Cells Versus Cell-Derived Signals in Cardiac Regenerative Therapy: A Comparative Analysis of Mechanisms and Clinical Evidence
Abstract
1. Introduction
2. Mechanisms of Cardiac Muscle Regeneration
2.1. Structure of the Cardiac Muscle Cell in Health and Disease
2.1.1. Physiological Structure
2.1.2. Disease-Related Alterations
2.2. Direct Cell Transplantation
2.2.1. Skeletal Myoblasts
2.2.2. Adult Stem Cells
2.2.3. Embryonic Stem Cells (ESCs)
2.2.4. Human Induced Pluripotent Stem Cells (hiPSCs)
2.3. Cellular Signaling in Regeneration
2.3.1. Growth Factors
2.3.2. Cytokines
2.3.3. Exosomes
2.3.4. Challenges in Cellular Signaling
3. Research Findings
3.1. Experimental Studies Using Models and Animal Research
3.1.1. Cell Therapy
3.1.2. Cell-Derived Signals
3.2. Clinical Evidence in Humans
3.2.1. Cell Therapy
3.2.2. Cell-Derived Signals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| PDCD4 | Programmed cell death 4 |
| RasGAP-p120 | Ras GTPase-activating protein |
| p53 | Tumor protein p53 |
| Bak-1 | Bcl-2 antagonist killer 1 |
| IRAK1 | Interleukin-1 receptor-associated kinase 1 |
| TRAF6 | TNF receptor-associated factor 6 |
| EFNA3 | EphrinA3 |
| CPC | Cardiac progenitor cell |
| MSC | Mesenchymal stem cell |
| MSCs-EVs | Mesenchymal stem cell-derived extracellular vesicles |
| CDC | Cardiosphere-derived cells |
References
- Menasché, P. Cell Therapy Trials for Heart Regeneration—Lessons Learned and Future Directions. Nat. Rev. Cardiol. 2018, 15, 659–671. [Google Scholar] [CrossRef]
- Nigro, P.; Bassetti, B.; Cavallotti, L.; Catto, V.; Carbucicchio, C.; Pompilio, G. Cell Therapy for Heart Disease after 15 Years: Unmet Expectations. Pharmacol. Res. 2018, 127, 77–91. [Google Scholar] [CrossRef]
- Banerjee, M.N.; Bolli, R.; Hare, J.M. Clinical Studies of Cell Therapy in Cardiovascular Medicine. Circ. Res. 2018, 123, 266–287. [Google Scholar] [CrossRef]
- Bolli, R.; Solankhi, M.; Tang, X.L.; Kahlon, A. Cell Therapy in Patients with Heart Failure: A Comprehensive Review and Emerging Concepts. Cardiovasc. Res. 2022, 118, 951–976. [Google Scholar] [CrossRef] [PubMed]
- Traxler, D.; Dannenberg, V.; Zlabinger, K.; Gugerell, A.; Mester-Tonczar, J.; Lukovic, D.; Spannbauer, A.; Hasimbegovic, E.; Kastrup, J.; Gyöngyösi, M. Plasma Small Extracellular Vesicle Cardiac MiRNA Expression in Patients with Ischemic Heart Failure, Randomized to Percutaneous Intramyocardial Treatment of Adipose Derived Stem Cells or Placebo: Subanalysis of the SCIENCE Study. Int. J. Mol. Sci. 2023, 24, 10647. [Google Scholar] [CrossRef] [PubMed]
- Liew, L.C.; Ho, B.X.; Soh, B.S. Mending a Broken Heart: Current Strategies and Limitations of Cell-Based Therapy. Stem. Cell Res. Ther. 2020, 11, 138. [Google Scholar] [CrossRef]
- Akbar, N.; Razzaq, S.S.; Salim, A.; Haneef, K. Mesenchymal Stem Cell-Derived Exosomes and Their MicroRNAs in Heart Repair and Regeneration. J. Cardiovasc. Transl. Res. 2024, 17, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bolli, R.; Garry, D.J.; Marbán, E.; Menasché, P.; Zimmermann, W.H.; Kamp, T.J.; Wu, J.C.; Dzau, V.J. Basic and Translational Research in Cardiac Repair and Regeneration: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2021, 78, 2092–2105. [Google Scholar] [CrossRef]
- Tan, S.J.O.; Floriano, J.F.; Nicastro, L.; Emanueli, C.; Catapano, F. Novel Applications of Mesenchymal Stem Cell-Derived Exosomes for Myocardial Infarction Therapeutics. Biomolecules 2020, 10, 707. [Google Scholar] [CrossRef]
- Mancuso, T.; Barone, A.; Salatino, A.; Molinaro, C.; Marino, F.; Scalise, M.; Torella, M.; De Angelis, A.; Urbanek, K.; Torella, D.; et al. Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. Int. J. Mol. Sci. 2020, 21, 3725. [Google Scholar] [CrossRef]
- Golpanian, S.; Wolf, A.; Hatzistergos, K.E.; Hare, J.M. Rebuilding the Damaged Heart: Mesenchymal Stem Cells, Cell-Based Therapy, and Engineered Heart Tissue. Physiol. Rev. 2016, 96, 1127–1168. [Google Scholar] [CrossRef]
- Yan, W.; Xia, Y.; Zhao, H.; Xu, X.; Ma, X.; Tao, L. Stem Cell-Based Therapy in Cardiac Repair after Myocardial Infarction: Promise, Challenges, and Future Directions. J. Mol. Cell Cardiol. 2024, 188, 1–14. [Google Scholar] [CrossRef]
- Kervadec, A.; Bellamy, V.; El Harane, N.; Arakélian, L.; Vanneaux, V.; Cacciapuoti, I.; Nemetalla, H.; Périer, M.C.; Toeg, H.D.; Richart, A.; et al. Cardiovascular Progenitor-Derived Extracellular Vesicles Recapitulate the Beneficial Effects of Their Parent Cells in the Treatment of Chronic Heart Failure. J. Heart Lung Transplant. 2016, 35, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Zhang, E.; Joshi, J.; Yang, J.; Zhang, J.; Zhu, W. Utilization of Human Induced Pluripotent Stem Cells for Cardiac Repair. Front. Cell Dev. Biol. 2020, 8, 501465. [Google Scholar] [CrossRef]
- Farahzadi, R.; Fathi, E.; Valipour, B.; Ghaffary, S. Stem Cells-Derived Exosomes as Cardiac Regenerative Agents. Int. J. Cardiol. Heart Vasc. 2024, 52, 101399. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaka, Y.; Yashiro, R. Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 6480. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Yan, C. Recent Advances in the Use of Extracellular Vesicles from Adipose-Derived Stem Cells for Regenerative Medical Therapeutics. J. Nanobiotechnol. 2024, 22, 316. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Nickoloff, E.; Abramova, T.; Johnson, J.; Verma, S.K.; Krishnamurthy, P.; Mackie, A.R.; Vaughan, E.; Garikipati, V.N.S.; Benedict, C.; et al. Embryonic Stem Cell-Derived Exosomes Promote Endogenous Repair Mechanisms and Enhance Cardiac Function Following Myocardial Infarction. Circ. Res. 2015, 117, 52–64. [Google Scholar] [CrossRef]
- Guan, A.; Alibrandi, L.; Verma, E.; Sareen, N.; Guan, Q.; Lionetti, V.; Dhingra, S. Clinical Translation of Mesenchymal Stem Cells in Ischemic Heart Failure: Challenges and Future Perspectives. Vascul. Pharmacol. 2025, 159, 107491. [Google Scholar] [CrossRef]
- Banovic, M.; Poglajen, G.; Vrtovec, B.; Ristic, A. Contemporary Challenges of Regenerative Therapy in Patients with Ischemic and Non-Ischemic Heart Failure. J. Cardiovasc. Dev. Dis. 2022, 9, 429. [Google Scholar] [CrossRef]
- Madonna, R.; Van Laake, L.W.; Davidson, S.M.; Engel, F.B.; Hausenloy, D.J.; Lecour, S.; Leor, J.; Perrino, C.; Schulz, R.; Ytrehus, K.; et al. Position Paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: Cell-Based Therapies for Myocardial Repair and Regeneration in Ischemic Heart Disease and Heart Failure. Eur. Heart J. 2016, 37, 1789–1798. [Google Scholar] [CrossRef]
- Terzic, A.; Behfar, A. Stem Cell Therapy for Heart Failure: Ensuring Regenerative Proficiency. Trends Cardiovasc. Med. 2016, 26, 395–404. [Google Scholar] [CrossRef]
- Pezhouman, A.; Nguyen, N.B.; Kay, M.; Kanjilal, B.; Noshadi, I.; Ardehali, R. Cardiac Regeneration—Past Advancements, Current Challenges, and Future Directions. J. Mol. Cell Cardiol. 2023, 182, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Hu, S.; Liu, S.; Zhang, H.; Ma, H.; Huang, K.; Li, Z.; Su, T.; Vandergriff, A.; Tang, J.; et al. MicroRNA-21-5p Dysregulation in Exosomes Derived from Heart Failure Patients Impairs Regenerative Potential. J. Clin. Investig. 2019, 129, 2237–2250. [Google Scholar] [CrossRef]
- Yahyazadeh, R.; Baradaran Rahimi, V.; Askari, V.R. Stem Cell and Exosome Therapies for Regenerating Damaged Myocardium in Heart Failure. Life Sci. 2024, 351, 122858. [Google Scholar] [CrossRef]
- Muller, E. The Role of the Cardiovascular System in Pumping Blood. Anat. Physiol. 2024, 14, 482. [Google Scholar] [CrossRef]
