BelloStage™-3000 Bioreactor Versus Conventional Cultivation of Recombinant Capripoxvirus Expressing Brucella Antigens in Vero Cells: A Step Towards the Development of a New Human Brucellosis Vaccine
Abstract
Highlights
- The BelloStage™-3000 bioreactor with BioNOC II® macrocarriers enabled a ~100-fold increase in Vero cell density compared with static flasks and supported high titers of recombinant capripoxviruses.
- Maximum viral yields in the bioreactor reached up to 7.75 log10 TCID50/mL, significantly exceeding those obtained by conventional cultivation.
- The system represents a scalable, serum-free platform that facilitates seamless transfer of laboratory protocols to industrial production, reducing regulatory barriers and simplifying downstream processing.
- These features highlight its suitability for cost-effective vaccine manufacturing in low- and middle-income countries, where robustness and affordability are critical.
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines and Culture Media
2.2. Virus
2.3. Vero Cell Cultivation in Culture Flasks
2.4. Virus Infection and Propagation in Culture Flasks
2.5. Vero Cell Cultivation in the BelloStage™-3000 Bioreactor
2.6. Viruses’ Infection and Multiplication on BioNOC II® Macrocarriers
2.7. Determination of Infectious Activity of Viruses
2.8. Assessment of Cell Density on BioNOC II® Macrocarriers
2.9. Glucose Level Monitoring
2.10. Monitoring of pH
2.11. Statistical Analysis of Data
3. Results
3.1. Vero Cell Growth and Recombinant Capripoxvirus Replication in Static Flasks
3.2. Growth of Vero Cells in the BelloStage™-3000 Bioreactor
3.3. Propagation of Recombinant Capripoxviruses on BioNOC II® Macrocarriers
3.4. Comparison of Vero Cell Density Under Different Cultivation Methods
3.5. Comparison of Infectious Titers of Recombinant Capripoxviruses Cultivated by Different Methods
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galińska, E.M.; Zagórski, J. Brucellosis in humans—Etiology, diagnostics, clinical forms. Ann. Agric. Environ. Med. 2013, 20, 233–238. [Google Scholar]
- Dourado, A.; Rodrigues, Â.; Afonso, M.E.; Montanha, M.; Cardoso, M.; Ervedosa, S.; Gonçalves, V.; Mendes, E.; Dourado, A., Jr.; Miranda, M., Sr. Brucellosis, the Forgotten Endemic: A Clinical Case Report. Cureus 2025, 17, e77761. [Google Scholar] [CrossRef]
- Alton, G.G.; Forsyth, J.R.L. Brucella. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 28. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8572/ (accessed on 20 August 2025).
- Dadar, M.; Al-Khaza’LEh, J.; Fakhri, Y.; Akar, K.; Ali, S.; Shahali, Y. Human brucellosis and associated risk factors in the Middle East region: A comprehensive systematic review, meta-analysis, and meta-regression. Heliyon 2024, 10, e34324. [Google Scholar] [CrossRef]
- Asrie, F.; Birhan, M.; Dagnew, M.; Berhane, N. Prevalence of human brucellosis in Ethiopia: Systematic review and meta-analysis. BMC Infect. Dis. 2025, 25, 365. [Google Scholar] [CrossRef]
- Jamil, T.; Akar, K.; Erdenlig, S.; Murugaiyan, J.; Sandalakis, V.; Boukouvala, E.; Psaroulaki, A.; Melzer, F.; Neubauer, H.; Wareth, G. Spatio-Temporal Distribution of Brucellosis in European Terrestrial and Marine Wildlife Species and Its Regional Implications. Microorganisms 2022, 10, 1970. [Google Scholar] [CrossRef]
- Hayoun, M.A.; Muco, E.; Shorman, M. Brucellosis; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK441831/ (accessed on 20 August 2025).
