The Next Generation of Skin Care: Transforming Retinoid Therapeutics
Abstract
1. Introduction
2. Next Generation Synthetic Retinoids
2.1. Fourth-Gen RAR-γ Agonists
2.2. Search Strategies for RXR/RAR Dual Modulators
2.3. Endogenous-RA Boosting via CYP26 Inhibition
3. Microbiome Crosstalk
3.1. Microbial Retinoid Metabolism
3.2. Retinoid–Microbiome Interactions
4. Next Generation Delivery Systems
4.1. Smart Nanocarriers and Stimuli-Responsive Gels
4.2. Photostabilisation and Depot Systems
5. Clinical Translation—Acne and Truncal Acne
6. Safety, Regulatory, and Translational Considerations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATRA | All-trans retinoic acid |
RAR | Retinoic acid receptor |
RXR | Retinoid X receptor |
CYP26 | Cytochrome P450 family 26 enzymes |
RAMBAs | Retinoic acid metabolism blocking agents |
RARMs | Retinoic acid receptor modulators |
SAR | Structure-activity relationship |
ADH | Alcohol dehydrogenase |
ALDH | Aldehyde dehydrogenase |
RDH | Retinol dehydrogenase |
SDR | Short-chain dehydrogenase/reductase |
LRAT | Lecithin-retinol acyltransferase |
NLC | Nanostructured lipid carrier |
PLGA | Poly(lactic-co-glycolic acid) |
PEG | Polyethylene glycol |
DSP | Digital signal processing |
CRABP-II | Cellular retinoic acid-binding protein II |
blh | β-carotene 15,15’-oxygenase |
References
- Szymański, Ł.; Skopek, R.; Palusińska, M.; Schenk, T.; Stengel, S.; Lewicki, S.; Kraj, L.; Kamiński, P.; Zelent, A. Retinoic Acid and Its Derivatives in Skin. Cells 2020, 9, 2660. [Google Scholar] [CrossRef]
- Vahlquist, A.; Rollman, O. Clinical Pharmacology of 3 Generations of Retinoids. Dermatologica 2009, 175, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Motamedi, M.; Chehade, A.; Sanghera, R.; Grewal, P. A Clinician’s Guide to Topical Retinoids. J. Cutan. Med. Surg. 2022, 26, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Hałubiec, P.; Łazarczyk, A.; Szafrański, O.; Bohn, T.; Dulińska-Litewka, J. Synthetic Retinoids as Potential Therapeutics in Prostate Cancer—An Update of the Last Decade of Research: A Review. Int. J. Mol. Sci. 2021, 22, 10537. [Google Scholar] [CrossRef] [PubMed]
- Gudas, L.J. Retinoid Metabolism: New Insights. J. Mol. Endocrinol. 2022, 69, T37–T49. [Google Scholar] [CrossRef]
- Annunziata, M.C.; Barbareschi, M.; Bettoli, V.; Dall’Oglio, F.; Micali, G.; Monfrecola, G.; Skroza, N.; Tretti Clementoni, M.; Veraldi, S. A Real-World Approach to Trifarotene Treatment in Patients with Acne and Acne Sequelae Based on the Experience of the Italian Acne Board. Dermatol. Ther. 2025, 15, 245–264. [Google Scholar] [CrossRef]
- Milosheska, D.; Roškar, R. Use of Retinoids in Topical Antiaging Treatments: A Focused Review of Clinical Evidence for Conventional and Nanoformulations. Adv. Ther. 2022, 39, 5351–5375. [Google Scholar] [CrossRef]
- Quan, T. Human Skin Aging and the Anti-Aging Properties of Retinol. Biomolecules 2023, 13, 1614. [Google Scholar] [CrossRef]
- Jain, S. Topical Tretinoin or Adapalene in Acne Vulgaris: An Overview. J. Dermatol. Treat. 2004, 15, 200–207. [Google Scholar] [CrossRef]
