Noninvasive Preimplantation Genetic Testing in Recurrent Pregnancy Loss and Implantation Failure: Breakthrough or Overpromise?
Abstract
Highlights
- Current evidence indicates noninvasive PGT-A (niPGT-A) has variable and suboptimal diagnostic accuracy compared to trophectoderm biopsy.
- There is a definitive lack of robust, prospective trial data demonstrating that niPGT-A improves live birth rates, specifically for patients with recurrent pregnancy loss (RPL) or implantation failure (RIF).
- niPGT-A is not yet reliable enough to replace invasive PGT-A as the standard of care for managing RPL and RIF. It should only be considered an investigational tool.
- The responsible integration of niPGT-A into clinical practice requires rigorous multicenter RCTs, international protocol standardization, and validation within high-risk RPL/RIF populations.
Abstract
1. Introduction
2. Understanding RPL and RIF: Clinical Definitions and Burden
2.1. The Challenge of Idiopathic Cases
2.2. Psychological and Financial Toll
3. The Role of Embryonic Aneuploidy in RPL and RIF
3.1. Understanding Aneuploidy: Definition and Types
3.2. Aneuploidy as a Primary Cause of Implantation Failure and Miscarriage
3.3. Impact of Maternal Age and Diminished Ovarian Reserve (DOR)
3.4. Current Embryo Selection Strategies
4. Invasive PGT-A: Current Standard and Its Limitations
4.1. Background—Purpose and Types
- PGT-M (Monogenic disorders)—tests for specific single-gene defects.
4.2. Common Techniques: Trophectoderm Biopsy and Blastocyst Stage Analysis
4.3. Benefits: Improved Selection and Reduced Miscarriage Rates
4.4. Limitations
4.5. Summary
5. Noninvasive PGT (niPGT): Science and Methodologies
5.1. Sources of Cell-Free DNA: Blastocoel Fluid vs. Spent Culture Medium
5.2. Extraction, Amplification, and Sequencing Methods
5.3. Current Techniques
5.4. Challenges
5.5. Summary
6. Clinical Evidence: Can niPGT Replace Biopsy?
6.1. Key Studies and Meta-Analyses
6.2. Sensitivity and Specificity Compared to PGT-A
6.3. Real-World Success Rates in RPL/RIF Subpopulations
6.4. Cases Where niPGT Changed Clinical Management
6.5. Summary
7. Application in RPL/RIF: Hope or Hype?
7.1. Benefits: The Foundations of Hope
7.2. Drawbacks: The Reality Check
7.3. How IVF Centers Are Currently Using or Trialing niPGT
7.4. Integration with Time-Lapse, Morphology, and AI
7.5. Hope or Hype
8. Future Perspectives and Clinical Recommendations
8.1. Need for Prospective, Multicenter RCTs
8.2. Combining niPGT with Epigenetic and Metabolomic Profiling
8.3. Standardization of Protocols and Reporting
8.4. Tailored Approaches for Patient Subgroups
9. Conclusions: A Roadmap for Responsible Innovation
9.1. Reiterating the Promise and the Prerequisites
9.2. Confronting the Current Reality: Barriers to Clinical Adoption
9.3. Imperative Call for Cautious Integration and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data availability statement
Conflicts of Interest
Abbreviations
Abbreviation | Full Form |
ADO | Allele Dropout |
AI | Artificial Intelligence |
AMA | Advanced Maternal Age |
AMH | Anti-Müllerian Hormone |
ANXA5 | Annexin A5 |
APS | Antiphospholipid Syndrome |
ART | Assisted Reproductive Technology |
BF | Blastocoel Fluid |
cfDNA | Cell-Free DNA |
CLBR | Cumulative Live Birth Rate |
DOR | Diminished Ovarian Reserve |
EQC | External Quality Controls |
ESHRE | European Society of Human Reproduction and Embryology |
HLA | Human Leukocyte Antigen |
ICM | Inner Cell Mass |
IR | Implantation Rate |
ISO | International Organization for Standardization |
LBR | Live Birth Rate |
LP-WGS | Low-Pass Whole Genome Sequencing |
MDA | Multiple Displacement Amplification |
NGS | Next-Generation Sequencing |
niPGT | Noninvasive Preimplantation Genetic Testing |
niPGT-A | Noninvasive Preimplantation Genetic Testing for Aneuploidy |
niPGT-M | Noninvasive Preimplantation Genetic Testing for Monogenic disorders |
niPGT-SR | Noninvasive Preimplantation Genetic Testing for Structural Rearrangements |
NK cells (uNKs) | Natural Killer cells (Uterine Natural Killer cells) |
NR | No Result |
PCOS | Polycystic Ovary Syndrome |
PGT | Preimplantation Genetic Testing |
PGT-A | Preimplantation Genetic Testing for Aneuploidy |
PGT-M | Preimplantation Genetic Testing for Monogenic disorders |