- Miller, C.; Celli, J. Avoidance and Subversion of Eukaryotic Homeostatic Autophagy Mechanisms by Bacterial Pathogens. J. Mol. Biol. 2016, 428, 3387–3398. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Sun, K.; Bateer, H.; Wang, W. The Genome Sequence of Brucella abortus vaccine strain A19 provides insights on its virulence attenuation compared to Brucella abortus strain 9-941. Gene 2022, 830, 146521. [Google Scholar] [CrossRef] [PubMed]
- Lita, E.P.; Mkupasi, E.M.; Ochi, E.B.; Misinzo, G.; van Heerden, H.; Katani, R.; Godfroid, J.; Mathew, C. Molecular evidence of Brucella abortus circulating in cattle, goats, and humans in Central Equatoria State, South Sudan. Sci. Rep. 2025, 15, 12378. [Google Scholar] [CrossRef]
- Huy, T.X.N. Exploring the impact of brucellosis on maternal and child health: Transmission mechanisms, patient effects, and current trends in drug use and resistance: A scoping review. Beni-Suef Univ. J. Basic Appl. Sci. 2024, 13, 108. [Google Scholar] [CrossRef]
- Pinn-Woodcock, T.; Frye, E.; Guarino, C.; Franklin-Guild, R.; Newman, A.P.; Bennett, J.; Goodrich, E.L. A one-health review on brucellosis in the United States. J. Am. Vet. Med. Assoc. 2023, 261, 451–462. [Google Scholar] [CrossRef]
- Franc, K.A.; Krecek, R.C.; Häsler, B.N.; Arenas-Gamboa, A.M. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. BMC Public Health 2018, 18, 125. [Google Scholar] [CrossRef]
- Maukayeva, S.; Kudaibergenova, N.; Karimova, S.; Smail, Y.; Toleukhanov, M. Successful experience in the treatment of neurobrucellosis in Kazakhstan. Pharm. Kazakhstan 2024, 1, 94. [Google Scholar] [CrossRef]
- Sarmurzina, Z.; Askarov, A.; Bekshin, Z.; Kundashev, K.; Bissenova, G.; Temirkhanov, A. Brucellosis—Analysis of the epidemiological and epizootological situation in the world and the republic of kazakhstan. Microbiol. Virol. 2024, 3, 9–31. [Google Scholar] [CrossRef]
- Korshenko, V.A.; Shchipeleva, I.A.; Kretenchuk, O.F.; Markovskaya, E.I. The past, present, prospects and problems of improving the specific prevention of brucellosis. Med. Her. South Russ. 2021, 12, 12–21. (In Russian) [Google Scholar] [CrossRef]
- Li, Z.; Wang, J.; Yuan, D.; Wang, S.; Sun, J.; Yi, B.; Hou, Q.; Mao, Y.; Liu, W. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice. Virus Genes 2015, 50, 434–441. [Google Scholar] [CrossRef]
- Condit, R.C.; Williamson, A.-L.; Sheets, R.; Seligman, S.J.; Monath, T.P.; Excler, J.-L.; Gurwith, M.; Bok, K.; Robertson, J.S.; Kim, D.; et al. Unique safety issues associated with virus-vectored vaccines: Potential for and theoretical consequences of recombination with wild type virus strains. Vaccine 2016, 34, 6610–6616. [Google Scholar] [CrossRef]
- Bull, J.J.; Nuismer, S.L.; Antia, R. Recombinant vector vaccine evolution. PLoS Comput. Biol. 2019, 15, e1006857. [Google Scholar] [CrossRef]
- Wang, S.; Liang, B.; Wang, W.; Li, L.; Feng, N.; Zhao, Y.; Wang, T.; Yan, F.; Yang, S.; Xia, X. Viral vectored vaccines: Design, development, preventive and therapeutic applications in human diseases. Signal Transduct. Target. Ther. 2023, 8, 149. [Google Scholar] [CrossRef]
- De Pinho Favaro, M.T.; Atienza-Garriga, J.; Martínez-Torró, C.; Parladé, E.; Vázquez, E.; Corchero, J.L.; Ferrer-Miralles, N.; Villaverde, A. Recombinant vaccines in 2022: A perspective from the cell factory. Microb. Cell Factories 2022, 21, 203. [Google Scholar] [CrossRef] [PubMed]