- Roeder, A.; Schaller, M.; Schäfer-Korting, M.; Korting, H.C. Tazarotene: Therapeutic Strategies in the Treatment of Psoriasis, Acne and Photoaging. Skin Pharmacol. Physiol. 2004, 17, 111–118. [Google Scholar] [CrossRef]
- Heitel, P.; Gellrich, L.; Kalinowsky, L.; Heering, J.; Kaiser, A.; Ohrndorf, J.; Proschak, E.; Merk, D. Computer-Assisted Discovery and Structural Optimization of a Novel Retinoid X Receptor Agonist Chemotype. ACS Med. Chem. Lett. 2019, 10, 203–208. [Google Scholar] [CrossRef]
- Pollinger, J.; Schierle, S.; Gellrich, L.; Ohrndorf, J.; Kaiser, A.; Heitel, P.; Chaikuad, A.; Knapp, S.; Merk, D. A Novel Biphenyl-Based Chemotype of Retinoid X Receptor Ligands Enables Subtype and Heterodimer Preferences. ACS Med. Chem. Lett. 2019, 10, 1346–1352. [Google Scholar] [CrossRef]
- Yin, S.; Luo, J.; Qian, A.; Du, J.; Yang, Q.; Zhou, S.; Yu, W.; Du, G.; Clark, R.B.; Walters, E.T.; et al. Retinoids Activate the Irritant Receptor TRPV1 and Produce Sensory Hypersensitivity. J. Clin. Investig. 2013, 123, 3941–3951. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.A.; Kim, H.J.; Kim, J.-Y.; Kim, C.-H.; Lim, W.-S.; Noh, M.; Lee, A.-Y. Retinoic Acid and Hydroquinone Induce Inverse Expression Patterns on Cornified Envelope-Associated Proteins: Implication in Skin Irritation. J. Dermatol. Sci. 2014, 76, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Cosio, T.; Di Prete, M.; Gaziano, R.; Lanna, C.; Orlandi, A.; Di Francesco, P.; Bianchi, L.; Campione, E. Trifarotene: A Current Review and Perspectives in Dermatology. Biomedicines 2021, 9, 237. [Google Scholar] [CrossRef] [PubMed]
- Veit, J.G.S.; De Glas, V.; Balau, B.; Liu, H.; Bourlond, F.; Paller, A.S.; Poumay, Y.; Diaz, P. Characterization of CYP26B1-Selective Inhibitor, DX314, as a Potential Therapeutic for Keratinization Disorders. J. Investig. Dermatol. 2021, 141, 72-83.e6. [Google Scholar] [CrossRef]
- Tan, J.; Thiboutot, D.; Popp, G.; Gooderham, M.; Lynde, C.; Del Rosso, J.; Weiss, J.; Blume-Peytavi, U.; Weglovska, J.; Johnson, S.; et al. Randomized Phase 3 Evaluation of Trifarotene 50 Μg/g Cream Treatment of Moderate Facial and Truncal Acne. J. Am. Acad. Dermatol. 2019, 80, 1691–1699. [Google Scholar] [CrossRef]
- Blume-Peytavi, U.; Fowler, J.; Kemény, L.; Draelos, Z.; Cook-Bolden, F.; Dirschka, T.; Eichenfield, L.; Graeber, M.; Ahmad, F.; Alió Saenz, A.; et al. Long-Term Safety and Efficacy of Trifarotene 50 Μg/g Cream, a First-in-Class RAR-γ Selective Topical Retinoid, in Patients with Moderate Facial and Truncal Acne. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 166–173. [Google Scholar] [CrossRef]
- Tan, J.; Chavda, R.; Baldwin, H.; Dreno, B. Management of Acne Vulgaris with Trifarotene. J. Cutan. Med. Surg. 2023, 27, 368–374. [Google Scholar] [CrossRef]
- Veit, J.G.S.; Poumay, Y.; Mendes, D.; Kreitinger, J.; Walker, L.; Paquet, A.; Menigot, C.; Zolezzi, F.; Paller, A.S.; Diaz, P. Preclinical Assessment of Dual CYP26[A1/B1] Inhibitor, DX308, as an Improved Treatment for Keratinization Disorders. Skin Health Dis. 2021, 1, ski2-22. [Google Scholar] [CrossRef]