PGT-SR | Preimplantation Genetic Testing for Structural Rearrangements |
PPV/NPV | Positive Predictive Value/Negative Predictive Value |
qPCR | Quantitative Polymerase Chain Reaction |
RCT | Randomized Controlled Trial |
RIF | Recurrent Implantation Failure |
RPL | Recurrent Pregnancy Loss |
SCM | Spent Culture Medium |
SET | Single Embryo Transfer |
STARD-PGT | Standards for Reporting Diagnostic Accuracy Studies-PGT |
STR | Short Tandem Repeat |
TE | Trophectoderm |
TLI | Time-Lapse Imaging |
Treg | Regulatory T cell |
TSH | Thyroid-Stimulating Hormone |
WGA | Whole Genome Amplification |
WGS | Whole Genome Sequencing |
References
- Asghari, K.M.; Novinbahador, T.; Mehdizadeh, A.; Zolfaghari, M.; Yousefi, M. Revolutionized attitude toward recurrent pregnancy loss and recurrent implantation failure based on precision regenerative medicine. Heliyon 2024, 10, e39584. [Google Scholar] [CrossRef]
- Cao, C.; Bai, S.; Zhang, J.; Sun, X.; Meng, A.; Chen, H. Understanding recurrent pregnancy loss: Recent advances on its etiology, clinical diagnosis, and management. Med. Rev. 2022, 2, 570–589. [Google Scholar] [CrossRef]
- Barad, D.H.; Albertini, D.F.; Molinari, E.; Gleicher, N. IVF outcomes of embryos with abnormal PGT-A biopsy previously refused transfer: A prospective cohort study. Hum. Reprod. 2022, 37, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Busnelli, A.; Somigliana, E.; Cirillo, F.; Baggiani, A.; Levi-Setti, P.E. Efficacy of therapies and interventions for repeated embryo implantation failure: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 1747. [Google Scholar] [CrossRef]
- Bakalova, D.N.; Rubio, C. Non-Invasive Preimplantation Genetic Testing. Genes 2025, 16, 552. [Google Scholar] [CrossRef]
- Capalbo, A.; Wells, D. The evolution of preimplantation genetic testing: Where is the limit? Reprod. Biomed. Online 2025, 50, 104845. [Google Scholar] [CrossRef]
- Cavalcante, M.B.; Sarno, M.; Barini, R. Immune biomarkers in cases of recurrent pregnancy loss and recurrent implantation failure. Minerva Obstet. Gynecol. 2025, 77, 34–44. [Google Scholar] [CrossRef]
- Chen, K.; Hu, Z.; Lian, Y.; Han, Y.; Zhou, X.; Li, Y.; Xiang, L.; Jiang, W.; Li, M.; Zeng, P.; et al. The diagnostic accuracy of preimplantation genetic testing (PGT) in assessing the genetic status of embryos: A systematic review and meta-analysis. Reprod. Biol. Endocrinol. 2025, 23, 39. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Hu, Y.; Yao, Y.; Gao, F.; Chang, C.; Zhang, L.; Huang, H.; Lu, D.; Xu, C. Noninvasive preimplantation genetic testing for aneuploidy using blastocyst spent culture medium may serve as a backup of trophectoderm biopsy in conventional preimplantation genetic testing. BMC Med. Genom. 2025, 18, 34. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.Y.H.; Chow, J.F.; Lam, K.K.; Lai, S.F.; Yeung, W.S.B.; Ng, E.H. Randomised double-blind controlled trial of non-invasive preimplantation genetic testing for aneuploidy in in vitro fertilisation: A protocol paper. BMJ Open 2023, 13, e072557. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.F.; Lam, K.K.; Cheng, H.H.; Lai, S.F.; Yeung, W.S.; Ng, E.H. Optimizing non-invasive preimplantation genetic testing: Investigating culture conditions, sample collection, and IVF treatment for improved non-invasive PGT-A results. J. Assist. Reprod. Genet. 2024, 41, 465–472. [Google Scholar] [CrossRef]
- Nagori, C.; Panchal, S. Practical Guide to Recurrent Pregnancy Loss; Jaypee Brothers Medical Publishers: New Delhi, India, 2022. [Google Scholar]
- Ma, J.; Gao, W.; Li, D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front. Endocrinol. 2023, 13, 1061766. [Google Scholar] [CrossRef]
- Sheikhansari, G.; Pourmoghadam, Z.; Danaii, S.; Mehdizadeh, A.; Yousefi, M. Etiology and management of recurrent implantation failure: A focus on intra-uterine PBMC-therapy for RIF. J. Reprod. Immunol. 2020, 139, 103121. [Google Scholar] [CrossRef]
- Wang, C.; Lu, Y.; Ou, M.; Qian, L.; Zhang, Y.; Yang, Y.; Luo, L.; Wang, Q. Risk factors for recurrent implantation failure as defined by the European Society for Human Reproduction and Embryology. Hum. Reprod. 2025, 40, 1138–1147. [Google Scholar] [CrossRef]
- Gonçalves, B.D.O. Aetiopathogenesis of Recurrent Implantation Failure After Assisted Reproductive Techniques. Master’s Thesis, Universidade de Coimbra, Coimbra, Portugal, 2022. [Google Scholar]