- Henríquez, R.; Muñoz-Barroso, I. Viral vector- and virus-like particle-based vaccines against infectious diseases: A minireview. Heliyon 2024, 10, e34927. [Google Scholar] [CrossRef]
- Kumar, V.; Verma, A.; Singh, R.; Garg, P.; Sharma, S.K.; Singh, H.N.; Mishra, S.K.; Kumar, S. Recombinant vaccines: Current updates and future prospects. Asian Pac. J. Trop. Med. 2024, 17, 338–350. [Google Scholar] [CrossRef]
- Travieso, T.; Li, J.; Mahesh, S.; Mello, J.D.F.R.E.; Blasi, M. The use of viral vectors in vaccine development. npj Vaccines 2022, 7, 75. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, H.; Liu, W. Construction of recombinant capripoxviruses as vaccine vectors for delivering foreign antigens: Methodology and application. Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Tabynov, K.; Sansyzbay, A.; Kydyrbayev, Z.; Yespembetov, B.; Ryskeldinova, S.; Zinina, N.; Assanzhanova, N.; Sultankulova, K.; Sandybayev, N.; Khairullin, B.; et al. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection. Virol. J. 2014, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Tabynov, K.; Kydyrbayev, Z.; Ryskeldinova, S.; Yespembetov, B.; Zinina, N.; Assanzhanova, N.; Kozhamkulov, Y.; Inkarbekov, D.; Gotskina, T.; Sansyzbay, A. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection. Vaccine 2014, 32, 2034–2041. [Google Scholar] [CrossRef]
- Chervyakova, O.; Tailakova, E.; Kozhabergenov, N.; Sadikaliyeva, S.; Sultankulova, K.; Zakarya, K.; Maksyutov, R.A.; Strochkov, V.; Sandybayev, N. Engineering of Recombinant Sheep Pox Viruses Expressing Foreign Antigens. Microorganisms 2021, 9, 1005. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Guo, H.; Ding, X.; Hua, D.; Liu, M.; Yang, M.; Gong, Y.; Ye, N.; Chen, X.; He, J.; Zhang, Y.; et al. Enhancing Dengue Virus Production and Immunogenicity with Celcradle Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines 2024, 12, 563. [Google Scholar] [CrossRef]
- Bacher, J.; Lali, N.; Steiner, F.; Jungbauer, A. Cytokines as fast indicator of infectious virus titer during process development. J. Biotechnol. 2024, 383, 55–63. [Google Scholar] [CrossRef]
- Bora, M.; Yousuf, R.W.; Dhar, P.; Singh, R.P. An overview of process intensification and thermo stabilization for upscaling of Peste des petits ruminants vaccines in view of global control and eradication. Virusdisease 2018, 29, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Vijayasankaran, N.; Shen, A.; Kiss, R.; Amanullah, A. Cell culture processes for monoclonal antibody production. mAbs 2010, 2, 466–479. [Google Scholar] [CrossRef]
- Esco VacciXcell. CelCradle Is a Benchtop Bioreactor. Available online: https://escovaccixcell.com/tide_technology/cell_cultivation/CelCradle (accessed on 20 August 2025).
- Hu, Y.-C.; Lu, J.-T.; Chung, Y.-C. High-density cultivation of insect cells and production of recombinant baculovirus using a novel oscillating bioreactor. Cytotechnology 2003, 42, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Esco VacciXcell. BioNOC II Cell Culture Macrocarriers. Available online: https://escovaccixcell.com/tide_technology/cell_attachment/BioNOC_II (accessed on 31 August 2025).