- Leal, A.S.; Zydeck, K.; Carapellucci, S.; Reich, L.A.; Zhang, D.; Moerland, J.A.; Sporn, M.B.; Liby, K.T. Retinoid X Receptor Agonist LG100268 Modulates the Immune Microenvironment in Preclinical Breast Cancer Models. NPJ Breast Cancer 2019, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Adouvi, G.; Nawa, F.; Ballarotto, M.; Rüger, L.A.; Knümann, L.; Kasch, T.; Arifi, S.; Schubert-Zsilavecz, M.; Willems, S.; Marschner, J.A.; et al. Structural Fusion of Natural and Synthetic Ligand Features Boosts RXR Agonist Potency. J. Med. Chem. 2023, 66, 16762–16771. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, M.; Carmina, M.; Knümann, L.; Sai, M.; Willems, S.; Kasch, T.; Pollinger, J.; Knapp, S.; Marschner, J.A.; Chaikuad, A.; et al. Structure-Guided Design of a Highly Potent Partial RXR Agonist with Superior Physicochemical Properties. J. Med. Chem. 2024, 67, 2152–2164. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhao, T.; He, F.; Zhong, Y.; Wang, S.; Tang, Z.; Qiu, Y.; Wu, Z.; Fang, M. Discovery of Bipyridine Amide Derivatives Targeting pRXRα-PLK1 Interaction for Anticancer Therapy. Eur. J. Med. Chem. 2023, 254, 115341. [Google Scholar] [CrossRef]
- Brahma, M.; Ghosal, S.; Maruthi, M.; Kalangi, S.K. Chapter Fourteen—Endocytosis of LXRs: Signaling in Liver and Disease. In Progress in Molecular Biology and Translational Science; Mani, I., Singh, V., Eds.; Receptor Endocytosis and Signalling in Health and Disease—Part A; Academic Press: Cambridge, MA, USA, 2023; Volume 194, pp. 347–375. [Google Scholar]
- Gudas, L.J. Synthetic Retinoids Beyond Cancer Therapy. Annu. Rev. Pharmacol. Toxicol. 2022, 62, 155–175. [Google Scholar] [CrossRef]
- Kang, S.; Lee, H.; Jun, S.-H.; Park, S.-G.; Kang, N.-G. Enhancement of Efficacy of Retinoids through Enhancing Retinoid-Induced RAR Activity and Inhibiting Hydroxylation of Retinoic Acid, and Its Clinical Efficacy on Photo-Aging. Pharmaceutics 2022, 14, 2412. [Google Scholar] [CrossRef]
- Oikawa, T.; Fujii, S.; Mori, S.; Masuno, H.; Kawachi, E.; Kagechika, H. Structural Development of Silicon-Containing Retinoids: Structure–Activity Relationship Study of the Hydrophobic Pharmacophore of Retinobenzoic Acids Using Silyl Functionalities. ChemMedChem 2022, 17, e202200176. [Google Scholar] [CrossRef]
- Jeba Reeda, V.S.; Divya, P.; Karthick, T.; Jothy, V.B.; Alharbi, N.S.; Kadaikunnan, S.; Manikandan, A.; Muthu, S. Quantum Chemical Computational Analysis, Electronic Transitions, Interaction Mechanisms Analysis by Spectroscopic, Molecular Docking, and Molecular Dynamic Simulation of Retinol. Spectrosc. Lett. 2024, 57, 349–367. [Google Scholar] [CrossRef]
- Kang, H.; Lee, S.-G. Comparative Molecular Dynamics Study on the Features of Binding and Non-Binding Modes of Retinoic Acid in Cellular Retinol-Binding Protein (I). J. Mol. Graph. Model. 2023, 123, 108509. [Google Scholar] [CrossRef]