- Shaffer, F.; McCraty, R.; Zerr, C.L. A Healthy Heart Is Not a Metronome: An Integrative Review of the Heart’s Anatomy and Heart Rate Variability. Front. Psychol. 2014, 5, 1040. [Google Scholar] [CrossRef]
- Fang, C.D. The Cardiac Cycle. Anaesth. Intensive Care Med. 2012, 13, 391–396. [Google Scholar] [CrossRef]
- Lin, T.Y.; Mai, Q.N.; Zhang, H.; Wilson, E.; Chien, H.C.; Yee, S.W.; Giacomini, K.M.; Olgin, J.E.; Irannejad, R. Cardiac Contraction and Relaxation Are Regulated by Distinct Subcellular CAMP Pools. Nat. Chem. Biol. 2024, 20, 62–73. [Google Scholar] [CrossRef]
- Bois, A.; Grandela, C.; Gallant, J.; Mummery, C.; Menasché, P. Revitalizing the Heart: Strategies and Tools for Cardiomyocyte Regeneration Post-Myocardial Infarction. NPJ Regen. Med. 2025, 10, 6. [Google Scholar] [CrossRef]
- Guo, Y.; Pu, W.T. Cardiomyocyte Maturation. Circ. Res. 2020, 126, 1086–1106. [Google Scholar] [CrossRef]
- Später, D.; Hansson, E.M.; Zangi, L.; Chien, K.R. How to Make a Cardiomyocyte. Development 2014, 141, 4418–4431. [Google Scholar] [CrossRef]
- Tracy, R.E.; Sander, G.E. Histologically Measured Cardiomyocyte Hypertrophy Correlates with Body Height as Strongly as with Body Mass Index. Cardiol. Res. Pract. 2011, 2011, 658958. [Google Scholar] [CrossRef]
- Nielsen, M.S.; van Opbergen, C.J.M.; van Veen, T.A.B.; Delmar, M. The Intercalated Disc: A Unique Organelle for Electromechanical Synchrony in Cardiomyocytes. Physiol. Rev. 2023, 103, 2271. [Google Scholar] [CrossRef]
- Keepers, B.; Liu, J.; Qian, L. What’s in a Cardiomyocyte—And How Do We Make One through Reprogramming? Biochim. Biophys. Acta Mol. Cell Res. 2019, 1867, 118464. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Gao, M.; Jiang, W.; Qin, Y.; Gong, G. Mitochondrial Dynamics in Adult Cardiomyocytes and Heart Diseases. Front. Cell Dev. Biol. 2020, 8, 584800. [Google Scholar] [CrossRef]
- Rossini, M.; Filadi, R. Sarcoplasmic Reticulum-Mitochondria Kissing in Cardiomyocytes: Ca2+, ATP, and Undisclosed Secrets. Front. Cell Dev. Biol. 2020, 8, 555876. [Google Scholar] [CrossRef] [PubMed]
- Hadipour-Lakmehsari, S.; Driouchi, A.; Lee, S.H.; Kuzmanov, U.; Callaghan, N.I.; Heximer, S.P.; Simmons, C.A.; Yip, C.M.; Gramolini, A.O. Nanoscale Reorganization of Sarcoplasmic Reticulum in Pressure-Overload Cardiac Hypertrophy Visualized by DSTORM. Sci. Rep. 2019, 9, 7867. [Google Scholar] [CrossRef]
- Nguyen, P.K.; Neofytou, E.; Rhee, J.-W.; Wu, J.C. Potential Strategies to Address the Major Clinical Barriers Facing Stem Cell Regenerative Therapy for Cardiovascular Disease. JAMA Cardiol. 2016, 1, 953. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wu, H.; Liu, Y.; Liu, L.; Houser, S.R.; Wang, W.E. Metabolic Reprogramming: A Byproduct or a Driver of Cardiomyocyte Proliferation? Circulation 2024, 149, 1598–1610. [Google Scholar] [CrossRef]
- Rhana, P.; Matsumoto, C.; Fong, Z.; Costa, A.D.; Del Villar, S.G.; Dixon, R.E.; Santana, L.F. Fueling the Heartbeat: Dynamic Regulation of Intracellular ATP during Excitation–Contraction Coupling in Ventricular Myocytes. Proc. Nat. Acad. Sci. USA 2024, 121, e2318535121. [Google Scholar] [CrossRef]
- Birkedal, R.; Laasmaa, M.; Branovets, J.; Vendelin, M. Ontogeny of Cardiomyocytes: Ultrastructure Optimization to Meet the Demand for Tight Communication in Excitation–Contraction Coupling and Energy Transfer. Philos. Trans. R. Soc. B Biol. Sci. 2022, 377, 20210321. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, V.; Pinali, C.; Shiels, H.A. New Revelations on the Interplay between Cardiomyocyte Architecture and Cardiomyocyte Function in Growth, Health, and Disease: A Brief Introduction. Philos. Trans. R. Soc. B 2022, 377, 20210315. [Google Scholar] [CrossRef] [PubMed]
- Manfra, O.; Frisk, M.; Louch, W.E. Regulation of Cardiomyocyte T-Tubular Structure: Opportunities for Therapy. Curr. Heart Fail. Rep. 2017, 14, 167. [Google Scholar] [CrossRef]
- Hong, T.T.; Shaw, R.M. Cardiac T-Tubule Microanatomy and Function. Physiol. Rev. 2016, 97, 227. [Google Scholar] [CrossRef]
- Kartha, C.C. Structure and Function of Cardiomyocyte. In Cardiomyocytes in Health and Disease; Springer: Cham, Switzerland, 2021; pp. 3–12. [Google Scholar] [CrossRef]
- Yamada, Y.; Namba, K.; Fujii, T. Cardiac Muscle Thin Filament Structures Reveal Calcium Regulatory Mechanism. Nat. Commun. 2020, 11, 153. [Google Scholar] [CrossRef]
- Hassel, K.R.; Gibson, A.M.; Šeflová, J.; Cho, E.E.; Blair, N.S.; Van Raamsdonk, C.D.; Anderson, D.M.; Robia, S.L.; Makarewich, C.A. Another-Regulin Regulates Cardiomyocyte Calcium Handling via Integration of Neuroendocrine Signaling with SERCA2a Activity. J. Mol. Cell Cardiol. 2024, 197, 45–58. [Google Scholar] [CrossRef]
- Shattock, M.J.; Ottolia, M.; Bers, D.M.; Blaustein, M.P.; Boguslavskyi, A.; Bossuyt, J.; Bridge, J.H.B.; Chen-Izu, Y.; Clancy, C.E.; Edwards, A.; et al. Na+/Ca2+ Exchange and Na+/K+-ATPase in the Heart. J. Physiol. 2015, 593, 1361–1382. [Google Scholar] [CrossRef]
- Brown, D.A.; Perry, J.B.; Allen, M.E.; Sabbah, H.N.; Stauffer, B.L.; Shaikh, S.R.; Cleland, J.G.F.; Colucci, W.S.; Butler, J.; Voors, A.A.; et al. Expert Consensus Document: Mitochondrial Function as a Therapeutic Target in Heart Failure. Nat. Rev. Cardiol. 2017, 14, 238–250. [Google Scholar] [CrossRef]
- Cai, K.; Jiang, H.; Zou, Y.; Song, C.; Cao, K.; Chen, S.; Wu, Y.; Zhang, Z.; Geng, D.; Zhang, N.; et al. Programmed Death of Cardiomyocytes in Cardiovascular Disease and New Therapeutic Approaches. Pharmacol. Res. 2024, 206, 107281. [Google Scholar] [CrossRef] [PubMed]
- Szala, S.; Matuszczak, S.; Czapla, J.; Wiśniewska, E. Od Komórek Prekursorowych Do Komórek Przeprogramowanych: Ewolucja Kardiomioplastyki. Postep. Hig. Med. Dosw. 2014, 68, 153–161. [Google Scholar] [CrossRef]
- Buja, L.M. Pathobiology of Myocardial and Cardiomyocyte Injury in Ischemic Heart Disease: Perspective from Seventy Years of Cell Injury Research. Exp. Mol. Pathol. 2024, 140, 104944. [Google Scholar] [CrossRef]
- Ramaccini, D.; Montoya-Uribe, V.; Aan, F.J.; Modesti, L.; Potes, Y.; Wieckowski, M.R.; Krga, I.; Glibetić, M.; Pinton, P.; Giorgi, C.; et al. Mitochondrial Function and Dysfunction in Dilated Cardiomyopathy. Front. Cell Dev. Biol. 2021, 8, 624216. [Google Scholar] [CrossRef]
- Johnson, R.; Fletcher, R.A.; Peters, S.; Ohanian, M.; Soka, M.; Smolnikov, A.; Abihider, K.E.; Ackerman, M.J.; Ader, F.; Akhtar, M.M.; et al. Titin-Related Familial Dilated Cardiomyopathy: Factors Associated with Disease Onset. Eur. Heart J. 2025, ehaf380. [Google Scholar] [CrossRef] [PubMed]
- Nollet, E.E.; Duursma, I.; Rozenbaum, A.; Eggelbusch, M.; Wüst, R.C.I.; Schoonvelde, S.A.C.; Michels, M.; Jansen, M.; Van Der Wel, N.N.; Bedi, K.C.; et al. Mitochondrial Dysfunction in Human Hypertrophic Cardiomyopathy Is Linked to Cardiomyocyte Architecture Disruption and Corrected by Improving NADH-Driven Mitochondrial Respiration. Eur. Heart J. 2023, 44, 1170–1185. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Zheng, R.; Zhang, J.; Liu, Y.; Li, Z.; Liu, G.; Zheng, J.; Li, W.; Liang, Z.; Wang, M.; et al. Cardiomyocyte OTUD1 Drives Diabetic Cardiomyopathy via Directly Deubiquitinating AMPKα2 and Inducing Mitochondrial Dysfunction. Nat. Commun. 2025, 16, 6668. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.N.; Umapathi, K.K.; Horenstein, M.S.; Oliver, T.I. Arrhythmogenic Right Ventricular Cardiomyopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470378/ (accessed on 28 September 2025).
