Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves’ Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Human Blood Samples
2.2. Single-Cell Library Preparation
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Single-Cell Gene Expression Differences Between Turner Syndrome and Healthy Female
3.3. Single-Gene Expression Differences Between Turner Syndrome and a Female with Graves’ Disease
3.4. Differentially Expressed Genes in Turner Syndrome Compared with Healthy Female and Graves’ Disease Female
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zenaty, D.; Laurent, M.; Carel, J.C.; Léger, J. Turner Syndrome: What’s new in medical care? Arch. Pediatr. 2011, 18, 1343–1347. [Google Scholar]
- Park, S.Y.; Kim, S.J.; Lee, M.; Lee, H.I.; Kwon, A.; Suh, J.; Song, K.; Chae, H.W.; Joo, B.; Kim, H.S. Neurocognitive and psychosocial profiles of children with Turner syndrome. Ann. Pediatr. Endocrinol. Metab. 2023, 28, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Berglund, A.; Viuff, M.H.; Skakkebaek, A.; Chang, S.; Stochholm, K.; Gravholt, C.H. Changes in the cohort composition of turner syndrome and severe non-diagnosis of Klinefelter, 47,XXX and 47,XYY syndrome: A nationwide cohort study. Orphanet J. Rare Dis. 2019, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.E.; Park, S.H.; Han, K.; Cho, W.K.; Suh, B.K.; Park, Y.G. Population Prevalence, Cancer Risk, and Mortality Risk of Turner Syndrome in South Korean Women Based on National Health Insurance Service Data. Yonsei Med. J. 2022, 63, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Nava, F.; Lanes, R. Epigenetics in Turner syndrome. Clin. Epigenet. 2018, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Ogata, T.; Matsuo, N. Turner syndrome and female sex chromosome aberrations: Deduction of the principal factors involved in the development of clinical features. Hum. Genet. 1995, 95, 607–629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Hong, D.; Ma, S.; Ward, T.; Ho, M.; Pattni, R.; Duren, Z.; Stankov, A.; Bade Shrestha, S.; Hallmayer, J.; et al. Integrated functional genomic analyses of Klinefelter and Turner syndromes reveal global network effects of altered X chromosome dosage. Proc. Natl. Acad. Sci. USA 2020, 117, 4864–4873. [Google Scholar] [CrossRef]
- Olson, L.E.; Richtsmeier, J.T.; Leszl, J.; Reeves, R.H. A chromosome 21 critical region does not cause specific Down syndrome phenotypes. Science 2004, 306, 687–690. [Google Scholar] [CrossRef]
- Ngo, S.T.; Steyn, F.J.; McCombe, P.A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 2014, 35, 347–369. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Lijuan, Y.; Yinhang, W.; Yin, J.; Jiamin, X.; Wei, W.; Yuefen, P.; Shuwen, H. Screening and analysis of RNAs associated with activated memory CD4 and CD8 T cells in liver cancer. World, J. Surg. Oncol. 2022, 20, 2. [Google Scholar] [CrossRef]
- Stassi, G.; De Maria, R. Autoimmune thyroid disease: New models of cell death in autoimmunity. Nat. Rev. Immunol. 2002, 2, 195–204. [Google Scholar] [CrossRef]
- Tomer, Y. Mechanisms of autoimmune thyroid diseases: From genetics to epigenetics. Annu. Rev. Pathol. 2014, 9, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Schurz, H.; Salie, M.; Tromp, G.; Hoal, E.G.; Kinnear, C.J.; Möller, M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum. Genom. 2019, 13, 2. [Google Scholar] [CrossRef]