- Linehan, L.; Hennessy, M.; O’Donoghue, K. Infertility and subsequent recurrent miscarriage: Current state of the literature and future considerations for practice and research. HRB Open Res. 2021, 4, 100. [Google Scholar] [CrossRef]
- Cuadrado-Torroglosa, I.; García-Velasco, J.A.; Alecsandru, D. Maternal-Fetal Compatibility in Recurrent Pregnancy Loss. J. Clin. Med. 2024, 13, 2379. [Google Scholar] [CrossRef]
- Yang, X.; Tian, Y.; Zheng, L.; Luu, T.; Kwak-Kim, J. The update immune-regulatory role of pro-and anti-inflammatory cytokines in recurrent pregnancy losses. Int. J. Mol. Sci. 2022, 24, 132. [Google Scholar] [CrossRef] [PubMed]
- Garmendia, J.V.; De Sanctis, C.V.; Hajdúch, M.; De Sanctis, J.B. Microbiota and recurrent pregnancy loss (RPL); more than a simple connection. Microorganisms 2024, 12, 1641. [Google Scholar] [CrossRef]
- Luo, X.; He, Z.; Ma, R.; Lin, N.; Li, L.; Li, Y.; Ke, Y.; Meng, X.; Wu, Z. Narrative review of multifaceted approaches to managing recurrent implantation failure: Insights and innovations. Clin. Exp. Obstet. Gynecol. 2024, 51, 87. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Omidvar-Mehrabadi, A.; Shahbazi, M.; Mohammadnia-Afrouzi, M. Innate and adaptive immune dysregulation in women with recurrent implantation failure. J. Reprod. Immunol. 2024, 164, 104262. [Google Scholar] [CrossRef]
- Lash, G.E.; Raghupathy, R. Immune involvement in recurrent pregnancy loss. Front. Immunol. 2023, 14, 1330701. [Google Scholar] [CrossRef] [PubMed]
- Sfakianoudis, K.; Rapani, A.; Grigoriadis, S.; Pantou, A.; Maziotis, E.; Kokkini, G.; Tsirligkani, C.; Bolaris, S.; Nikolettos, K.; Chronopoulou, M.; et al. The role of uterine natural killer cells on recurrent miscarriage and recurrent implantation failure: From pathophysiology to treatment. Biomedicines 2021, 9, 1425. [Google Scholar] [CrossRef]
- Garmendia, J.V.; De Sanctis, C.V.; Hajdúch, M.; De Sanctis, J.B. Exploring the Immunological Aspects and Treatments of Recurrent Pregnancy Loss and Recurrent Implantation Failure. Int. J. Mol. Sci. 2025, 26, 1295. [Google Scholar] [CrossRef]
- Mukherjee, N.; Sharma, R.; Modi, D. Immune alterations in recurrent implantation failure. Am. J. Reprod. Immunol. 2023, 89, e13563. [Google Scholar] [CrossRef]
- George, J.S.; Mortimer, R.; Anchan, R.M. The role of reproductive immunology in recurrent pregnancy loss and repeated implantation failure. In Immunology of Recurrent Pregnancy Loss and Implantation Failure; Academic Press: Cambridge, MA, USA, 2022; pp. 223–240. [Google Scholar]
- Nakagawa, K.; Kuroda, K.; Sugiyama, R. Helper T cell pathology and repeated implantation failures. In Immunology of Recurrent Pregnancy Loss and Implantation Failure; Academic Press: Cambridge, MA, USA, 2022; pp. 273–285. [Google Scholar]
- Uța, C.; Tîrziu, A.; Zimbru, E.L.; Zimbru, R.I.; Georgescu, M.; Haidar, L.; Panaitescu, C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. Medicina 2024, 60, 1896. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, F.; Tajamolian, M.; Hosseini, E.S.; Hoseini, S.M. Immunologic Factors and Genomic Considerations in Recurrent Pregnancy Loss: A Review. Int. J. Med. Lab. 2023, 10. [Google Scholar] [CrossRef]
- Davalieva, K.; Kocarev, D.; Plaseska-Karanfilska, D. Decoding recurrent pregnancy loss: Insights from comparative proteomics studies. Biol. Reprod. 2025, 112, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Liaqat Ali Khan, N.; Nafee, T.; Shao, T.; Hart, A.R.; Elliott, S.; Ola, B.; Heath, P.R.; Fazeli, A. Dysregulation in multiple transcriptomic endometrial pathways is associated with recurrent implantation failure and recurrent early pregnancy loss. Int. J. Mol. Sci. 2022, 23, 16051. [Google Scholar] [CrossRef]
- Nørgaard-Pedersen, C. Recurrent Pregnancy Loss: Immunological risk factors and immunomodulatory treatments. Ph.D. Thesis, Aalborg Universitetsforlag, Aalborg, Denmark, 2023. [Google Scholar]
- Zeng, Y.; Tu, W. Predicting Pregnancy Outcomes in the Recurrent Reproductive Failure. Immune Regul. Reprod. Organs Organ Transpl. 2022, 18, 64216768. [Google Scholar]
- Sato, T.; Sugiura-Ogasawara, M.; Ozawa, F.; Yamamoto, T.; Kato, T.; Kurahashi, H.; Kuroda, T.; Aoyama, N.; Kato, K.; Kobayashi, R.; et al. Preimplantation genetic testing for aneuploidy: A comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum. Reprod. 2019, 34, 2340–2348. [Google Scholar] [CrossRef]