- Rampazzo, A.; Calore, M.; Van Hengel, J.; Van Roy, F. Intercalated Discs and Arrhythmogenic Cardiomyopathy. Circ. Cardiovasc. Genet. 2014, 7, 930–940. [Google Scholar] [CrossRef]
- Siddiq, M.M.; Chan, A.T.; Miorin, L.; Yadaw, A.S.; Beaumont, K.G.; Kehrer, T.; Cupic, A.; White, K.M.; Tolentino, R.E.; Hu, B.; et al. Functional Effects of Cardiomyocyte Injury in COVID-19. J. Virol. 2022, 96, e0106321. [Google Scholar] [CrossRef]
- Kitmitto, A.; Baudoin, F.; Cartwright, E.J. Cardiomyocyte Damage Control in Heart Failure and the Role of the Sarcolemma. J. Muscle Res. Cell Motil. 2019, 40, 319. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Karwi, Q.G.; Tian, R.; Wende, A.R.; Abel, E.D. Cardiac Energy Metabolism in Heart Failure. Circ. Res. 2021, 128, 1487–1513. [Google Scholar] [CrossRef]
- Meddeb, M.; Koleini, N.; Binek, A.; Keykhaei, M.; Darehgazani, R.; Kwon, S.; Aboaf, C.; Margulies, K.B.; Bedi, K.C.; Lehar, M.; et al. Myocardial Ultrastructure of Human Heart Failure with Preserved Ejection Fraction. Nat. Cardiovasc. Res. 2024, 3, 907–914. [Google Scholar] [CrossRef]
- Collet, B.C.; Davis, D.R. Mechanisms of Cardiac Repair in Cell Therapy. Heart Lung Circ. 2023, 32, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, I.; Smith, R.R.; Li, T.-S.; Gerstenblith, G.; Messina, E.; Giacomello, A.; Marbán, E. Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice. Circ. Res. 2010, 106, 971–980. [Google Scholar] [CrossRef]
- Montague, E.C.; Ozcan, B.; Sefton, E.; Wulkan, F.; Alibhai, F.J.; Laflamme, M.A. Human Pluripotent Stem Cell-Based Cardiac Repair: Lessons Learned and Challenges Ahead. Adv. Drug Deliv. Rev. 2025, 222, 115594. [Google Scholar] [CrossRef]
- Moraddahande, F.M.; Meybodi, S.M.E.; Matin, M.; Soleimani, N.; Ghasemzadeh, N.; Firoozabadi, A.D. Current Status and New Horizons in Stem Cell Therapy in Cardiovascular Regenerative Medicine (CaVaReM): An Update. Eur. J. Med. Res. 2025, 30, 837. [Google Scholar] [CrossRef]
- Guo, M.; Watanabe, T.; Shinoka, T. Injectable Stem Cell-Based Therapies for Myocardial Regeneration: A Review of the Literature. J. Funct. Biomater. 2025, 16, 152. [Google Scholar] [CrossRef]
- Alhejailan, R.S.; Garoffolo, G.; Raveendran, V.V.; Pesce, M. Cells and Materials for Cardiac Repair and Regeneration. J. Clin. Med. 2023, 12, 3398. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; An, M.; Haubner, B.J.; Penninger, J.M. Cardiac Regeneration: Options for Repairing the Injured Heart. Front. Cardiovasc. Med. 2023, 9, 981982. [Google Scholar] [CrossRef]
- Gill, J.K.; Rehsia, S.K.; Verma, E.; Sareen, N.; Dhingra, S. Stem Cell Therapy for Cardiac Regeneration: Past, Present, and Future. Can. J. Physiol. Pharmacol. 2024, 102, 161–179. [Google Scholar] [CrossRef]
- Khalili, M.R.; Ahmadloo, S.; Mousavi, S.A.; Joghataei, M.T.; Brouki Milan, P.; Naderi Gharahgheshlagh, S.; Mohebi, S.L.; Haramshahi, S.M.A.; Hosseinpour Sarmadi, V. Navigating Mesenchymal Stem Cells Doses and Delivery Routes in Heart Disease Trials: A Comprehensive Overview. Regen. Ther. 2025, 29, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Han, D.; Liang, P.; Li, Y.; Cao, F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front. Cell Dev. Biol. 2021, 9, 636136. [Google Scholar] [CrossRef]
- Jebran, A.F.; Seidler, T.; Tiburcy, M.; Daskalaki, M.; Kutschka, I.; Fujita, B.; Ensminger, S.; Bremmer, F.; Moussavi, A.; Yang, H.; et al. Engineered Heart Muscle Allografts for Heart Repair in Primates and Humans. Nature 2025, 639, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Cambria, E.; Pasqualini, F.S.; Wolint, P.; Günter, J.; Steiger, J.; Bopp, A.; Hoerstrup, S.P.; Emmert, M.Y. Translational Cardiac Stem Cell Therapy: Advancing from First-Generation to next-Generation Cell Types. NPJ Regen. Med. 2017, 2, 17. [Google Scholar] [CrossRef]
- Patel, A.N.; Silva, F.; Winters, A.A. Stem Cell Therapy for Heart Failure. Heart Fail. Clin. 2015, 11, 275–286. [Google Scholar] [CrossRef]
- Selvakumar, D.; Clayton, Z.E.; Chong, J.J.H. Robust Cardiac Regeneration: Fulfilling the Promise of Cardiac Cell Therapy. Clin. Ther. 2020, 42, 1857–1879. [Google Scholar] [CrossRef]
- Nazir, S.; Maqbool, T.; Savas, S. Cardiac Repair and Mesenchymal Stem Cells: Exploring New Frontiers in Regenerative Medicine. Curr. Cardiol. Rev. 2025, 21, e1573403X376065. [Google Scholar] [CrossRef]
- Seth, J.; Sharma, S.; Leong, C.J.; Vaibhav, V.; Nelson, P.; Shokravi, A.; Luo, Y.; Shirvani, D.; Laksman, Z. The Use of Hematopoietic Stem Cells for Heart Failure: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 6634. [Google Scholar] [CrossRef]
- Wolfien, M.; Klatt, D.; Salybekov, A.A.; Ii, M.; Komatsu-Horii, M.; Gaebel, R.; Philippou-Massier, J.; Schrinner, E.; Akimaru, H.; Akimaru, E.; et al. Hematopoietic Stem-Cell Senescence and Myocardial Repair—Coronary Artery Disease Genotype/Phenotype Analysis of Post-MI Myocardial Regeneration Response Induced by CABG/CD133+ Bone Marrow Hematopoietic Stem Cell Treatment in RCT PERFECT Phase 3. EBioMedicine 2020, 57, 102862. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhong, W.; Zheng, H.; Zhao, W.; Wang, Y.; Shen, B. Current State of Heart Failure Treatment: Are Mesenchymal Stem Cells and Their Exosomes a Future Therapy? Front. Cardiovasc. Med. 2025, 12, 1518036. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Xue, Y.; Tian, Q.; Deng, Y.; Tang, T. Impact of Mesenchymal Stem Cell Therapy on Cardiac Function and Outcomes in Acute Myocardial Infarction: A Meta-Analysis of Clinical Studies. Cell Transplant. 2025, 34, 9636897251359773. [Google Scholar] [CrossRef]
- Le, T.; Chong, J. Cardiac Progenitor Cells for Heart Repair. Cell Death Discov. 2016, 2, 16052. [Google Scholar] [CrossRef]
- Inouye, K.; White, G.; Khan, S.; Luba, J.; Benharash, P.; Thankam, F.G. Heart-Derived Endogenous Stem Cells. Mol. Biol. Rep. 2025, 52, 880. [Google Scholar] [CrossRef]
- Ali, S.A.; Mahmood, Z.; Mubarak, Z.; Asad, M.; Sarfraz Chaudhri, M.T.; Bilal, L.; Ashraf, T.; Khalifa, T.N.; Ashraf, T.; Saleem, F.; et al. Assessing the Potential Benefits of Stem Cell Therapy in Cardiac Regeneration for Patients With Ischemic Heart Disease. Cureus 2025, 17, e76770. [Google Scholar] [CrossRef]
- Sugiura, T.; Shahannaz, D.C.; Ferrell, B.E. Current Status of Cardiac Regenerative Therapy Using Induced Pluripotent Stem Cells. Int. J. Mol. Sci. 2024, 25, 5772. [Google Scholar] [CrossRef]
- Vo, Q.D.; Saito, Y.; Nakamura, K.; Iida, T.; Yuasa, S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 987. [Google Scholar] [CrossRef]
- Means, J.C.; Martinez-Bengochea, A.L.; Louiselle, D.A.; Nemechek, J.M.; Perry, J.M.; Farrow, E.G.; Pastinen, T.; Younger, S.T. Rapid and Scalable Personalized ASO Screening in Patient-Derived Organoids. Nature 2025, 638, 237. [Google Scholar] [CrossRef]
- Krogulec, E.; Dobosz, A.M.; Stefanowski, N.; Kendziorek, M.E.; Janikiewicz, J.; Dobrzyń, A. From Potential to Practice: Overcoming the Immaturity of IPSC-Derived Cardiomyocytes for Regenerative Medicine. Pol. Heart J. 2025, 83, 417–426. [Google Scholar] [CrossRef]
- Bar, J.K.; Lis-Nawara, A.; Grelewski, P.G. Dental Pulp Stem Cell-Derived Secretome and Its Regenerative Potential. Int. J. Mol. Sci. 2021, 22, 12018. [Google Scholar] [CrossRef]
- Zullo, J.; Matsumoto, K.; Xavier, S.; Ratliff, B.; Goligorsky, M.S. The Cell Secretome, A Mediator of Cell-To-Cell Communication. Prostaglandins Other Lipid Mediat. 2015, 120, 17. [Google Scholar] [CrossRef]
- Trigo, C.M.; Rodrigues, J.S.; Camões, S.P.; Solá, S.; Miranda, J.P. Mesenchymal Stem Cell Secretome for Regenerative Medicine: Where Do We Stand? J. Adv. Res. 2024, 70, 103. [Google Scholar] [CrossRef]
- Mohsin, S.; Houser, S.R. Cortical Bone Derived Stem Cells for Cardiac Wound Healing. Korean Circ. J. 2019, 49, 314. [Google Scholar] [CrossRef]
- Hodgkinson, C.P.; Bareja, A.; Gomez, J.A.; Dzau, V.J. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ. Res. 2016, 118, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Haider, K.H.; Aziz, S. Citation: Haider KH, Aziz S (2017) Paracrine Hypothesis and Cardiac Repair. Int. J. Stem Cell Res. Transplant. 2017, 5, 265–267. [Google Scholar] [CrossRef]