- Wang, Q.; Tu, X.; Wang, X.; Cai, Q.; Yu, L.; Zhang, X.; Yi, J.; Wu, Y.; Xie, G.; Yuan, H.; et al. Design, Synthesis and Biological Evaluation of Acyl Hydrazones-Based Derivatives as RXRα-Targeted Anti-Mitotic Agents. Bioorganic Chem. 2022, 128, 106069. [Google Scholar] [CrossRef]
- Kawczak, P.; Feszak, I.; Brzeziński, P.; Bączek, T. Structure–Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process. Biomedicines 2024, 12, 1059. [Google Scholar] [CrossRef]
- Thatcher, J.E.; Isoherranen, N. The Role of CYP26 Enzymes in Retinoic Acid Clearance. Expert Opin. Drug Metab. Toxicol. 2009, 5, 875–886. [Google Scholar] [CrossRef] [PubMed]
- McCaffery, P.; Simons, C. Prospective Teratology of Retinoic Acid Metabolic Blocking Agents (RAMBAs) and Loss of CYP26 Activity. Curr. Pharm. Des. 2007, 13, 3020–3037. [Google Scholar] [CrossRef] [PubMed]
- Stevison, F.; Hogarth, C.; Tripathy, S.; Kent, T.; Isoherranen, N. Inhibition of the All-Trans Retinoic Acid (atRA) Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous atRA Signaling. Drug Metab. Dispos. 2017, 45, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.H.; Buttrick, B.R.; Isoherranen, N. Therapeutic Potential of the Inhibition of the Retinoic Acid Hydroxylases CYP26A1 and CYP26B1 by Xenobiotics. Curr. Top. Med. Chem. 2013, 13, 1402–1428. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, T.; Wu, X.; Yuan, H.; Wei, Y.; Xiao, Y. The Role of the Cytochrome P450 Superfamily in the Skin. Expert Rev. Mol. Med. 2024, 26, e15. [Google Scholar] [CrossRef]
- Sakamuru, S.; Ma, D.; Pierro, J.D.; Baker, N.C.; Kleinstreuer, N.; Cali, J.J.; Knudsen, T.B.; Xia, M. Development and Validation of CYP26A1 Inhibition Assay for High-throughput Screening. Biotechnol. J. 2024, 19, 2300659. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Z.; Gu, Z.; Liu, X.; Krutmann, J.; Wang, J.; Xia, J. Shotgun Metagenomic Sequencing Reveals Skin Microbial Variability from Different Facial Sites. Front. Microbiol. 2022, 13, 933189. [Google Scholar] [CrossRef]
- Kim, S.-K.; Lee, M.; Lee, Y.Q.; Lee, H.J.; Rho, M.; Kim, Y.; Seo, J.Y.; Youn, S.H.; Hwang, S.J.; Kang, N.G.; et al. Genome-Scale Metabolic Modeling and in Silico Analysis of Opportunistic Skin Pathogen Cutibacterium Acnes. Front. Cell. Infect. Microbiol. 2023, 13, 1099314. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 382698. [Google Scholar] [CrossRef]
- Nolan, Z.T.; Banerjee, K.; Cong, Z.; Gettle, S.L.; Longenecker, A.L.; Kawasawa, Y.I.; Zaenglein, A.L.; Thiboutot, D.M.; Agak, G.W.; Zhan, X.; et al. Treatment Response to Isotretinoin Correlates with Specific Shifts in Cutibacterium Acnes Strain Composition within the Follicular Microbiome. Exp. Dermatol. 2023, 32, 955–964. [Google Scholar] [CrossRef]
- Park, M.; Park, S.; Jung, W.H. Skin Commensal Fungus Malassezia and Its Lipases. J. Microbiol. Biotechnol. 2021, 31, 637–644. [Google Scholar] [CrossRef]
- Gui, M.; Cheng, J.; Lin, X.; Guo, D.; Zhou, Q.; Ma, W.; Yang, H.; Chen, X.; Liu, Z.; Ma, L.; et al. Decoding the Anti-Aging Effect of Retinol in Reshaping the Human Skin Microbiome Niches. bioRxiv 2024. bioRxiv:2024.06.26.600860. [Google Scholar] [CrossRef]