- Wang, X.; Chen, B.; Fang, L.; Wang, J.; Xu, A.; Xu, W.; Tong, X. Aneuploidy rates and clinical pregnancy outcomes after preimplantation genetic testing for aneuploidy using the progestin-primed ovarian stimulation protocol or the gonadotropin-releasing hormone antagonist protocol. J. Gynecol. Obstet. Hum. Reprod. 2025, 54, 102883. [Google Scholar] [CrossRef]
- Lei, C.X.; Ye, J.F.; Sui, Y.L.; Zhang, Y.P.; Sun, X.X. Retrospective cohort study of preimplantation genetic testing for aneuploidy with comprehensive chromosome screening versus nonpreimplantation genetic testing in normal karyotype, secondary infertility patients with recurrent pregnancy loss. Reprod. Dev. Med. 2019, 3, 205–212. [Google Scholar] [CrossRef]
- Kato, K.; Kuroda, T.; Yamadera-Egawa, R.; Ezoe, K.; Aoyama, N.; Usami, A.; Miki, T.; Yamamoto, T.; Takeshita, T. Preimplantation genetic testing for aneuploidy for recurrent pregnancy loss and recurrent implantation failure in minimal ovarian stimulation cycle for women aged 35–42 years: Live birth rate, developmental follow-up of children, and embryo ranking. Reprod. Sci. 2023, 30, 974–983. [Google Scholar] [CrossRef]
- Du, R.Q.; Zhao, D.D.; Kang, K.; Wang, F.; Xu, R.X.; Chi, C.L.; Kong, L.Y.; Liang, B.A. review of pre-implantation genetic testing technologies and applications. Reprod. Dev. Med. 2023, 7, 20–31. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Ma, M.; Wang, H.; Han, Y.; Guo, X.; Yeung, W.S.B.; Cheng, Y.; Zhang, H.; Dong, F.; et al. Preimplantation genetic testing for aneuploidy helps to achieve a live birth with fewer transfer cycles for the blastocyst FET patients with unexplained recurrent implantation failure. Arch. Gynecol. Obstet. 2023, 308, 599–610. [Google Scholar] [CrossRef]
- Du, Y.; Guan, Y.; Li, N.; Shi, C.; Zhang, Y.; Ren, B.; Liu, J.; Lou, H. Is it necessary for young patients with recurrent implantation failure to undergo preimplantation genetic testing for aneuploidy? Front. Endocrinol. 2023, 14, 1020055. [Google Scholar] [CrossRef]
- Guan, H.; He, Y.; Lu, Y.; Huang, J.; Wang, Y.; Zhu, Q.; Qi, J.; Lin, W.; Lindheim, S.R.; Wei, Z.; et al. Effect of Preimplantation Genetic Testing for Aneuploidy on Live Birth Rate in Young Women With Recurrent Implantation Failure: A Secondary Analysis of a Multicentre Randomised Trial. BJOG Int. J. Obstet. Gynaecol. 2024, 132, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Lee, S.Y.; Hur, C.Y.; Lim, J.H. P-507 Prediction of clinical efficacy of PGT-A based on maternal age and embryo quality in patients with recurrent implantation failure (RIF) or recurrent pregnancy loss (RPL). Hum. Reprod. 2024, 39 (Suppl. S1), deae108.847. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, S.Y.; Hur, C.Y.; Lim, J.H.; Park, C.K. Clinical outcomes of preimplantation genetic testing for aneuploidy in high-risk patients: A retrospective cohort study. Clin. Exp. Reprod. Med. 2023, 51, 75. [Google Scholar] [CrossRef]
- Kornfield, M.S.; Parker, P.; Rubin, E.; Garg, B.; O’Leary, T.; Amato, P.; Lee, D.; Wu, D.; Krieg, S. Patients with Recurrent Pregnancy Loss Have Similar Embryonic Preimplantation Genetic Testing Aneuploidy Rates and In Vitro Fertilization Outcomes to Infertility Patients. FS Rep. 2022, 3, 342–348. [Google Scholar] [CrossRef]
- Liang, Z.; Wen, Q.; Li, J.; Zeng, D.; Huang, P. A systematic review and meta-analysis: Clinical outcomes of recurrent pregnancy failure resulting from preimplantation genetic testing for aneuploidy. Front. Endocrinol. 2023, 14, 1178294. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lan, X.; Lu, J.; Zhang, Q.; Zhou, T.; Ni, T.; Yan, J. Preimplantation genetic testing for aneuploidy could not improve cumulative live birth rate among 705 couples with unexplained recurrent implantation failure. Appl. Clin. Genet. 2024, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mei, Y.; Lin, Y.; Chen, Y.; Zheng, J.; Ke, X.; Liang, X.; Wang, F. Preimplantation genetic testing for aneuploidy optimizes reproductive outcomes in recurrent reproductive failure: A systematic review. Front. Med. 2024, 11, 1233962. [Google Scholar] [CrossRef]