- Bryl, R.; Kulus, M.; Bryja, A.; Domagała, D.; Mozdziak, P.; Antosik, P.; Bukowska, D.; Zabel, M.; Dzięgiel, P.; Kempisty, B. Cardiac Progenitor Cell Therapy: Mechanisms of Action. Cell Biosci. 2024, 14, 30. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, X.; Cui, H.; Shi, J.; Yuan, G.; Shi, S.; Hu, Y. The Role of the VEGF Family in Coronary Heart Disease. Front. Cardiovasc. Med. 2021, 8, 738325. [Google Scholar] [CrossRef]
- Lee, C.; Kim, M.J.; Kumar, A.; Lee, H.W.; Yang, Y.; Kim, Y. Vascular Endothelial Growth Factor Signaling in Health and Disease: From Molecular Mechanisms to Therapeutic Perspectives. Signal Transduct. Target. Ther. 2025, 10, 170. [Google Scholar] [CrossRef] [PubMed]
- White, S.J.; Chong, J.J.H. Growth Factor Therapy for Cardiac Repair: An Overview of Recent Advances and Future Directions. Biophys. Rev. 2020, 12, 805. [Google Scholar] [CrossRef]
- Farooq, M.; Khan, A.W.; Kim, M.S.; Choi, S. The Role of Fibroblast Growth Factor (FGF) Signaling in Tissue Repair and Regeneration. Cells 2021, 10, 3242. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, F.; Ahmadvand, N.; Bellusci, S.; Sauer, H. The Multifunctional Contribution of FGF Signaling to Cardiac Development, Homeostasis, Disease and Repair. Front. Cell Dev. Biol. 2021, 9, 672935. [Google Scholar] [CrossRef]
- Brown, G.S.; Jang, J.; Li, D. Growth Factors and Their Roles in Cardiac Development and Regeneration: A Narrative Review. Pediatr. Med. 2023, 6, 35. [Google Scholar] [CrossRef]
- Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F.; et al. FGF/FGFR Signaling in Health and Disease. Signal Transduct. Target. Ther. 2020, 5, 181. [Google Scholar] [CrossRef]
- Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. Cellular and Molecular Mechanisms of HGF/Met in the Cardiovascular System. Clin. Sci. 2015, 129, 1173–1193. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. HGF/Met Axis in Heart Function and Cardioprotection. Biomedicines 2014, 2, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Gogiraju, R.; Bochenek, M.L.; Schäfer, K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front. Cardiovasc. Med. 2019, 6, 442692. [Google Scholar] [CrossRef]
- Li, N.; Wang, C.; Jia, L.X.; Du, J. Heart Regeneration, Stem Cells, and Cytokines. Regen. Med. Res. 2014, 2, 6. [Google Scholar] [CrossRef] [PubMed]
- Palomino, D.C.; Marti, L.C. Chemokines and Immunity. Einstein 2015, 13, 469–473. [Google Scholar] [CrossRef]
- Lu, X.; Wang, Z.; Ye, D.; Feng, Y.; Liu, M.; Xu, Y.; Wang, M.; Zhang, J.; Liu, J.; Zhao, M.; et al. The Role of CXC Chemokines in Cardiovascular Diseases. Front. Pharmacol. 2022, 12, 765768. [Google Scholar] [CrossRef]
- Gao, F.; Kataoka, M.; Liu, N.; Liang, T.; Huang, Z.P.; Gu, F.; Ding, J.; Liu, J.; Zhang, F.; Ma, Q.; et al. Therapeutic Role of MiR-19a/19b in Cardiac Regeneration and Protection from Myocardial Infarction. Nat. Commun. 2019, 10, 1802. [Google Scholar] [CrossRef]
- Braga, L.; Ali, H.; Secco, I.; Giacca, M. Non-Coding RNA Therapeutics for Cardiac Regeneration. Cardiovasc. Res. 2021, 117, 674–693. [Google Scholar] [CrossRef]
- Ouyang, Z.; Wei, K. MiRNA in Cardiac Development and Regeneration. Cell Regen. 2021, 10, 14. [Google Scholar] [CrossRef]
- Xiao, J.; Pan, Y.; Li, X.H.; Yang, X.Y.; Feng, Y.L.; Tan, H.H.; Jiang, L.; Feng, J.; Yu, X.Y. Cardiac Progenitor Cell-Derived Exosomes Prevent Cardiomyocytes Apoptosis through Exosomal MiR-21 by Targeting PDCD4. Cell Death Dis. 2016, 7, e2277. [Google Scholar] [CrossRef]
- McMullan, E.; Joladarashi, D.; Kishore, R. Unpacking Exosomes: A Therapeutic Frontier for Cardiac Repair. Curr. Cardiol. Rep. 2025, 27, 73. [Google Scholar] [CrossRef] [PubMed]
- Rayat Pisheh, H.; Sani, M. Mesenchymal Stem Cells Derived Exosomes: A New Era in Cardiac Regeneration. Stem Cell Res. Ther. 2025, 16, 16. [Google Scholar] [CrossRef]
- Yao, T.; Dong, X.; Wang, X.; Liu, X.; Fu, L.; Li, L. Engineering Exosomes for MRNA Delivery: A Review. Int. J. Biol. Macromol. 2025, 316, 144662. [Google Scholar] [CrossRef]
- Femminò, S.; Bonelli, F.; Brizzi, M.F. Extracellular Vesicles in Cardiac Repair and Regeneration: Beyond Stem-Cell-Based Approaches. Front. Cell Dev. Biol. 2022, 10, 996887. [Google Scholar] [CrossRef]
- Wang, X.; Ha, T.; Zou, J.; Ren, D.; Liu, L.; Zhang, X.; Kalbfleisch, J.; Gao, X.; Williams, D.; Li, C. MicroRNA-125b Protects against Myocardial Ischaemia/Reperfusion Injury via Targeting P53-Mediated Apoptotic Signalling and TRAF6. Cardiovasc. Res. 2014, 102, 385. [Google Scholar] [CrossRef]
- Wang, Y.; Tan, J.; Wang, L.; Pei, G.; Cheng, H.; Zhang, Q.; Wang, S.; He, C.; Fu, C.; Wei, Q. MiR-125 Family in Cardiovascular and Cerebrovascular Diseases. Front. Cell Dev. Biol. 2021, 9, 799049. [Google Scholar] [CrossRef]
- Ibrahim, A.G.E.; Cheng, K.; Marbán, E. Exosomes as Critical Agents of Cardiac Regeneration Triggered by Cell Therapy. Stem Cell Rep. 2014, 2, 606. [Google Scholar] [CrossRef] [PubMed]
- Pu, Y.; Li, C.; Qi, X.; Xu, R.; Dong, L.; Jiang, Y.; Gong, Q.; Wang, D.; Cheng, R.; Zhang, C.; et al. Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via MiR-210-3p Promoted Angiogenesis. Stem Cell Rev. Rep. 2023, 19, 1051. [Google Scholar] [CrossRef]
- Sid-Otmane, C.; Perrault, L.P.; Ly, H.Q. Mesenchymal Stem Cell Mediates Cardiac Repair through Autocrine, Paracrine and Endocrine Axes. J. Transl. Med. 2020, 18, 336. [Google Scholar] [CrossRef] [PubMed]
- Gwam, C.; Mohammed, N.; Ma, X. Stem Cell Secretome, Regeneration, and Clinical Translation: A Narrative Review. Ann. Transl. Med. 2021, 9, 70. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chen, X.K.; Zhou, L.; Wang, F.; He, Y.J.; Lu, B.J.; Hu, Z.G.; Li, Z.X.; Xia, X.W.; Wang, W.E.; et al. Chemokine CCL2 Promotes Cardiac Regeneration and Repair in Myocardial Infarction Mice via Activation of the JNK/STAT3 Axis. Acta Pharmacol. Sin. 2024, 45, 728–737. [Google Scholar] [CrossRef] [PubMed]
- Broughton, K.M.; Wang, B.J.; Firouzi, F.; Khalafalla, F.; Dimmeler, S.; Fernandez-Aviles, F.; Sussman, M.A. Mechanisms of Cardiac Repair and Regeneration. Circ. Res. 2018, 122, 1151–1163. [Google Scholar] [CrossRef]
- Li, H.; Chen, C.; Wang, D.W. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front. Physiol. 2021, 12, 695047. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Ma, Y.; Iyer, R.P.; DeLeon-Pennell, K.Y.; Yabluchanskiy, A.; Garrett, M.R.; Lindsey, M.L. IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polarization and Fibroblast Activation. Basic. Res. Cardiol. 2017, 112, 33. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, J.; Zhao, Y.; Gao, D.; Wang, H.; Pu, J. A Modified Simple Method for Induction of Myocardial Infarction in Mice. J. Vis. Exp. 2021, 178, e63042. [Google Scholar] [CrossRef]
- Borst, O.; Ochmann, C.; Schönberger, T.; Jacoby, C.; Stellos, K.; Seizer, P.; Flögel, U.; Lang, F.; Gawaz, M. Methods Employed for Induction and Analysis of Experimental Myocardial Infarction in Mice. Cell Physiol. Biochem. 2011, 28, 1–12. [Google Scholar] [CrossRef]
- Elshaer, A.; Sobhy, A.E.; Elalfy, M.M.; Ghoneem, A.M.; Elhawary, A.K.; Attia, M.A. Comparative Study Among Three Different Models for Induction of Acute Myocardial Infarction in Rats. Eur. Heart J. Suppl. 2021, 23, suab069.002. [Google Scholar] [CrossRef]
- Nadraga, B.O.; Yashchenko, A.M.; Lutsyk, A.D. Morphofunctional Peculiarities of the Rat Heart in Experimental Myocardial Infarction. Morphologia 2019, 13, 32–37. [Google Scholar] [CrossRef]
- Nordfalk, M.; Groenager, S.S.; Flethoej, M.; Hunter, I.; Ripa, R.S.; Kjaer, A.; Pedersen, P.J. Novel Method for Induction of Myocardial Infarction in Rats by Ultrasound Guided Electrocoagulation of the Left Anterior Descending Artery. Cardiovasc. Res. 2024, 120, cvae088.059. [Google Scholar] [CrossRef]
- de Villiers, C.; Riley, P.R. Mouse Models of Myocardial Infarction: Comparing Permanent Ligation and Ischaemia-Reperfusion. Dis. Model. Mech. 2020, 13, dmm046565. [Google Scholar] [CrossRef] [PubMed]