- Huang, X.; Pan, W.; Zhong, M.; Chhonker, Y.S.; Steele, A.D.; Keohane, C.E.; Mishra, B.; Felix Raj Lucas, L.O.; Murry, D.J.; Ausubel, F.M.; et al. Biological Evaluation of the Antibacterial Retinoid CD437 in Cutibacterium Acnes Infection. Antimicrob. Agents Chemother. 2023, 67, e01679-22. [Google Scholar] [CrossRef]
- Chopra, D.; Arens, R.A.; Amornpairoj, W.; Lowes, M.A.; Tomic-Canic, M.; Strbo, N.; Lev-Tov, H.; Pastar, I. Innate Immunity and Microbial Dysbiosis in Hidradenitis Suppurativa—Vicious Cycle of Chronic Inflammation. Front. Immunol. 2022, 13, 960488. [Google Scholar] [CrossRef] [PubMed]
- Kelhälä, H.-L.; Aho, V.T.E.; Fyhrquist, N.; Pereira, P.A.B.; Kubin, M.E.; Paulin, L.; Palatsi, R.; Auvinen, P.; Tasanen, K.; Lauerma, A. Isotretinoin and Lymecycline Treatments Modify the Skin Microbiota in Acne. Exp. Dermatol. 2018, 27, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Lhor, M.; Salesse, C. Retinol Dehydrogenases: Membrane-Bound Enzymes for the Visual Function. Biochem. Cell Biol. 2014, 92, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Belyaeva, O.V.; Lee, S.-A.; Kolupaev, O.V.; Kedishvili, N.Y. Identification and Characterization of Retinoid-Active Short-Chain Dehydrogenases/Reductases in Drosophila melanogaster. Biochim. Biophys. Acta (BBA) General. Subj. 2009, 1790, 1266–1273. [Google Scholar] [CrossRef]
- Kedishvili, N.Y. Enzymology of Retinoic Acid Biosynthesis and Degradation: Thematic Review Series: Fat-Soluble Vitamins: Vitamin A. J. Lipid Res. 2013, 54, 1744–1760. [Google Scholar] [CrossRef]
- Orywal, K.; Jelski, W.; Szmitkowski, M. The participation of dehydrogenases in retinol metabolism. Pol. Merkur. Lek. 2008, 25, 276–279. [Google Scholar]
- Chelstowska, S.; Widjaja-Adhi, M.A.K.; Silvaroli, J.A.; Golczak, M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017, 56, 4489–4499. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-J.; Yoon, S.-H.; Ryu, H.-K.; Kim, J.-H.; Wang, C.-L.; Kim, J.-Y.; Oh, D.-K.; Kim, S.-W. Retinoid Production Using Metabolically Engineered Escherichia coli with a Two-Phase Culture System. Microb. Cell Fact. 2011, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.-J.; Ha, B.-K.; Zhou, J.; Ahn, J.; Yoon, S.-H.; Kim, S.-W. Selective Retinol Production by Modulating the Composition of Retinoids from Metabolically Engineered E. coli. Biotechnol. Bioeng. 2015, 112, 1604–1612. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-G.; Kim, C.; Sun, L.; Lee, T.-H.; Jin, Y.-S. Selective Production of Retinol by Engineered Saccharomyces Cerevisiae through the Expression of Retinol Dehydrogenase. Biotechnol. Bioeng. 2022, 119, 399–410. [Google Scholar] [CrossRef]
- Ren, X.; Liu, M.; Yue, M.; Zeng, W.; Zhou, S.; Zhou, J.; Xu, S. Metabolic Pathway Coupled with Fermentation Process Optimization for High-Level Production of Retinol in Yarrowia lipolytica. J. Agric. Food Chem. 2024, 72, 8664–8673. [Google Scholar] [CrossRef]