- Mantravadi, K.; Mathew, S.; Soorve, S.; Rao, D.G.; Karunakaran, S. Does pre-implantation genetic testing for aneuploidy optimise the reproductive outcomes in women with idiopathic recurrent pregnancy loss? Fertil. Steril. 2020, 114, e437. [Google Scholar] [CrossRef]
- Sarkar, P.; Jindal, S.; New, E.P.; Sprague, R.G.; Tanner, J.; Imudia, A.N. The role of preimplantation genetic testing for aneuploidy in a good prognosis IVF population across different age groups. Syst. Biol. Reprod. Med. 2021, 67, 366–373. [Google Scholar] [CrossRef]
- Orvieto, R. Does preimplantation genetic testing for aneuploidy really improve IVF outcomes in advanced maternal age patients without compromising cumulative live-birth rate? J. Assist. Reprod. Genet. 2020, 37, 159. [Google Scholar] [CrossRef]
- Kasaven, L.S.; Marcus, D.; Theodorou, E.; Jones, B.P.; Saso, S.; Naja, R.; Serhal, P.; Ben-Nagi, J. Systematic review and meta-analysis: Does pre-implantation genetic testing for aneuploidy at the blastocyst stage improve live birth rate? J. Assist. Reprod. Genet. 2023, 40, 2297–2316. [Google Scholar] [CrossRef]
- Giuliano, R.; Maione, A.; Vallefuoco, A.; Sorrentino, U.; Zuccarello, D. Preimplantation genetic testing for genetic diseases: Limits and review of current literature. Genes 2023, 14, 2095. [Google Scholar] [CrossRef]
- Kakourou, G.; Sofocleous, C.; Mamas, T.; Vrettou, C.; Traeger-Synodinos, J. The current clinical applications of preimplantation genetic testing (PGT): Acknowledging the limitations of biology and technology. Expert Rev. Mol. Diagn. 2024, 24, 767–775. [Google Scholar] [CrossRef]
- Morales, C. Current applications and controversies in preimplantation genetic testing for aneuploidies (PGT-A) in in vitro fertilization. Reprod. Sci. 2024, 31, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Viville, S.; Aboulghar, M. PGT-A: What’s it for, what’s wrong? J. Assist. Reprod. Genet. 2025, 42, 63–69. [Google Scholar] [CrossRef]
- Phillips, K.R.; Kuzma-Hunt, A.G.; Neal, M.S.; Lisle, C.; Sribalachandran, H.; Carter, R.F.; Amin, S.; Karnis, M.F.; Faghih, M. Temporal Evaluation of a Minimally Invasive Method of Preimplantation Genetic Testing for Aneuploidy (mi-PGT-A) in Human Embryos. Reprod. Med. 2024, 5, 97–112. [Google Scholar] [CrossRef]
- Huang, L.; Bogale, B.; Tang, Y.; Lu, S.; Xie, X.S.; Racowsky, C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc. Natl. Acad. Sci. USA 2019, 116, 14105–14112. [Google Scholar] [CrossRef]
- He, F.; Yao, Y.X.; Wang, J.; Zhao, D.M.; Wan, A.Q.; Ren, J.; Lei, X. Non-invasive chromosome screening for embryo preimplantation using cell-free DNA. Reprod. Dev. Med. 2022, 6, 113–120. [Google Scholar] [CrossRef]
- Del Collado, M.; Andrade, G.M.; Gonçalves, N.J.N.; Fortini, S.; Perecin, F.; Carriero, M.M. The embryo non-invasive pre-implantation diagnosis era: How far are we? Anim. Reprod. 2023, 20, e20230069. [Google Scholar] [CrossRef]
- Sialakouma, A.; Karakasiliotis, I.; Ntala, V.; Nikolettos, N.; Asimakopoulos, B. Embryonic cell-free DNA in spent culture medium: A non-invasive tool for aneuploidy screening of the corresponding embryos. In Vivo 2021, 35, 3449–3457. [Google Scholar] [CrossRef]
- Xie, P.; Zhang, S.; Gu, Y.; Jiang, B.; Hu, L.; Tan, Y.Q.; Yao, Y.; Tang, Y.; Wan, A.; Cai, S.; et al. Non-invasive preimplantation genetic testing for conventional IVF blastocysts. J. Transl. Med. 2022, 20, 396. [Google Scholar] [CrossRef]
- de Carvalho, B.R. Great Challenges Remain for niPGT-A Reliability. Rev. Bras. Ginecol. E Obs./RBGO Gynecol. Obstet. 2022, 44, 721–722. [Google Scholar] [CrossRef]
- Hu, Z.; Li, Y.; Chen, K.; Li, M.; Tian, M.; Xiang, L.; Wu, X.; Zeng, P.; Li, M.; Shao, J.; et al. The comparison of two whole-genome amplification approaches for noninvasive preimplantation genetic testing (ni-PGT) and the application scenario of ni-PGT during the fresh cycle. J. Mol. Diagn. 2023, 25, 945–956. [Google Scholar] [CrossRef] [PubMed]
- Karami, N.; Iravani, F.; Bavarsad, S.B.; Asadollahi, S.; Hoseini, S.M.; Montazeri, F.; Kalantar, S.M. Comparing the advantages, disadvantages and diagnostic power of different non-invasive pre-implantation genetic testing: A literature review. Int. J. Reprod. Biomed. 2024, 22, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Sousa, L.N.; Monteiro, P.B. Non-invasive preimplantation genetic testing: A literature review. JBRA Assist. Reprod. 2022, 26, 554. [Google Scholar]