- Pizzo, E.; Berrettoni, S.; Kaul, R.; Cervantes, D.O.; Di Stefano, V.; Jain, S.; Jacobson, J.T.; Rota, M. Heart Rate Variability Reveals Altered Autonomic Regulation in Response to Myocardial Infarction in Experimental Animals. Front. Cardiovasc. Med. 2022, 9, 843144. [Google Scholar] [CrossRef]
- Martin, T.P.; MacDonald, E.A.; Elbassioni, A.A.M.; O’Toole, D.; Zaeri, A.A.I.; Nicklin, S.A.; Gray, G.A.; Loughrey, C.M. Preclinical Models of Myocardial Infarction: From Mechanism to Translation. Br. J. Pharmacol. 2022, 179, 770–791. [Google Scholar] [CrossRef]
- Golforoush, P.; Yellon, D.M.; Davidson, S.M. Mouse Models of Atherosclerosis and Their Suitability for the Study of Myocardial Infarction. Basic. Res. Cardiol. 2020, 115, 73. [Google Scholar] [CrossRef]
- Yu, Y.; Tham, S.K.; Roslan, F.F.; Shaharuddin, B.; Yong, Y.K.; Guo, Z.; Tan, J.J. Large Animal Models for Cardiac Remuscularization Studies: A Methodological Review. Front. Cardiovasc. Med. 2023, 10, 1011880. [Google Scholar] [CrossRef]
- Mazurek, R.; Bikou, O.; Ishikawa, K. Swine Model of Myocardial Infarction Induced by Ischemia-Reperfusion and Embolization. Methods Mol. Biol. 2024, 2803, 189–203. [Google Scholar] [CrossRef]
- Lukács, E.; Magyari, B.; Tóth, L.; Petrási, Z.; Repa, I.; Koller, A.; Horváth, I. Overview of Large Animal Myocardial Infarction Models (Review). Acta Physiol. Hung. 2012, 99, 365–381. [Google Scholar] [CrossRef]
- Sridharan, D.; Pracha, N.; Rana, S.J.; Ahmed, S.; Dewani, A.J.; Alvi, S.B.; Mergaye, M.; Ahmed, U.; Khan, M. Preclinical Large Animal Porcine Models for Cardiac Regeneration and Its Clinical Translation: Role of HiPSC-Derived Cardiomyocytes. Cells 2023, 12, 1090. [Google Scholar] [CrossRef]
- Camacho, P.; Fan, H.; Liu, Z.; He, J.Q. Large Mammalian Animal Models of Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 30. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Li, Y.; Chan, T.K.; Zhao, H.; Xiang, Y.; Chang, X.; Zhou, H.; Xu, D.; Ong, S.B. Large Animal Models of Cardiac Ischemia-Reperfusion Injury: Where Are We Now? Zool. Res. 2023, 44, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.J.; Liu, X.C.; Kong, F.; Qi, T.G.; Cheng, G.H.; Wang, J.; Sun, C.; Luan, Y. Bone Marrow Mesenchymal Stem Cells Improve Myocardial Function in a Swine Model of Acute Myocardial Infarction. Mol. Med. Rep. 2014, 10, 1448–1454. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Shen, R.; Song, L.; Lu, M.; Wang, J.; Zhao, S.; Tang, Y.; Meng, X.; Li, Z.; He, Z.X. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) Improve Heart Function in Swine Myocardial Infarction Model through Paracrine Effects. Sci. Rep. 2016, 6, 28250. [Google Scholar] [CrossRef]
- Mäkelä, J. Bone Marrow-Derived Stem Cell Therapy in Acute Myocardial Infarction: An Experimental Porcine Model. Ph.D Thesis, University of Oulu, Oulu, Finland, 2011. [Google Scholar]
- Xuan, L.; Fu, D.; Zhen, D.; Wei, C.; Bai, D.; Yu, L.; Gong, G. Extracellular Vesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Protect Rats against Acute Myocardial Infarction-Induced Heart Failure. Cell Tissue Res. 2022, 389, 23–40. [Google Scholar] [CrossRef]
- Wang, W.; Tayier, B.; Guan, L.; Yan, F.; Mu, Y. Pre-Transplantation of Bone Marrow Mesenchymal Stem Cells Amplifies the Therapeutic Effect of Ultrasound-Targeted Microbubble Destruction-Mediated Localized Combined Gene Therapy in Post-Myocardial Infarction Heart Failure Rats. Ultrasound Med. Biol. 2022, 48, 830–845. [Google Scholar] [CrossRef]
- Bian, S.; Zhang, L.; Duan, L.; Wang, X.; Min, Y.; Yu, H. Extracellular Vesicles Derived from Human Bone Marrow Mesenchymal Stem Cells Promote Angiogenesis in a Rat Myocardial Infarction Model. J. Mol. Med. 2014, 92, 387–397. [Google Scholar] [CrossRef]
- Thavapalachandran, S.; Le, T.Y.L.; Romanazzo, S.; Rashid, F.N.; Ogawa, M.; Kilian, K.A.; Brown, P.; Pouliopoulos, J.; Barry, A.M.; Fahmy, P.; et al. Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells Improve Cardiac Function and Vascularity after Myocardial Infarction. Cytotherapy 2021, 23, 1074–1084. [Google Scholar] [CrossRef]
- Bagno, L.; Hatzistergos, K.E.; Balkan, W.; Hare, J.M. Mesenchymal Stem Cell-Based Therapy for Cardiovascular Disease: Progress and Challenges. Mol. Ther. 2018, 26, 1610–1623. [Google Scholar] [CrossRef]
- Kanelidis, A.J.; Premer, C.; Lopez, J.; Balkan, W.; Hare, J.M. Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction: A Meta-Analysis of Preclinical Studies and Clinical Trials. Circ. Res. 2017, 120, 1139–1150. [Google Scholar] [CrossRef]
- Zwetsloot, P.P.; Végh, A.M.D.; Jansen Of Lorkeers, S.J.; Van Hout, G.P.J.; Currie, G.L.; Sena, E.S.; Gremmels, H.; Buikema, J.W.; Goumans, M.J.; Macleod, M.R.; et al. Cardiac Stem Cell Treatment in Myocardial Infarction: A Systematic Review and Meta-Analysis of Preclinical Studies. Circ. Res. 2016, 118, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, T.I.G.; Jansen Of Lorkeers, S.J.; Agostoni, P.; Van Belle, E.; Gyongyosi, M.; Sluijter, J.P.G.; Cramer, M.J.; Doevendans, P.A.; Chamuleau, S.A.J. Human Relevance of Pre-Clinical Studies in Stem Cell Therapy: Systematic Review and Meta-Analysis of Large Animal Models of Ischaemic Heart Disease. Cardiovasc. Res. 2011, 91, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.I.; Dahmen, A.; Vasudevan, P.; Lemcke, H.; Gäbel, R.; Öner, A.; Ince, H.; David, R.; Wolfien, M. Cardiac Cell Therapies for the Treatment of Acute Myocardial Infarction in Mice: Systematic Review and Meta-Analysis. Cytotherapy 2023, 25, 640–652. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.L.; Li, Q.; Rokosh, G.; Sanganalmath, S.K.; Chen, N.; Ou, Q.; Stowers, H.; Hunt, G.; Bolli, R. Long-Term Outcome of Administration of c-Kit(POS) Cardiac Progenitor Cells After Acute Myocardial Infarction: Transplanted Cells Do Not Become Cardiomyocytes, but Structural and Functional Improvement and Proliferation of Endogenous Cells Persist for at Least One Year. Circ. Res. 2016, 118, 1091–1105. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, J.; Tan, W.L.W.; Jiang, Y.; Wang, S.; Li, Q.; Yu, X.; Tan, J.; Liu, S.; Zhang, P.; et al. Extracellular Vesicles from Human Embryonic Stem Cell-Derived Cardiovascular Progenitor Cells Promote Cardiac Infarct Healing through Reducing Cardiomyocyte Death and Promoting Angiogenesis. Cell Death Dis. 2020, 11. [Google Scholar] [CrossRef]
- Shiba, Y.; Gomibuchi, T.; Seto, T.; Wada, Y.; Ichimura, H.; Tanaka, Y.; Ogasawara, T.; Okada, K.; Shiba, N.; Sakamoto, K.; et al. Allogeneic Transplantation of IPS Cell-Derived Cardiomyocytes Regenerates Primate Hearts. Nature 2016, 538, 388–391. [Google Scholar] [CrossRef]
- Rojas, S.V.; Kensah, G.; Rotaermel, A.; Baraki, H.; Kutschka, I.; Zweigerdt, R.; Martin, U.; Haverich, A.; Gruh, I.; Martens, A. Transplantation of Purified IPSC-Derived Cardiomyocytes in Myocardial Infarction. PLoS ONE 2017, 12, e0173222. [Google Scholar] [CrossRef]
- Funakoshi, S.; Miki, K.; Takaki, T.; Okubo, C.; Hatani, T.; Chonabayashi, K.; Nishikawa, M.; Takei, I.; Oishi, A.; Narita, M.; et al. Enhanced Engraftment, Proliferation, and Therapeutic Potential in Heart Using Optimized Human IPSC-Derived Cardiomyocytes. Sci. Rep. 2016, 6, 19111. [Google Scholar] [CrossRef]
- Guan, X.; Xu, W.; Zhang, H.; Wang, Q.; Yu, J.; Zhang, R.; Chen, Y.; Xia, Y.; Wang, J.; Wang, D. Transplantation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Improves Myocardial Function and Reverses Ventricular Remodeling in Infarcted Rat Hearts. Stem Cell Res. Ther. 2020, 11, 73. [Google Scholar] [CrossRef]
- Lin, Y.; Sato, N.; Hong, S.; Nakamura, K.; Ferrante, E.A.; Yu, Z.X.; Chen, M.Y.; Nakamura, D.S.; Yang, X.; Clevenger, R.R.; et al. Long-Term Engraftment and Maturation of Autologous IPSC-Derived Cardiomyocytes in Two Rhesus Macaques. Cell Stem Cell 2024, 31, 974–988.e5. [Google Scholar] [CrossRef] [PubMed]
- Demkes, E.; Cervera-Barea, A.; Ebner-Peking, P.; Wolf, M.; Hochmann, S.; Scheren, A.S.; Bijsterveld, M.; van Oostveen, C.M.; Jansen, M.; Visser, J.; et al. Human Cardiac Microtissues Display Improved Engraftment and Survival in a Porcine Model of Myocardial Infarction. J. Cardiovasc. Transl. Res. 2025, 18, 512–528. [Google Scholar] [CrossRef]