- O’Garra, A.; Gabrysova, L. Transcription Factors Directing Th2 Differentiation: Gata-3 Plays a Dominant Role. J. Immunol. 2016, 196, 4423–4425. [Google Scholar] [CrossRef]
- Janyga, S.; Marek, B.; Kajdaniuk, D.; Ogrodowczyk-Bobik, M.; Urbanek, A.; Buldak, L. CD4+ cells in autoimmune thyroid disease. Endokrynol. Pol. 2021, 72, 572–583. [Google Scholar] [CrossRef]
- Libert, C.; Dejager, L.; Pinheiro, I. The X chromosome in immune functions: When a chromosome makes the difference. Nat. Rev. Immunol. 2010, 10, 594–604. [Google Scholar] [CrossRef]
- Zhao, S.X.; Xue, L.Q.; Liu, W.; Gu, Z.H.; Pan, C.M.; Yang, S.Y.; Zhan, M.; Wang, H.N.; Liang, J.; Gao, G.Q.; et al. Robust evidence for five new Graves’ disease risk loci from a staged genome-wide association analysis. Hum. Mol. Genet. 2013, 22, 3347–3362. [Google Scholar] [CrossRef] [PubMed]
- Mortensen, K.H.; Cleemann, L.; Hjerrild, B.E.; Nexo, E.; Locht, H.; Jeppesen, E.M.; Gravholt, C.H. Increased prevalence of autoimmunity in Turner syndrome--influence of age. Clin. Exp. Immunol. 2009, 156, 205–210. [Google Scholar] [CrossRef]
- Radetti, G.; Mazzanti, L.; Paganini, C.; Bernasconi, S.; Russo, G.; Rigon, F.; Cacciari, E. Frequency, clinical and laboratory features of thyroiditis in girls with Turner’s syndrome. The Italian Study Group for Turner’s Syndrome. Acta Paediatr. 1995, 84, 909–912. [Google Scholar] [CrossRef]
- Trovo de Marqui, A.B. Turner syndrome and genetic polymorphism: A systematic review. Rev. Paul. Pediatr. 2015, 33, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Gravholt, C.H.; Andersen, N.H.; Christin-Maitre, S.; Davis, S.M.; Duijnhouwer, A.; Gawlik, A.; Maciel-Guerra, A.T.; Gutmark-Little, I.; Fleischer, K.; Hong, D.; et al. Clinical practice guidelines for the care of girls and women with Turner syndrome. Eur. J. Endocrinol. 2024, 190, G53–G151. [Google Scholar]
- Cacciari, E.; Masi, M.; Fantini, M.P.; Licastro, F.; Cicognani, A.; Pirazzoli, P.; Villa, M.P.; Specchia, F.; Forabosco, A.; Franceschi, C.; et al. Serum immunoglobulins and lymphocyte subpopulations derangement in Turner’s syndrome. J. Immunogenet. 1981, 8, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Thrasher, B.J.; Hong, L.K.; Whitmire, J.K.; Su, M.A. Epigenetic Dysfunction in Turner Syndrome Immune Cells. Curr. Allergy Asthma Rep. 2016, 16, 36. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, I.; Lleo, A.; Gershwin, M.E.; Invernizzi, P. The X chromosome and immune associated genes. J. Autoimmun. 2012, 38, J187–J192. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K. Lifelong medical challenges and immunogenetics of turner syndrome. Clin. Exp. Pediatr. 2024, 67, 560. [Google Scholar] [CrossRef] [PubMed]
- Fish, E.N. The X-files in immunity: Sex-based differences predispose immune responses. Nat. Rev. Immunol. 2008, 8, 737–744. [Google Scholar] [CrossRef]
- Dai, R.; Ahmed, S.A. Sexual dimorphism of miRNA expression: A new perspective in understanding the sex bias of autoimmune diseases. Ther. Clin. Risk Manag. 2014, 10, 151–163. [Google Scholar]
- Hyun, Y.S.; Lee, Y.H.; Jo, H.A.; Baek, I.C.; Kim, S.M.; Sohn, H.J.; Kim, T.G. Comprehensive Analysis of CD4(+) T Cell Response Cross-Reactive to SARS-CoV-2 Antigens at the Single Allele Level of HLA Class II. Front. Immunol. 2021, 12, 774491. [Google Scholar] [CrossRef]