- Rubio, C.; Navarro-Sánchez, L.; García-Pascual, C.M. Embryo Cell-Free DNA in the Culture Medium and Its Potential for Non-Invasive Aneuploidy Testing. In Handbook of Genetic Diagnostic Technologies in Reproductive Medicin; CRC Press: Boca Raton, FL, USA, 2022; pp. 160–172. [Google Scholar]
- Vendrell, X.; Escribà, M.J. Non-invasive PGT. Med. Reprod. Y Embriol. Clínica 2021, 8, 100101. [Google Scholar] [CrossRef]
- Sakkas, D.; Navarro-Sánchez, L.; Ardestani, G.; Barroso, G.; Bisioli, C.; Boynukalin, K.; Cimadomo, D.; Frantz, N.; Kopcow, L.; Andrade, G.M.; et al. The impact of implementing a non-invasive preimplantation genetic testing for aneuploidies (niPGT-A) embryo culture protocol on embryo viability and clinical outcomes. Hum. Reprod. 2024, 39, 1952–1959. [Google Scholar] [CrossRef]
- Volovsky, M.; Scott, R.T., Jr.; Seli, E. Non-invasive preimplantation genetic testing for aneuploidy: Is the promise real? Hum. Reprod. 2024, 39, 1899–1908. [Google Scholar] [CrossRef]
- Shitara, A.; Takahashi, K.; Goto, M.; Takahashi, H.; Iwasawa, T.; Onodera, Y.; Makino, K.; Miura, H.; Shirasawa, H.; Sato, W.; et al. Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy. PLoS ONE 2021, 16, e0246438. [Google Scholar] [CrossRef]
- Rogers, A.; Menezes, M.; Kane, S.C.; Zander-Fox, D.; Hardy, T. Preimplantation genetic testing for monogenic conditions: Is cell-free DNA testing the next step? Mol. Diagn. Ther. 2021, 25, 683–690. [Google Scholar] [CrossRef]
- Xu, J.; Fang, R.; Chen, L.; Chen, D.; Xiao, J.P.; Yang, W.; Lu, S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, 11907–11912. [Google Scholar] [CrossRef]
- Rubio, C.; Navarro-Sanchez, L.; Garcia-Pascual, C.M.; Ocali, O.; Cimadomo, D.; Venier, W.; Barroso, G.; Kopcow, L.; Bahceci, M.; Kulmann, M.L.R.; et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am. J. Obstet. Gynecol. 2020, 223, 751.e1-751.e13. [Google Scholar] [CrossRef]
- Huang, L.; Bogale, B.; Tang, Y.; Lu, S.; Xie, X.S.; Racowsky, C. Noninvasive preimplantation genetic testing for aneuploidy: Validation of a targeted next-generation sequencing-based method. Hum. Reprod. 2019, 34, 281–288. [Google Scholar]
- Hanson, B.M.; Tao, X.; Hong, K.H.; Comito, C.E.; Pangasnan, R.; Seli, E.; Jalas, C.; Scott, R.T., Jr. Noninvasive preimplantation genetic testing for aneuploidy exhibits high rates of deoxyribonucleic acid amplification failure and poor correlation with results obtained using trophectoderm biopsy. Fertil. Steril. 2021, 115, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Luo, X.; Wu, R.; Qiu, L.; Lin, S.; Huang, X.; Wu, J. Evaluation of non-invasive gene detection in preimplantation embryos: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2023, 40, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
- Li Piani, L.; Petrone, P.; Brutto, M.; De Vos, A.; Van Der Kelen, A.; Vaiarelli, A.; Rienzi, L.; Conforti, A.; Cimadomo, D.; Verpoest, W. A systematic review and meta-analysis of double trophectoderm biopsy and/or cryopreservation in PGT: Balancing the need for a diagnosis against the risk of harm. Hum. Reprod. Update 2025, 31, 102–115. [Google Scholar] [CrossRef]
- Jia, Y.; Ai, Z.; Zhu, X.; Che, Z.; Pratikshya, A.; Tang, S.; Zhang, Q. Analysis of predictors of clinical pregnancy and live birth in patients with RIF treated with IVF-ET technology: A cohort study based on a propensity score approach. Front. Med. 2024, 11, 1348733. [Google Scholar] [CrossRef]
- Li, X.; Hao, Y.; Chen, D.; Ji, D.; Zhu, W.; Zhu, X.; Wei, Z.; Cao, Y.; Zhang, Z.; Zhou, P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: A pilot study. Hum. Reprod. 2021, 36, 2020–2034. [Google Scholar] [CrossRef] [PubMed]
- Rubio, C.; Racowsky, C.; Barad, D.H.; Scott, R.T.; Simon, C. Noninvasive preimplantation genetic testing for aneuploidy in spent culture medium as a substitute for trophectoderm biopsy. Fertil. Steril. 2021, 115, 841–849. [Google Scholar] [CrossRef]
- Leaver, M.; Wells, D. Non-invasive preimplantation genetic testing (niPGT): The next revolution in reproductive genetics? Hum. Reprod. Update 2020, 26, 16–42. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Qian, Y.; Zhang, D. Noninvasive preimplantation genetic testing in assisted reproductive technology: Current state and future perspectives. J. Genet. Genom. 2020, 47, 723–726. [Google Scholar] [CrossRef]