- Sun, X.; Wu, J.; Qiang, B.; Romagnuolo, R.; Gagliardi, M.; Keller, G.; Laflamme, M.A.; Li, R.K.; Nunes, S.S. Transplanted Microvessels Improve Pluripotent Stem Cell–Derived Cardiomyocyte Engraftment and Cardiac Function after Infarction in Rats. Sci. Transl. Med. 2020, 12, eaax2992. [Google Scholar] [CrossRef]
- Riegler, J.; Tiburcy, M.; Ebert, A.; Tzatzalos, E.; Raaz, U.; Abilez, O.J.; Shen, Q.; Kooreman, N.G.; Neofytou, E.; Chen, V.C.; et al. Human Engineered Heart Muscles Engraft and Survive Long Term in a Rodent Myocardial Infarction Model. Circ. Res. 2015, 117, 720–730. [Google Scholar] [CrossRef]
- Gao, L.; Gregorich, Z.R.; Zhu, W.; Mattapally, S.; Oduk, Y.; Lou, X.; Kannappan, R.; Borovjagin, A.V.; Walcott, G.P.; Pollard, A.E.; et al. Large Cardiac Muscle Patches Engineered From Human Induced-Pluripotent Stem Cell–Derived Cardiac Cells Improve Recovery From Myocardial Infarction in Swine. Circulation 2018, 137, 1712–1730. [Google Scholar] [CrossRef]
- Kawamura, T.; Ito, Y.; Ito, E.; Takeda, M.; Mikami, T.; Taguchi, T.; Mochizuki-Oda, N.; Sasai, M.; Shimamoto, T.; Nitta, Y.; et al. Safety Confirmation of Induced Pluripotent Stem Cell-Derived Cardiomyocyte Patch Transplantation for Ischemic Cardiomyopathy: First Three Case Reports. Front. Cardiovasc. Med. 2023, 10, 1182209. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, H.; Song, Y. The Safety of MSC Therapy over the Past 15 Years: A Meta-Analysis. Stem Cell Res. Ther. 2021, 12, 545. [Google Scholar] [CrossRef] [PubMed]
- Kompa, A.R.; Greening, D.W.; Kong, A.M.; McMillan, P.J.; Fang, H.; Saxena, R.; Wong, R.C.B.; Lees, J.G.; Sivakumaran, P.; Newcomb, A.E.; et al. Sustained Subcutaneous Delivery of Secretome of Human Cardiac Stem Cells Promotes Cardiac Repair Following Myocardial Infarction. Cardiovasc. Res. 2021, 117, 918–929. [Google Scholar] [CrossRef]
- Balbi, C.; Lodder, K.; Costa, A.; Moimas, S.; Moccia, F.; van Herwaarden, T.; Rosti, V.; Campagnoli, F.; Palmeri, A.; De Biasio, P.; et al. Reactivating Endogenous Mechanisms of Cardiac Regeneration via Paracrine Boosting Using the Human Amniotic Fluid Stem Cell Secretome. Int. J. Cardiol. 2019, 287, 87–95. [Google Scholar] [CrossRef]
- Costa, A.; Balbi, C.; Garbati, P.; Palamà, M.E.F.; Reverberi, D.; De Palma, A.; Rossi, R.; Paladini, D.; Coviello, D.; De Biasio, P.; et al. Investigating the Paracrine Role of Perinatal Derivatives: Human Amniotic Fluid Stem Cell-Extracellular Vesicles Show Promising Transient Potential for Cardiomyocyte Renewal. Front. Bioeng. Biotechnol. 2022, 10, 902038. [Google Scholar] [CrossRef]
- Waters, R.; Pacelli, S.; Maloney, R.; Medhi, I.; Ahmed, R.P.H.; Paul, A. Stem Cell Secretome-Rich Nanoclay Hydrogel: A Dual Action Therapy for Cardiovascular Regeneration. Nanoscale 2016, 8, 7371–7376. [Google Scholar] [CrossRef] [PubMed]
- Waters, R.; Alam, P.; Pacelli, S.; Chakravarti, A.R.; Ahmed, R.P.H.; Paul, A. Stem Cell-Inspired Secretome-Rich Injectable Hydrogel to Repair Injured Cardiac Tissue. Acta Biomater. 2018, 69, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, S.; Zhu, D.; Mei, X.; Lyu, Y.; Huang, K.; Li, Y.; Liu, S.; Wang, Z.; Hu, S.; et al. Inhalable Stem Cell Exosomes Promote Heart Repair After Myocardial Infarction. Circulation 2024, 150, 710–723. [Google Scholar] [CrossRef]
- Charles, C.J.; Li, R.R.; Yeung, T.; Mazlan, S.M.I.; Lai, R.C.; Dekleijn, D.P.V.; Lim, S.; Richards, A.M. Systemic Mesenchymal Stem Cell-Derived Exosomes Reduce Myocardial Infarct Size: Characterization with MRI in a Porcine Model. Front. Cardiovasc. Med. 2020, 7, 601990. [Google Scholar] [CrossRef]
- Zhu, L.P.; Tian, T.; Wang, J.Y.; He, J.N.; Chen, T.; Pan, M.; Xu, L.; Zhang, H.X.; Qiu, X.T.; Li, C.C.; et al. Hypoxia-Elicited Mesenchymal Stem Cell-Derived Exosomes Facilitates Cardiac Repair through MiR-125b-Mediated Prevention of Cell Death in Myocardial Infarction. Theranostics 2018, 8, 6163–6177. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, J.L.; Peng, Z.Y.; Xu, W.F.; Yu, G.L. Exosomal MiR-25-3p from Mesenchymal Stem Cells Alleviates Myocardial Infarction by Targeting pro-Apoptotic Proteins and EZH2. Cell Death Dis. 2020, 11, 845. [Google Scholar] [CrossRef]
- Sun, J.; Shen, H.; Shao, L.; Teng, X.; Chen, Y.; Liu, X.; Yang, Z.; Shen, Z. HIF-1α Overexpression in Mesenchymal Stem Cell-Derived Exosomes Mediates Cardioprotection in Myocardial Infarction by Enhanced Angiogenesis. Stem Cell Res. Ther. 2020, 11, 373. [Google Scholar] [CrossRef]
- Ni, J.; Liu, X.; Yin, Y.; Zhang, P.; Xu, Y.W.; Liu, Z. Exosomes Derived from TIMP2-Modified Human Umbilical Cord Mesenchymal Stem Cells Enhance the Repair Effect in Rat Model with Myocardial Infarction Possibly by the Akt/Sfrp2 Pathway. Oxid. Med. Cell Longev. 2019, 2019, 1958941. [Google Scholar] [CrossRef]
- Gong, Z.T.; Xiong, Y.Y.; Ning, Y.; Tang, R.J.; Xu, J.Y.; Jiang, W.Y.; Li, X.S.; Zhang, L.L.; Chen, C.; Pan, Q.; et al. Nicorandil-Pretreated Mesenchymal Stem Cell-Derived Exosomes Facilitate Cardiac Repair After Myocardial Infarction via Promoting Macrophage M2 Polarization by Targeting MiR-125a-5p/TRAF6/IRF5 Signaling Pathway. Int. J. Nanomed. 2024, 19, 2005–2024. [Google Scholar] [CrossRef]
- Bhaskara, M.; Anjorin, O.; Wang, M. Mesenchymal Stem Cell-Derived Exosomal MicroRNAs in Cardiac Regeneration. Cells 2023, 12, 2815. [Google Scholar] [CrossRef] [PubMed]
- Adamiak, M.; Sahoo, S. Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics. Mol. Ther. 2018, 26, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.J.; Wei, R.; Li, F.; Liao, S.Y.; Tse, H.F. Mesenchymal Stromal Cell-Derived Exosomes in Cardiac Regeneration and Repair. Stem Cell Rep. 2021, 16, 1662–1673. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Hu, X.; Wang, J. Current Optimized Strategies for Stem Cell-Derived Extracellular Vesicle/Exosomes in Cardiac Repair. J. Mol. Cell Cardiol. 2023, 184, 13–25. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Su, G.; Zhang, Y.; Wang, Z.; Jia, Y.; Yu, Q.; Shen, Z.; Zhang, Y.; Yu, Y. Neutrophil-Derived Apoptotic Body Membranes-Fused Exosomes Targeting Treatment for Myocardial Infarction. Regen. Biomater. 2025, 12, rbae145. [Google Scholar] [CrossRef]
- Doenst, T.; Kirov, H.; Bagiella, E.; Scherag, A.; Omerovic, E. Challenges of Conventional and Novel Approaches to Clinical Trial Designs in Cardiovascular Medicine. Eur. J. Cardiothorac. Surg. 2025, 67, ezaf056. [Google Scholar] [CrossRef]
- Wulfse, M.; Vervoorn, M.T.; Amelink, J.J.G.J.; Ballan, E.M.; de Jager, S.C.A.; Sluijter, J.P.G.; Doevendans, P.A.; Zwetsloot, P.P.M.; Van der Kaaij, N.P. Past Trends and Future Directions of Cardiac Regenerative Medicine—A Systematic Analysis of Clinical Trial Registries. J. Cardiovasc. Transl. Res. 2025, 18, 209–220. [Google Scholar] [CrossRef]
- Soczyńska, J.; Gawełczyk, W.; Obrycka, P.; Żołyniak, M.; Muzyka, A.; Majcherczyk, K.; Papierkowska, J.; Woźniak, S. Medical Embryology and Regenerative Medicine: Research and Applications in Clinical Practice. Front. Cell Dev. Biol. 2025, 13, 1619036. [Google Scholar] [CrossRef] [PubMed]
- Bolli, R.; Mitrani, R.D.; Hare, J.M.; Pepine, C.J.; Perin, E.C.; Willerson, J.T.; Traverse, J.H.; Henry, T.D.; Yang, P.C.; Murphy, M.P.; et al. A Phase II Study of Autologous Mesenchymal Stromal Cells and C-Kit Positive Cardiac Cells, Alone or in Combination, in Patients with Ischaemic Heart Failure: The CCTRN CONCERT-HF Trial. Eur. J. Heart Fail. 2021, 23, 661–674. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, A.A.; Mouridsen, M.; Nilsson, B.; Gustafsson, I.; Schou, M.; Nielsen, O.W.; Hove, J.D.; Mathiasen, A.B.; Jørgensen, E.; Helqvist, S.; et al. Danish Phase II Trial Using Adipose Tissue Derived Mesenchymal Stromal Cells for Patients with Ischaemic Heart Failure. ESC Heart Fail. 2023, 10, 1170–1183. [Google Scholar] [CrossRef] [PubMed]
- Gyöngyösi, M.; Giurgea, G.A.; Syeda, B.; Charwat, S.; Marzluf, B.; Mascherbauer, J.; Jakab, A.; Zimba, A.; Sárközy, M.; Pavo, N.; et al. Long-Term Outcome of Combined (Percutaneous Intramyocardial and Intracoronary) Application of Autologous Bone Marrow Mononuclear Cells Post Myocardial Infarction: The 5-Year MYSTAR Study. PLoS ONE 2016, 11, e0164908. [Google Scholar] [CrossRef]
