18524G: A single-arm phase II study evaluating bemarituzumab combined with ramucirumab and paclitaxel in fibroblast growth factor receptor 2b (FGFR2b)-positive advanced gastric or gastroesophageal junction cancer (RAINBIRD). ESMO Gastrointest. Oncol. 2025, 9, 100189. [Google Scholar] [CrossRef]
- Yoon, H.H.; Bendell, J.C.; Braiteh, F.S.; Firdaus, I.; Philip, P.A.; Cohn, A.L.; Lewis, N.; Anderson, D.M.; Arrowsmith, E.; Schwartz, J.D.; et al. Ramucirumab combined with FOLFOX as front-line therapy for advanced esophageal, gastroesophageal junction, or gastric adenocarcinoma: A randomized, double-blind, multicenter Phase II trial. Ann. Oncol. 2016, 27, 2196–2203. [Google Scholar] [CrossRef]
- Ryan, C.; OncLive (MJH Life Sciences). First-Line Bemarituzumab Plus Chemo Hits OS End Point in FGFR2b+ Advanced Gastric Cancer. Available online: https://www.onclive.com/view/first-line-bemarituzumab-plus-chemo-hits-os-end-point-in-fgfr2b-advanced-gastric-cancer?utm (accessed on 30 August 2025).
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Van Cutsem, E.; Xu, R.-H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Huang, Y.; You, M.; Wu, Q.; Chen, R. Cost-effectiveness analysis of zolbetuximab plus mFOLFOX6 as the first-line treatment for CLDN18.2-positive, HER2-negative advanced gastric or Gastroesophageal Adenocarcinoma. Front. Pharmacol. 2023, 14, 1238009. [Google Scholar] [CrossRef]
- Keam, S.J. Zolbetuximab: First Approval. Drugs 2024, 84, 977–983. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Lei, J.; Zhang, J.; You, C.; Fu, W.; Liu, M.; Li, N. First-line treatment with zolbetuximab plus CAPOX for ClDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: A cost-effectiveness analysis. Ther. Adv. Gastroenterol. 2024, 17, 17562848241297052. [Google Scholar] [CrossRef]
- Choi, E.; Shin, J.; Ryu, M.H.; Kim, H.D.; Park, Y.S. Heterogeneity of claudin 18.2 expression in metastatic gastric cancer. Sci. Rep. 2024, 14, 17648. [Google Scholar] [CrossRef]
- Hacker, U.T.; Escalona-Espinosa, L.; Consalvo, N.; Goede, V.; Schiffmann, L.; Scherer, S.J.; Hegde, P.; Van Cutsem, E.; Coutelle, O.; Büning, H. Evaluation of Angiopoietin-2 as a biomarker in gastric cancer: Results from the randomised phase III AVAGAST trial. Br. J. Cancer 2016, 114, 855–862. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Bell, J.; Lau, B.T.; Whittaker, T.; Stapleton, D.; Ji, H.P. A functional CRISPR/Cas9 screen identifies kinases that modulate FGFR inhibitor response in gastric cancer. Oncogenesis. 2019, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, K.; Watanabe Miyano, S.; Minoshima, Y.; Matsui, J.; Funahashi, Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci. Rep. 2020, 10, 2939. [Google Scholar] [CrossRef] [PubMed]
- Farooq, A.V.; Kaur, S.; Hundal, P.; Burke, M.; Sulaiman, R.; Zahlten-Kümeli, A.; Raoof, S.; Li, Z.; Murias Dos Santos, T.; Huang, X.J.; et al. Advancing Ocular Safety Profile Assessment: A Novel Grading Scale for Ocular Adverse Reactions Associated with Bemarituzumab. Ophthalmol Ther. 2025, 14, 1349–1356. [Google Scholar] [CrossRef]
- Kinugasa, F.; Kajikawa, S.; Weng, J.; Ugawa, T.; Fushiki, H.; Yamanaka, Y.; Nagata, M.; Haggerty, G.; Akuzawa, S.; Nakazawa, T.; et al. Effect of antiemetics on zolbetuximab-induced gastric injury and emesis in ferrets. J. Pharmacol. Sci. 2024, 156, 161–170. [Google Scholar] [CrossRef]
- Chiba, T.; Ujiie, H.; Yaegashi, Y.; Umehara, K.; Takada, S.; Otaki, K.; Sako, K.-I.; Nakamaru, Y.; Maeda, T.; Kudo, K.; et al. Reninangiotensin system inhibitors may have an advantage over calcium channel blockers in reducing proteinuria in gastric cancer patients receiving ramucirumab. Biomed. Rep. 2022, 17, 76. [Google Scholar] [CrossRef]
- Kimura, M.; Usami, E.; Teramachi, H.; Yoshimura, T. Cost-effectiveness and safety of ramucirumab plus paclitaxel chemotherapy in the treatment of advanced and recurrent gastric cancer. J. Oncol. Pharm. Pract. 2018, 24, 403–411. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Njoku, V.C.E.; Lee, Y.; Ramesh, J.; Kubatka, P.; Büsselberg, D. Precision Antibody Therapy in Gastric and Gastroesophageal Cancer: Targeting FGFR2b, CLDN18.2, and VEGFR2. Cells 2025, 14, 1672. https://doi.org/10.3390/cells14211672
Njoku VCE, Lee Y, Ramesh J, Kubatka P, Büsselberg D. Precision Antibody Therapy in Gastric and Gastroesophageal Cancer: Targeting FGFR2b, CLDN18.2, and VEGFR2. Cells. 2025; 14(21):1672. https://doi.org/10.3390/cells14211672
Chicago/Turabian StyleNjoku, Vivian Chetachi Eziefula, Yein Lee, Joytish Ramesh, Peter Kubatka, and Dietrich Büsselberg. 2025. "Precision Antibody Therapy in Gastric and Gastroesophageal Cancer: Targeting FGFR2b, CLDN18.2, and VEGFR2" Cells 14, no. 21: 1672. https://doi.org/10.3390/cells14211672
APA StyleNjoku, V. C. E., Lee, Y., Ramesh, J., Kubatka, P., & Büsselberg, D. (2025). Precision Antibody Therapy in Gastric and Gastroesophageal Cancer: Targeting FGFR2b, CLDN18.2, and VEGFR2. Cells, 14(21), 1672. https://doi.org/10.3390/cells14211672