- Girardi, G.; Bremer, A.A. Advancing research on recurrent pregnancy loss: Overcoming obstacles and opportunities for translation. Am. J. Reprod. Immunol. 2022, 87, e13508. [Google Scholar] [CrossRef]
- ESHRE Add-ons Working Group; Lundin, K.; Bentzen, J.G.; Bozdag, G.; Ebner, T.; Harper, J.; Le Clef, N.; Moffett, A.; Norcross, S.; Polyzos, N.P.; et al. Good practice recommendations on add-ons in reproductive medicine. Hum Reprod. 2023, 38, 2062–2104. [Google Scholar] [CrossRef]
- Oh, H.S.; Jang, J.M.; Yoon, H.J.; Choo, C.W.; Lim, K.S.; Lim, J.H.; Cheon, Y.P. The kinetics of nucleolar precursor bodies clustering at the pronuclei interface: Positive correlations with the morphokinetic characteristics of cleaving embryos and euploidy in preimplantation genetic testing programs. Korean J. Fertil. Steril. 2024, 52, 150–156. [Google Scholar] [CrossRef]
- Stankewicz, T. Optimizing IVF by Controlling for both Embryonic Aneuploidy and Endometrial Receptivity Using Genetic Testing; University of Kent: Canterbury, UK, 2021. [Google Scholar]
- Ying, L.I. Characterizing the SPECTRUM of Genome-Wide Chromosomal Abnormalities in Early Pregnancy Loss by Lowpass Genome Sequencing. Doctoral Dissertation, The Chinese University of Hong Kong, Hong Kong, 2022. [Google Scholar]
- Peng, L.; Yang, W.; Deng, X.; Bao, S. Research progress on ANXA5 in recurrent pregnancy loss. J. Reprod. Immunol. 2022, 153, 103679. [Google Scholar] [CrossRef] [PubMed]
Aspect | Recurrent Pregnancy Loss (RPL) | Recurrent Implantation Failure (RIF) |
---|---|---|
Definition | Refers to 2 two or more consecutive pregnancy losses before 20 weeks of gestation. Some guidelines, such as ESHRE, define it as 3 or more losses [1,2,12]. | Lack of universal consensus; typically defined as ≥3 failed IVF cycles with high-quality embryo transfers [13,14]. |
Incidence | Affects 1–5% of reproductive-aged women [2,15]. | Affects 10–15% of IVF patients [13,16]. Incidence is rising for both conditions due to delayed childbearing and increased ART use [15,17]. |
Common Etiologies | ||
Anatomic | Uterine anomalies such as a septate uterus and adhesions account for 10–15% of cases [13,18]. | Endometrial polyps and submucosal fibroids disrupt implantation [14,15]. |
Endocrine | Thyroid dysfunction (TSH > 2.5 mIU/L), diabetes, and prolactinemia contribute to 17–25% of cases [13,19]. | Luteal phase deficiency and polycystic ovary syndrome (PCOS) are key contributors [20,21]. |
Immunological | • Dysregulated uterine NK (uNK) cells, aberrant cytokine profiles (e.g., increased IFN-γ, decreased IL-10), and elevated uNK cytotoxicity [19,22,23,24]. • Autoimmunity: Antiphospholipid syndrome (APS) causes 15% of cases via thrombotic placental injury [7,25,26]. • Alloimmune rejection: Maternal-fetal HLA compatibility (e.g., shared paternal HLA-C alleles) and Treg deficiencies disrupt tolerance [18,27,28,29]. | • Dysregulated uNK cells and aberrant cytokine profiles are also implicated [19,22,23,24]. • Endometrial inflammation, characterized by overexpression of TNF-α and IL-6, is associated with RIF [14,30]. |
Thrombophilic | • Heritable: Factor V Leiden and prothrombin mutation increase miscarriage risk 3–5 times [26,29]. • Acquired: Anti-β2-glycoprotein antibodies cause placental infarction [25,26]. | (Thrombophilic factors are more directly linked to post-implantation loss in RPL, but may contribute to the implantation environment). |
Genetic | • Parental: Karyotype abnormalities account for 2–5% of RPL [31,32]. • Embryonic: Aneuploidy drives >50% of miscarriages, which worsens with advancing maternal age [31,32]. | Embryonic aneuploidy is also a significant factor; It is the main cause. |
Type of Chromosomal Abnormality | Definition | Clinical Impact/Prevalence | Key References |
---|---|---|---|
Whole-Chromosome Aneuploidy | The gain (trisomy—Trisomy 16) or loss (monosomy—Monosomy X) of entire chromosomes. | Responsible for more than 90% of embryonic losses. | [35,36] |
Polyploidy | The presence of extra full sets of chromosomes (e.g., triploidy—an equivalent of 69 chromosomes). | A distinct category of numerical abnormality often leading to early miscarriage. | - |
Segmental Aneuploidy | Partial deletions or duplications of chromosomal segments (e.g., 22q11.2 microdeletion). | Implicated in 5–10% of miscarriages. | [4,37] |