- Park, H.; Lee, D.; Kim, J.-E.; Park, S.; Park, J.H.; Ha, C.W.; Baek, M.; Yoon, S.-H.; Park, K.H.; Lee, P.; et al. Efficient Production of Retinol in Yarrowia lipolytica by Increasing Stability Using Antioxidant and Detergent Extraction. Metab. Eng. 2022, 73, 26–37. [Google Scholar] [CrossRef]
- D’Ambrosio, D.N.; Clugston, R.D.; Blaner, W.S. Vitamin A Metabolism: An Update. Nutrients 2011, 3, 63–103. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Geng, S. All-trans Retinoic Acid Alters the Expression of the Tight Junction Proteins Claudin-1 and -4 and Epidermal Barrier Function-associated Genes in the Epidermis. Int. J. Mol. Med. 2019, 43, 1789–1805, Corrected in Int. J. Mol. Med. 2024, 54, 75. [Google Scholar] [CrossRef]
- Wongtada, C.; Prombutara, P.; Asawanonda, P.; Noppakun, N.; Kumtornrut, C.; Chatsuwan, T. Distinct Skin Microbiome Modulation Following Different Topical Acne Treatments in Mild Acne Vulgaris Patients: A Randomized, Investigator-Blinded Exploratory Study. Exp. Dermatol. 2023, 32, 906–914. [Google Scholar] [CrossRef]
- Erdei, L.; Bolla, B.S.; Bozó, R.; Tax, G.; Urbán, E.; Kemény, L.; Szabó, K. TNIP1 Regulates Cutibacterium Acnes-Induced Innate Immune Functions in Epidermal Keratinocytes. Front. Immunol. 2018, 9, 2155. [Google Scholar] [CrossRef]
- Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Durán, N. Chitosan-Solid Lipid Nanoparticles as Carriers for Topical Delivery of Tretinoin. Colloids Surf. B Biointerfaces 2012, 93, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.L.; Carneiro, G.; de Araújo, L.A.; de Jesus, M.; Trindade, V.; Yoshida, M.I.; Oréfice, R.L.; de Macêdo Farias, L.; de Carvalho, M.A.R.; Santos, S.G.D.; et al. Solid Lipid Nanoparticles Loaded with Retinoic Acid and Lauric Acid as an Alternative for Topical Treatment of Acne Vulgaris. J. Nanosci. Nanotechnol. 2015, 15, 792–799. [Google Scholar] [CrossRef]
- Ryan-Kewley, A.E.; Williams, D.R.; Hepburn, N.; Dixon, R.A. Non-Antibiotic Isotretinoin Treatment Differentially Controls Propionibacterium Acnes on Skin of Acne Patients. Front. Microbiol. 2017, 8, 1381. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Lee, P.C. Microbial Production of Bioactive Retinoic Acid Using Metabolically Engineered Escherichia coli. Microorganisms 2021, 9, 1520. [Google Scholar] [CrossRef] [PubMed]
- Giuli, M.V.; Hanieh, P.N.; Giuliani, E.; Rinaldi, F.; Marianecci, C.; Screpanti, I.; Checquolo, S.; Carafa, M. Current Trends in ATRA Delivery for Cancer Therapy. Pharmaceutics 2020, 12, 707. [Google Scholar] [CrossRef]
- Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front. Pharmacol. 2017, 8, 51. [Google Scholar] [CrossRef]
- Lima, F.A.; Vilela, R.V.; Oréfice, R.L.; Silva, I.R.; Reis, E.C.; Carvalho, L.A.; Maria-Engler, S.S.; Ferreira, L.A.; Goulart, G.A. Nanostructured Lipid Carriers Enhances the Safety Profile of Tretinoin: In Vitro and Healthy Human Volunteers’ Studies. Nanomedicine 2021, 16, 1391–1409. [Google Scholar] [CrossRef]