- Offersgaard, A.; Hernandez, C.R.D.; Pihl, A.F.; Costa, R.; Venkatesan, N.P.; Lin, X.; Van Pham, L.; Feng, S.; Fahnøe, U.; Scheel, T.K.H.; et al. SARS-CoV-2 Production in a Scalable High Cell Density Bioreactor. Vaccines 2021, 9, 706. [Google Scholar] [CrossRef]
- Rhazi, H.; Safini, N.; Mikou, K.; Alhyane, M.; Tadlaoui, K.O.; Lin, X.; Venkatesan, N.P.; Elharrak, M. Production of small ruminant morbillivirus, rift valley fever virus and lumpy skin disease virus in CelCradle—500A bioreactors. BMC Vet. Res. 2021, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-H.; Wu, J.-C.; Wang, K.-C.; Chiang, Y.-W.; Lai, C.-W.; Chung, Y.-C.; Hu, Y.-C. Baculovirus-mediated production of HDV-like particles in BHK cells using a novel oscillating bioreactor. J. Biotechnol. 2005, 118, 135–147. [Google Scholar] [CrossRef]
- Lai, C.-C.; Weng, T.-C.; Tseng, Y.-F.; Chiang, J.-R.; Lee, M.-S.; Hu, A.Y.-C. Evaluation of novel disposable bioreactors on pandemic influenza virus production. PLoS ONE 2019, 14, e0220803. [Google Scholar] [CrossRef]
- Toriniwa, H.; Komiya, T. Japanese encephalitis virus production in Vero cells with serum-free medium using a novel oscillating bioreactor. Biologicals 2007, 35, 221–226. [Google Scholar] [CrossRef]
- Esco VacciXcell. TideXcell: The Gentle Giant of Adherent Bioprocessing. Available online: https://escovaccixcell.com/assets/central_download/document/9010289_Vaccixcell_Product%20Guide_A4_Brochure_vE_LR.pdf (accessed on 31 August 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanova, Z.; Sametova, Z.; Chervyakova, O.; Turyskeldi, S.; Kurmasheva, A.; Abitayev, R.; Ussembay, A.; Kondibayeva, Z.; Toktyrova, D.; Mazbayeva, D.; et al. BelloStage™-3000 Bioreactor Versus Conventional Cultivation of Recombinant Capripoxvirus Expressing Brucella Antigens in Vero Cells: A Step Towards the Development of a New Human Brucellosis Vaccine. Cells 2025, 14, 1631. https://doi.org/10.3390/cells14201631
Amanova Z, Sametova Z, Chervyakova O, Turyskeldi S, Kurmasheva A, Abitayev R, Ussembay A, Kondibayeva Z, Toktyrova D, Mazbayeva D, et al. BelloStage™-3000 Bioreactor Versus Conventional Cultivation of Recombinant Capripoxvirus Expressing Brucella Antigens in Vero Cells: A Step Towards the Development of a New Human Brucellosis Vaccine. Cells. 2025; 14(20):1631. https://doi.org/10.3390/cells14201631
Chicago/Turabian StyleAmanova, Zhanat, Zhanna Sametova, Olga Chervyakova, Sholpan Turyskeldi, Alina Kurmasheva, Ruslan Abitayev, Abdurakhman Ussembay, Zhanat Kondibayeva, Dariya Toktyrova, Dana Mazbayeva, and et al. 2025. "BelloStage™-3000 Bioreactor Versus Conventional Cultivation of Recombinant Capripoxvirus Expressing Brucella Antigens in Vero Cells: A Step Towards the Development of a New Human Brucellosis Vaccine" Cells 14, no. 20: 1631. https://doi.org/10.3390/cells14201631
APA StyleAmanova, Z., Sametova, Z., Chervyakova, O., Turyskeldi, S., Kurmasheva, A., Abitayev, R., Ussembay, A., Kondibayeva, Z., Toktyrova, D., Mazbayeva, D., & Bulatov, Y. (2025). BelloStage™-3000 Bioreactor Versus Conventional Cultivation of Recombinant Capripoxvirus Expressing Brucella Antigens in Vero Cells: A Step Towards the Development of a New Human Brucellosis Vaccine. Cells, 14(20), 1631. https://doi.org/10.3390/cells14201631