- Arsenio, J. Single-Cell Transcriptomics of Immune Cells: Cell Isolation and cDNA Library Generation for scRNA-Seq. Methods Mol. Biol. 2020, 2184, 1–18. [Google Scholar]
- Wu, S.Z.; Al-Eryani, G.; Roden, D.L.; Junankar, S.; Harvey, K.; Andersson, A.; Thennavan, A.; Wang, C.; Torpy, J.R.; Bartonicek, N.; et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 2021, 53, 1334–1347. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Z.; Chen, W.; Zhao, Y.; Farmer, A.; Tran, B.; Furtak, V.; Moos, M., Jr.; Xiao, W.; Wang, C. A multi-center cross-platform single-cell RNA sequencing reference dataset. Sci. Data 2021, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Mallik, S.; Bhadra, T.; Zhao, Z. Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data. Front. Genet. 2022, 13, 828479. [Google Scholar] [CrossRef] [PubMed]
- Kanhere, A.; Hertweck, A.; Bhatia, U.; Gokmen, M.R.; Perucha, E.; Jackson, I.; Lord, G.M.; Jenner, R.G. T-bet and GATA3 orchestrate Th1 and Th2 differentiation through lineage-specific targeting of distal regulatory elements. Nat. Commun. 2012, 3, 1268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Li, H.; Zhi, H.; Zhai, X.; Ruan, W.; Zhang, S.; Xu, X.; Wu, H. Tongmai Zhuke decoction restrains the inflammatory reaction of macrophages for carotid artery atherosclerosis by up-regulating lincRNA-Cox2. Biotechnol. Genet. Eng. Rev. 2023, 40, 1758–1773. [Google Scholar] [CrossRef]
- Hao, Y.; Hao, S.; Andersen-Nissen, E.; Mauck, W.M., 3rd; Zheng, S.; Butler, A.; Lee, M.J.; Wilk, A.J.; Darby, C.; Zager, M.; et al. Integrated analysis of multimodal single-cell data. Cell 2021, 184, 3573–3587.e3529. [Google Scholar] [CrossRef] [PubMed]
- Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., 3rd; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive Integration of Single-Cell Data. Cell 2019, 177, 1888–1902.e1821. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Society. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Goeman, J.J.; Solari, A. Multiple hypothesis testing in genomics. Stat. Med. 2014, 33, 1946–1978. [Google Scholar] [CrossRef] [PubMed]
- Larizza, D.; Calcaterra, V.; Martinetti, M. Autoimmune stigmata in Turner syndrome: When lacks an X chromosome. J. Autoimmun. 2009, 33, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, H.; Zhu, W.; Xu, Y.; Wang, N.; Han, B.; Song, H.; Qiao, J. Bioinformatic Analysis Identifies Potential Key Genes in the Pathogenesis of Turner Syndrome. Front. Endocrinol. 2020, 11, 104. [Google Scholar] [CrossRef] [PubMed]
- Massingham, L.J.; Johnson, K.L.; Scholl, T.M.; Slonim, D.K.; Wick, H.C.; Bianchi, D.W. Amniotic fluid RNA gene expression profiling provides insights into the phenotype of Turner syndrome. Hum. Genet. 2014, 133, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Liu, Y.; Wang, X.; Yu, S.; Huang, H.; Shen, X.; Zhang, Q.; Hong, N.; Jin, W. Exploring the dynamics and influencing factors of CD4 T cell activation using single-cell RNA-seq. iScience 2023, 26, 107588. [Google Scholar] [CrossRef] [PubMed]
- Viuff, M.; Skakkebaek, A.; Nielsen, M.M.; Chang, S.; Gravholt, C.H. Epigenetics and genomics in Turner syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2019, 181, 68–75. [Google Scholar] [CrossRef]