- Vegad, U.; Patel, M.; Khunt, D.; Zupančič, O.; Chauhan, S.; Paudel, A. pH Stimuli-Responsive Hydrogels from Non-Cellulosic Biopolymers for Drug Delivery. Front. Bioeng. Biotechnol. 2023, 11, 1270364. [Google Scholar] [CrossRef]
- Suryavanshi, P.; Mahajan, S.; Banerjee, S.K.; Seth, K.; Banerjee, S. Synthesis and Characterization of a pH/Temperature-Dual Responsive Hydrogel with Promising Biocompatibility Features for Stimuli-Responsive 5-FU Delivery. J. Mater. Chem. B 2024, 12, 5098–5110. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Y.; Zhang, Y.; Ran, R.; Kong, Z.; Zhao, D.; Liu, M.; Zhao, W.; Cui, Y.; Hua, Y.; et al. Smart Nanogels for Cancer Treatment from the Perspective of Functional Groups. Front. Bioeng. Biotechnol. 2024, 11, 1329311. [Google Scholar] [CrossRef]
- Mirani, B.; Pagan, E.; Shojaei, S.; Duchscherer, J.; Toyota, B.D.; Ghavami, S.; Akbari, M. A 3D Bioprinted Hydrogel Mesh Loaded with All-Trans Retinoic Acid for Treatment of Glioblastoma. Eur. J. Pharmacol. 2019, 854, 201–212. [Google Scholar] [CrossRef]
- Diaz-Jimenez, J.P.; Tazi-Mezalek, R. Photodynamic Therapy. In Interventions in Pulmonary Medicine; Díaz-Jimenez, J.P., Rodriguez, A.N., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 165–183. ISBN 978-3-319-58036-4. [Google Scholar]
- Gagliardi, A.; Voci, S.; Giuliano, E.; Salvatici, M.C.; Celano, M.; Fresta, M.; Cosco, D. Phospholipid/Zein Hybrid Nanoparticles as Promising Carriers for the Protection and Delivery of All-Trans Retinoic Acid. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 128, 112331. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Stewart, R.C.; Zhou, X.Z.; Lu, K.P.; Gillies, E.R. Covalent Cross-Linking Approaches for All- Trans Retinoic Acid-Loaded Thermo-Responsive Hydrogels. Soft Matter 2025, 21, 4739–4750. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Du, Y.; Zhang, L.; Jin, F.; Li, W.; Zhou, X.; Yin, Y.; Weng, Y.; Xu, D.; Wang, J. Enhanced Therapeutic Effects of All-Trans Retinoic Acid Nanostructured Lipid Carrier Composite Gel Drug Delivery System for Alopecia Areata. J. Nanobiotechnol. 2025, 23, 351. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhao, N.; Song, Q.; Du, Z.; Shu, P. Topical Retinoids: Novel Derivatives, Nano Lipid-based Carriers, and Combinations to Improve Chemical Instability and Skin Irritation. J. Cosmet. Dermatol. 2024, 23, 3102–3115. [Google Scholar] [CrossRef]
- Jun, S.-H.; Kim, H.; Lee, H.; Song, J.E.; Park, S.G.; Kang, N.-G. Synthesis of Retinol-Loaded Lipid Nanocarrier via Vacuum Emulsification to Improve Topical Skin Delivery. Polymers 2021, 13, 826. [Google Scholar] [CrossRef]
- Morales, J.O.; Valdés, K.; Morales, J.; Oyarzun-Ampuero, F. Lipid Nanoparticles for the Topical Delivery of Retinoids and Derivatives. Nanomedicine 2015, 10, 253–269. [Google Scholar] [CrossRef]
- AOBiome LLC. A Randomized, Double Blinded, Phase IIb/III, Decentralized Study of B244 Delivered as a Topical Spray to Determine Safety and Efficacy in Participants with Mild to Moderate Acne Vulgaris. 2022. Available online: https://clinicaltrials.gov/study/NCT02832063 (accessed on 15 September 2025).