- Henry, T.D.; Pepine, C.J.; Lambert, C.R.; Traverse, J.H.; Schatz, R.; Costa, M.; Povsic, T.J.; David Anderson, R.; Willerson, J.T.; Kesten, S.; et al. The Athena Trials: Autologous Adipose-Derived Regenerative Cells for Refractory Chronic Myocardial Ischemia with Left Ventricular Dysfunction. Catheter. Cardiovasc. Interv. 2017, 89, 169–177. [Google Scholar] [CrossRef]
- Heldman, A.W.; DiFede, D.L.; Fishman, J.E.; Zambrano, J.P.; Trachtenberg, B.H.; Karantalis, V.; Mushtaq, M.; Williams, A.R.; Suncion, V.Y.; McNiece, I.K.; et al. Transendocardial Mesenchymal Stem Cells and Mononuclear Bone Marrow Cells for Ischemic Cardiomyopathy: The TAC-HFT Randomized Trial. JAMA 2014, 311, 62. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, Y.; Pan, T.; Zhu, X.; Chong, H.; Xu, C.; Fan, F.; Cao, H.; Zhang, B.; Pan, J.; et al. Epicardial Injection of Allogeneic Human-Induced-Pluripotent Stem Cell-Derived Cardiomyocytes in Patients with Advanced Heart Failure: Protocol for a Phase I/IIa Dose-Escalation Clinical Trial. BMJ Open 2022, 12, e056264. [Google Scholar] [CrossRef]
- Morrissey, J.; Mesquita, F.C.P.; Chacon-Alberty, L.; Hochman-Mendez, C. Mining the Mesenchymal Stromal Cell Secretome in Patients with Chronic Left Ventricular Dysfunction. Cells 2022, 11, 2092. [Google Scholar] [CrossRef]
- Menasché, P.; Renault, N.K.; Hagège, A.; Puscas, T.; Bellamy, V.; Humbert, C.; Le, L.; Blons, H.; Granier, C.; Benhamouda, N.; et al. First-in-Man Use of a Cardiovascular Cell-Derived Secretome in Heart Failure. Case Report. EBioMedicine 2024, 103, 105145. [Google Scholar] [CrossRef]
- Hare, J.M.; Chaparro, S. V Cardiac Regeneration and Stem Cell Therapy. Curr. Opin. Organ. Transplant. 2008, 13, 536–542. [Google Scholar] [CrossRef]
- Lana; Fetyukhina, A. Stem Cell Therapy for Heart Regeneration: Pioneering Advances in Heart Regeneration; Swiss Medica: Beograd, Serbia, 2024; Available online: https://www.startstemcells.com/stem-cell-therapy-for-heart-regeneration.html (accessed on 23 September 2025).
- Cona, L.A. Stem Cell Therapy for Heart Failure (2025). DVCSTEM 2025. Available online: https://www.dvcstem.com/post/stem-cells-reverse-heart-disease (accessed on 23 September 2025).
- Elde, S.; Wang, H.; Woo, Y.J. Navigating the Crossroads of Cell Therapy and Natural Heart Regeneration. Front. Cell Dev. Biol. 2021, 9, 674180. [Google Scholar] [CrossRef] [PubMed]
- Deszcz, I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int. 2023, 2023, 2729377. [Google Scholar] [CrossRef]
- Farboud, S.P.; Fathi, E.; Valipour, B.; Farahzadi, R. Toward the Latest Advancements in Cardiac Regeneration Using Induced Pluripotent Stem Cells (IPSCs) Technology: Approaches and Challenges. J. Transl. Med. 2024, 22, 783. [Google Scholar] [CrossRef] [PubMed]
- Petrus-Reurer, S.; Romano, M.; Howlett, S.; Jones, J.L.; Lombardi, G.; Saeb-Parsy, K. Immunological Considerations and Challenges for Regenerative Cellular Therapies. Commun. Biol. 2021, 4, 798. [Google Scholar] [CrossRef]
- Fang, Y.H.; Wang, S.P.H.; Chang, H.Y.; Yang, P.J.; Liu, P.Y.; Liu, Y.W. Immunogenicity in Stem Cell Therapy for Cardiac Regeneration. Acta Cardiol. Sin. 2020, 36, 588–594. [Google Scholar] [CrossRef]
- Lee, A.S.; Tang, C.; Cao, F.; Xie, X.; van der Bogt, K.; Hwang, A.; Connolly, A.J.; Robbins, R.C.; Wu, J.C. Effects of Cell Number on Teratoma Formation by Human Embryonic Stem Cells. Cell Cycle 2009, 8, 2608–2612. [Google Scholar] [CrossRef]
- Movahed, A.Y.; Bagheri, R.; Savatier, P.; Šarić, T.; Moradi, S. Elimination of Tumorigenic Pluripotent Stem Cells from Their Differentiated Cell Therapy Products: An Important Step toward Ensuring Safe Cell Therapy. Stem Cell Rep. 2025, 20, 102543. [Google Scholar] [CrossRef] [PubMed]
- Gersh, B.J.; Simari, R.D.; Behfar, A.; Terzic, C.M.; Terzic, A. Cardiac Cell Repair Therapy: A Clinical Perspective. Mayo Clin. Proc. 2009, 84, 876–892. [Google Scholar] [CrossRef]
- Volarevic, V.; Markovic, B.S.; Gazdic, M.; Volarevic, A.; Jovicic, N.; Arsenijevic, N.; Armstrong, L.; Djonov, V.; Lako, M.; Stojkovic, M. Ethical and Safety Issues of Stem Cell-Based Therapy. Int. J. Med. Sci. 2018, 15, 36–45. [Google Scholar] [CrossRef]
- Razavi, Z.S.; Farokhi, S.; Mahmoudvand, G.; Karimi-Rouzbahani, A.; Farasati-Far, B.; Tahmasebi-Ghorabi, S.; Pazoki-Toroudi, H.; Saadat-Fakhr, M.; Afkhami, H. Stem Cells and Bio Scaffolds for the Treatment of Cardiovascular Diseases: New Insights. Front. Cell Dev. Biol. 2024, 12, 1472103. [Google Scholar] [CrossRef]
- Ghiroldi, A.; Piccoli, M.; Cirillo, F.; Monasky, M.M.; Ciconte, G.; Pappone, C.; Anastasia, L. Cell-Based Therapies for Cardiac Regeneration: A Comprehensive Review of Past and Ongoing Strategies. Int. J. Mol. Sci. 2018, 19, 3194. [Google Scholar] [CrossRef]
- Ferrari, I.; Vagnozzi, R.J. Mechanisms and Strategies for a Therapeutic Cardiac Immune Response. J. Mol. Cell Cardiol. 2021, 158, 82–88. [Google Scholar] [CrossRef]
- Tan, F.; Li, X.; Wang, Z.; Li, J.; Shahzad, K.; Zheng, J. Clinical Applications of Stem Cell-Derived Exosomes. Signal Transduct. Target. Ther. 2024, 9, 17. [Google Scholar] [CrossRef]
- Rebouças, J.D.S.; Santos-Magalhães, N.S.; Formiga, F.R. Cardiac Regeneration Using Growth Factors: Advances and Challenges. Arq. Bras. Cardiol. 2016, 107, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Mayorga, M.E.; Kiedrowski, M.; McCallinhart, P.; Forudi, F.; Ockunzzi, J.; Weber, K.; Chilian, W.; Penn, M.S.; Dong, F. Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes. Stem Cells Transl. Med. 2018, 7, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Mirotsou, M.; Jayawardena, T.M.; Schmeckpeper, J.; Gnecchi, M.; Dzau, V.J. Paracrine Mechanisms of Stem Cell Reparative and Regenerative Actions in the Heart. J. Mol. Cell Cardiol. 2011, 50, 280–289. [Google Scholar] [CrossRef]
- Huang, K.; Hu, S.; Cheng, K. A New Era of Cardiac Cell Therapy: Opportunities and Challenges. Adv. Healthc. Mater. 2019, 8, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Gude, N.A.; Sussman, M.A. Cardiac Regenerative Therapy: Many Paths to Repair. Trends Cardiovasc. Med. 2020, 30, 338–343. [Google Scholar] [CrossRef]
- Guo, Q.-Y.; Yang, J.-Q.; Feng, X.-X.; Zhou, Y.-J. Regeneration of the Heart: From Molecular Mechanisms to Clinical Therapeutics. Mil. Med. Res. 2023, 10, 18. [Google Scholar] [CrossRef]
- Braunwald, E. Cell-Based Therapy in Cardiac Regeneration. Circ. Res. 2018, 123, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Nakamura, Y.; Ito, Y.; Miyagawa, S. Regenerative Medicine in Cardiovascular Disease. Regen. Ther. 2024, 26, 859–866. [Google Scholar] [CrossRef] [PubMed]
- Suchkov, S. Cardiac Regeneration and Stem Cell Therapy through the View of Design-Driven Clinical Applications Cardiology-Related Practice: Current Knowledge and Future Prospects. Clin. Cardiol. Cardiovasc. Interv. 2024, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Burdick, J.A.; Mauck, R.L.; Gorman, J.H.; Gorman, R.C. Acellular Biomaterials: An Evolving Alternative to Cell-Based Therapies. Sci. Transl. Med. 2013, 5, 176ps4. [Google Scholar] [CrossRef]
- Lui, K.O.; Zangi, L.; Chien, K.R. Cardiovascular Regenerative Therapeutics via Synthetic Paracrine Factor Modified MRNA. Stem Cell Res. 2014, 13, 693–704. [Google Scholar] [CrossRef]
- Vasanthan, V.; Fatehi Hassanabad, A.; Pattar, S.; Niklewski, P.; Wagner, K.; Fedak, P.W.M. Promoting Cardiac Regeneration and Repair Using Acellular Biomaterials. Front. Bioeng. Biotechnol. 2020, 8, 291. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.V.A.; Hwang, J.-W.; Lee, J.-H.; Park, H.-J.; Ban, K. Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair. Korean Circ. J. 2021, 51, 97. [Google Scholar] [CrossRef]
- Garitaonandia, I. Cell and Gene Therapy Development Moves into Cardiac Indications; Drug Targer Review: Kent, UK, 2024; Available online: https://www.drugtargetreview.com/article/153258/cell-and-gene-therapy-development-moves-into-cardiac-indications/ (accessed on 23 September 2025).