Complex Aneuploidy | Multiple chromosomal errors within a single embryo. | More prevalent in advanced maternal age. | [35,38] |
Mosaicism | The presence of two or more cell lines with different chromosomal complements within the same embryo. | Clinical impact varies significantly based on the type and proportion of abnormal cells. However, it is a major challenge for diagnostic accuracy. | [4,39,40] |
General Context | Origin: Errors during meiosis (gamete formation) or mitosis (early embryonic cell division). Overall Effect: Disrupts normal embryonic development, leading to implantation failure or early miscarriage. Risk Factor: The risk increases exponentially with advancing maternal age due to an age-related decline in oocyte quality and chromosomal segregation fidelity. | [4,35,36,38,40,41,42,43,44,45,46] |
Strategy | Method/Principle | Key Benefits/Reported Accuracy | Major Limitations | Key References |
---|---|---|---|---|
Morphokinetic Grading | Assessment of blastocyst morphology (e.g., Gardner’s criteria) and dynamic development via time-lapse imaging (TLI). | Non-invasive. Serves as the foundational assessment in IVF. ~65% accuracy in predicting euploidy. | Poor correlation with chromosomal status, that is, high-grade morphology embryos can be aneuploid and vice versa. Lacks sufficient sensitivity and specificity. | [4,35,40,43,44,48,49] |
Invasive PGT-A (Gold Standard) | Trophectoderm (TE) biopsy (5–10 cells) on Day 5/6, followed by genetic analysis (e.g., Next-Generation Sequencing—NGS). | Direct assessment of chromosomal status. Increases live birth rate (LBR) per transfer by 20–30% in RIF/RPL. Reduces miscarriage rates per transfer. | Invasive; risk of embryo damage. Diagnostic errors due to mosaicism (false positives/negatives). High cost, logistical complexity, and ethical concerns over discarding embryos. | [3,4,6,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57] |
Non-invasive PGT-A (niPGT-A) (Investigational) | Analysis of cell-free DNA (cfDNA) released into spent blastocyst culture medium (SCM). | Completely non-invasive—preserves embryo integrity. High patient acceptability. Potential for wider access. 70–90% concordance with TE biopsy in studies. | Inconsistent accuracy—variable sensitivity (70–85%) and specificity (88–92%). High rate of amplification failure (10–50%). Vulnerable to maternal DNA contamination and low DNA yield. Not yet validated for RPL/RIF. | [9,11,42,58,59,60,61,62,63,64,65,66,67,68,69,70] |
Domain | Standardization Requirements |
Culture conditions | Media type/volume, change intervals, incubation duration [2,55] |
Sample handling | SCM collection timing, storage, contamination controls [55] |
Analytical methods | WGA kits, sequencing depth, bioinformatics [2,55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mrugacz, G.; Mospinek, A.; Głowacka, J.; Sprawski, O.; Kawałek, L.; Gąsior, W.; Machałowska, J.; Sidorova, Y.; Borecka, P.; Bojanowska, A.; et al. Noninvasive Preimplantation Genetic Testing in Recurrent Pregnancy Loss and Implantation Failure: Breakthrough or Overpromise? Cells 2025, 14, 1591. https://doi.org/10.3390/cells14201591
Mrugacz G, Mospinek A, Głowacka J, Sprawski O, Kawałek L, Gąsior W, Machałowska J, Sidorova Y, Borecka P, Bojanowska A, et al. Noninvasive Preimplantation Genetic Testing in Recurrent Pregnancy Loss and Implantation Failure: Breakthrough or Overpromise? Cells. 2025; 14(20):1591. https://doi.org/10.3390/cells14201591
Chicago/Turabian StyleMrugacz, Grzegorz, Aleksandra Mospinek, Joanna Głowacka, Oskar Sprawski, Lidia Kawałek, Wiktoria Gąsior, Julita Machałowska, Yekaterina Sidorova, Patrycja Borecka, Aleksandra Bojanowska, and et al. 2025. "Noninvasive Preimplantation Genetic Testing in Recurrent Pregnancy Loss and Implantation Failure: Breakthrough or Overpromise?" Cells 14, no. 20: 1591. https://doi.org/10.3390/cells14201591
APA StyleMrugacz, G., Mospinek, A., Głowacka, J., Sprawski, O., Kawałek, L., Gąsior, W., Machałowska, J., Sidorova, Y., Borecka, P., Bojanowska, A., & Szczepańska, W. (2025). Noninvasive Preimplantation Genetic Testing in Recurrent Pregnancy Loss and Implantation Failure: Breakthrough or Overpromise? Cells, 14(20), 1591. https://doi.org/10.3390/cells14201591