- Cassiopea SpA. An Open-Label, Long-Term Extension Study to Evaluate the Safety of Cortexolone 17α-Propionate (CB-03-01) Cream, 1% Applied Twice-Daily in Subjects with Acne Vulgaris. 2020. Available online: https://clinicaltrials.gov/study/NCT02682264 (accessed on 15 September 2025).
- Moore, A. A Single Center, Phase 4, Open-Label Prospective Case Series Study of the Safety and Efficacy of Sarecycline for 12 Weeks in Subjects Ages 9 and over with Truncal Acne. 2023. Available online: https://clinicaltrials.gov/study/NCT05010538 (accessed on 15 September 2025).
- Wagner, N.; Benkali, K.; Alió Sáenz, A.; Poncet, M.; Graeber, M. Clinical Pharmacology and Safety of Trifarotene, a First-in-Class RARγ-Selective Topical Retinoid. J. Clin. Pharmacol. 2020, 60, 660–668. [Google Scholar] [CrossRef]
- Swedish Medical Products Agency. Public Assessment Report Scientific Discussion Aklief (Trifarotene); Swedish Medical Products Agency: Uppsala, Sweden, 2019.
- Desai, N.; Rana, D.; Patel, M.; Bajwa, N.; Prasad, R.; Vora, L.K. Nanoparticle Therapeutics in Clinical Perspective: Classification, Marketed Products, and Regulatory Landscape. Small 2025, 21, e2502315. [Google Scholar] [CrossRef]
Generation | Compounds | Strengths | Weaknesses | Therapeutic Uses | References |
---|---|---|---|---|---|
First Generation Naturally occurring retinoids derived from vitamin A. | Retinol Retinaldehyde Tretinoin Isotretinoin Alitretinoin |
|
| Acne, photoaging, psoriasis, ichthyosis | [3,7] |
Second Generation Synthetic analogs with structural modifications | Etretinate Acitretin |
|
| Severe psoriasis, keratinization disorders | [8] |
Third Generation Retinoidal benzoic acid derivatives with receptor selectivity | Adapalene Tazarotene Bexarotene |
|
| Acne (adapalene), photoaging (tazarotene), cutaneous T-cell lymphoma (bexarotene) | [9,10] |
Fourth Generation Highly selective retinoids targeting specific receptors (e.g., RAR-γ). | Trifarotene |
|
| Acne (trifarotene), emerging uses under investigation | [8,11,12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczak, J.W.; Palusińska, M.; Maślińska-Gromadka, K.; Pietrzak, D.; Szopiński, T.; Lewicki, S.; Schenk, T.; Szymański, Ł. The Next Generation of Skin Care: Transforming Retinoid Therapeutics. Cells 2025, 14, 1650. https://doi.org/10.3390/cells14211650
Łuczak JW, Palusińska M, Maślińska-Gromadka K, Pietrzak D, Szopiński T, Lewicki S, Schenk T, Szymański Ł. The Next Generation of Skin Care: Transforming Retinoid Therapeutics. Cells. 2025; 14(21):1650. https://doi.org/10.3390/cells14211650
Chicago/Turabian StyleŁuczak, Julia Weronika, Małgorzata Palusińska, Karolina Maślińska-Gromadka, Damian Pietrzak, Tomasz Szopiński, Sławomir Lewicki, Tino Schenk, and Łukasz Szymański. 2025. "The Next Generation of Skin Care: Transforming Retinoid Therapeutics" Cells 14, no. 21: 1650. https://doi.org/10.3390/cells14211650
APA StyleŁuczak, J. W., Palusińska, M., Maślińska-Gromadka, K., Pietrzak, D., Szopiński, T., Lewicki, S., Schenk, T., & Szymański, Ł. (2025). The Next Generation of Skin Care: Transforming Retinoid Therapeutics. Cells, 14(21), 1650. https://doi.org/10.3390/cells14211650