- Lemcke, H.; Voronina, N.; Steinhoff, G.; David, R. Recent Progress in Stem Cell Modification for Cardiac Regeneration. Stem Cells Int. 2018, 2018, 1909346. [Google Scholar] [CrossRef]
- King, N.M.; Perrin, J. Ethical Issues in Stem Cell Research and Therapy. Stem Cell Res. Ther. 2014, 5, 85. [Google Scholar] [CrossRef]
- Diaz, Y. Addressing the High Costs of Stem Cell Therapies. Stem Cell Res. Regen. Med. 2024, 7, 255–256. [Google Scholar] [CrossRef]
- Povsic, T.J. Approaching Regulatory Approval of Cardiovascular Regenerative Therapy. Circ. Res. 2018, 122, 552–554. [Google Scholar] [CrossRef] [PubMed]
- Bolli, R.; Tang, X.-L. The Sad Plight of Cell Therapy for Heart Failure: Causes and Consequences. J. Cardiovasc. Aging 2022, 2, 16. [Google Scholar] [CrossRef]
- A Futile Cycle in Cell Therapy. Nat. Biotechnol. 2017, 35, 291. [CrossRef]
- Mahmud, S.; Alam, S.; Emon, N.U.; Boby, U.H.; Kamruzzaman; Ahmed, F.; Monjur-Al-Hossain, A.S.M.; Tahamina, A.; Rudra, S.; Ajrin, M. Opportunities and Challenges in Stem Cell Therapy in Cardiovascular Diseases: Position Standing in 2022. Saudi Pharm. J. 2022, 30, 1360–1371. [Google Scholar] [CrossRef]
- Sanganalmath, S.K.; Bolli, R. Cell Therapy for Heart Failure. Circ. Res. 2013, 113, 810–834. [Google Scholar] [CrossRef] [PubMed]
- Gulati, J.; Zhu, M.; Gilbreth, J.; Wang, S. The Use of Stem Cells in Cardiac Pathologies: A Review. Georget. Med. Rev. 2024, 7. [Google Scholar] [CrossRef]
- Curfman, G. Stem Cell Therapy for Heart Failure. JAMA 2019, 321, 1186. [Google Scholar] [CrossRef]
- Tang, J.-N.; Cores, J.; Huang, K.; Cui, X.-L.; Luo, L.; Zhang, J.-Y.; Li, T.-S.; Qian, L.; Cheng, K. Concise Review: Is Cardiac Cell Therapy Dead? Embarrassing Trial Outcomes and New Directions for the Future. Stem Cells Transl. Med. 2018, 7, 354–359. [Google Scholar] [CrossRef]
- Turner, D.; Rieger, A.C.; Balkan, W.; Hare, J.M. Clinical-Based Cell Therapies for Heart Disease—Current and Future State. Rambam Maimonides Med. J. 2020, 11, e0015. [Google Scholar] [CrossRef]
- Wysoczynki, M.; Khan, A.; Bolli, R. New Paradigms in Cell Therapy. Circ. Res. 2018, 123, 138–158. [Google Scholar] [CrossRef]
- Magadum, A. Inhalable Exosomes to Target Cardiac Repair. Extracell. Vesicles Circ. Nucl. Acids 2025, 6, 180–182. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, L.; Liu, J.; Lu, Y.; Pan, L.; Xiao, J. Greasing Wheels of Cell-Free Therapies for Cardiovascular Diseases: Integrated Devices of Exosomes/Exosome-like Nanovectors with Bioinspired Materials. Extracell. Vesicle 2022, 1, 100010. [Google Scholar] [CrossRef]
- Finan, A.; Richard, S. Stimulating Endogenous Cardiac Repair. Front. Cell Dev. Biol. 2015, 3, 57. [Google Scholar] [CrossRef]
- Mabotuwana, N.S.; Rech, L.; Lim, J.; Hardy, S.A.; Murtha, L.A.; Rainer, P.P.; Boyle, A.J. Paracrine Factors Released by Stem Cells of Mesenchymal Origin and Their Effects in Cardiovascular Disease: A Systematic Review of Pre-Clinical Studies. Stem Cell Rev. Rep. 2022, 18, 2606–2628. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wen, J.; Niu, H.; Zhai, J.; Dang, Y.; Guan, J. Targeted Delivery of Engineered Adipose-Derived Stem Cell Secretome to Promote Cardiac Repair after Myocardial Infarction. J. Control Release 2025, 383, 113765. [Google Scholar] [CrossRef]
- Lundy, D.J.; Burnouf, T.; Lai, J.J.; Hill, J.H.; Hsieh, P.C.H. Scalable Technologies in the Manufacture and Deployment of Cell-Free Cardiac Therapies. Trends Biotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Bollini, S.; Smits, A.M.; Balbi, C.; Lazzarini, E.; Ameri, P. Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Front. Physiol. 2018, 9, 1497. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, W.; Ali, S.R.; Takeda, K.; Vahl, T.P.; Zhu, D.; Hong, Y.; Cheng, K. Extracellular Vesicle Therapeutics for Cardiac Repair. J. Mol. Cell Cardiol. 2025, 199, 12–32. [Google Scholar] [CrossRef]

| Example of miRNA | Origin | Target | Role in Regeneration | Source |
|---|---|---|---|---|
| miRNA-21 | CPC-derived exosomes | PDCD4 | Inhibition of apoptosis | [113] |
| miRNA-132 | MSC-derived exosomes | RasGAP-p120 | Angiogenesis Inhibition of apoptosis | [117] |
| miRNA-125b | MSC-derived exosomes | p53, Bak-1 | Inhibition of apoptosis | [118,119] |
| miRNA-146a | CDC exosomes | IRAK1, TRAF6 | Anti-inflammatory effect | [120] |
| miRNA-210-3p | MSCs-EVs | EFNA3 | Angiogenesis | [121] |
| Cell-Derived Signal | Example of Function | Source |
|---|---|---|
| VEGF | Angiogenesis | [97,98,99] |
| FGF | Angiogenesis; Cardiomyocyte proliferation (FGF1, FGF2); Limitations of cardiac fibrosis (FGF9) | [100,101,102,103] |
| HGF | Angiogenesis; cardiomyocyte proliferation | [104,105,106] |
| IL-10 | Anti-inflammatory action | [126,127] |
| CXCL12 | Angiogenesis, cardiomyocyte proliferation | [109] |
| Cell Therapy | Cell-Signal Therapy | ||
|---|---|---|---|
| Advantages | Disadvantages | Advantages | Disadvantages |
| direct differentiation into cardiomyocytes and vascular cells [237] | low engraftment and retention rates (typically <5%) [238] | cell-free approach eliminates safety concerns [239] | limited ability to replace lost cardiomyocytes [240] |
| paracrine signaling effects between transplanted cells promoting tissue survival [65] | limited cell survival in a hostile ischemic environment [202] | better stability and storage properties [226] | shorter duration of action requiring repeated dosing [239] |
| endogenous stem cell recruitment and activation [241] | potential for arrhythmias and immune rejection [203] | reduced immunogenicity compared to cells [210] | potential for pathological effects with high doses [239,242] |
| anti-apoptotic and anti-inflammatory effects [3] | tumorigenicity risk (especially with ESCs) [204] | targeted delivery of specific factors (VEGF, IGF-1) [243] | difficulty in achieving optimal factor combinations [242] |
| neovascularization and angiogenesis promotion [199] | high manufacturing costs and complexity [201] | lower manufacturing complexity [244] | limited clinical data compared to cell therapy [117] |
| proven safety profile in clinical trials [196] | ethical concerns with ESCs [207] | potential for repeated dosing [239] | risk of inflammatory reactions and adverse effects [117,212] |
| multiple cell types available (ESCs, iPSCs, MSCs, CSCs) [11] | regulatory challenges and lengthy approval processes [201] | modulation of endogenous repair mechanisms [245] | challenges in targeted delivery to cardiac tissue [246] |
| established delivery methods (intramyocardial, intracoronary) [238] | limited scalability for widespread clinical use [220] | reduced regulatory barriers [94] | less comprehensive repair compared to cellular approaches [117,246] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soczyńska, J.; Gawełczyk, W.; Majcherczyk, K.; Rydzek, J.; Muzyka, A.; Żołyniak, M.; Woźniak, S. Cells Versus Cell-Derived Signals in Cardiac Regenerative Therapy: A Comparative Analysis of Mechanisms and Clinical Evidence. Cells 2025, 14, 1674. https://doi.org/10.3390/cells14211674
Soczyńska J, Gawełczyk W, Majcherczyk K, Rydzek J, Muzyka A, Żołyniak M, Woźniak S. Cells Versus Cell-Derived Signals in Cardiac Regenerative Therapy: A Comparative Analysis of Mechanisms and Clinical Evidence. Cells. 2025; 14(21):1674. https://doi.org/10.3390/cells14211674
Chicago/Turabian StyleSoczyńska, Julia, Wiktor Gawełczyk, Krzysztof Majcherczyk, Julia Rydzek, Adrian Muzyka, Mateusz Żołyniak, and Sławomir Woźniak. 2025. "Cells Versus Cell-Derived Signals in Cardiac Regenerative Therapy: A Comparative Analysis of Mechanisms and Clinical Evidence" Cells 14, no. 21: 1674. https://doi.org/10.3390/cells14211674
APA StyleSoczyńska, J., Gawełczyk, W., Majcherczyk, K., Rydzek, J., Muzyka, A., Żołyniak, M., & Woźniak, S. (2025). Cells Versus Cell-Derived Signals in Cardiac Regenerative Therapy: A Comparative Analysis of Mechanisms and Clinical Evidence. Cells, 14(21), 1674. https://doi.org/10.3390/cells14211674