- Trolle, C.; Nielsen, M.M.; Skakkebaek, A.; Lamy, P.; Vang, S.; Hedegaard, J.; Nordentoft, I.; Orntoft, T.F.; Pedersen, J.S.; Gravholt, C.H. Widespread DNA hypomethylation and differential gene expression in Turner syndrome. Sci. Rep. 2016, 6, 34220. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Trolle, C.; Vang, S.; Hornshoj, H.; Skakkebaek, A.; Hedegaard, J.; Nordentoft, I.; Pedersen, J.S.; Gravholt, C.H. Epigenetic and transcriptomic consequences of excess X-chromosome material in 47,XXX syndrome-A comparison with Turner syndrome and 46,XX females. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 279–293. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Ren, J.; Lohner, H.; Yakoumatos, L.; Liang, R.; Wang, H. SGK1 negatively regulates inflammatory immune responses and protects against alveolar bone loss through modulation of TRAF3 activity. J. Biol. Chem. 2022, 298, 102036. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.; Xue, H.; Jing, D.; Wang, Y.; Zhou, G.; Zhu, F. Role of Serum/Glucocorticoid-Regulated Kinase 1 (SGK1) in Immune and Inflammatory Diseases. Inflammation 2023, 46, 1612–1625. [Google Scholar] [CrossRef]
- Meixner, A.; Karreth, F.; Kenner, L.; Wagner, E.F. JunD regulates lymphocyte proliferation and T helper cell cytokine expression. EMBO J. 2004, 23, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, D.; Hu, J.; Xu, S.; Xu, C.; Shen, Y. Allograft inflammatory factor 1 is a potential diagnostic, immunological, and prognostic biomarker in pan-cancer. Aging 2023, 15, 2582–2609. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Takamori, Y.; Suzuki, K.; Nagasawa, M.; Takano, S.; Kasahara, Y.; Nakamura, Y.; Kondo, S.; Sugamura, K.; Nakamura, M.; et al. Granulysin in human serum as a marker of cell-mediated immunity. Eur. J. Immunol. 2003, 33, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Tewary, P.; Yang, D.; de la Rosa, G.; Li, Y.; Finn, M.W.; Krensky, A.M.; Clayberger, C.; Oppenheim, J.J. Granulysin activates antigen-presenting cells through TLR4 and acts as an immune alarmin. Blood 2010, 116, 3465–3474. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Wang, X.M.; Xing, X.; Xu, Z.; Zhang, C.; Song, J.W.; Fan, X.; Xia, P.; Fu, J.L.; Wang, S.Y.; et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. 2020, 21, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Duquette, D.; Harmon, C.; Zaborowski, A.; Michelet, X.; O’Farrelly, C.; Winter, D.; Koay, H.F.; Lynch, L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. J. Immunol. 2023, 211, 633–647. [Google Scholar] [CrossRef]
- Shimizu, K.; Yamasaki, S.; Sakurai, M.; Yumoto, N.; Ikeda, M.; Mishima-Tsumagari, C.; Kukimoto-Niino, M.; Watanabe, T.; Kawamura, M.; Shirouzu, M.; et al. Granzyme A Stimulates pDCs to Promote Adaptive Immunity via Induction of Type I IFN. Front. Immunol. 2019, 10, 1450. [Google Scholar] [CrossRef] [PubMed]
- Madera-Salcedo, I.K.; Sánchez-Hernández, B.E.; Svyryd, Y.; squivel-Velázquez, M.; Rodríguez-Rodríguez, N.; Trejo-Zambrano, M.I.; García-González, H.B.; Hernández-Molina, G.; Mutchinick, O.M.; Alcocer-Varela, J.; et al. PPP2R2B hypermethylation causes acquired apoptosis deficiency in systemic autoimmune diseases. JCI Insight 2019, 5, e126457. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wang, X.; Yang, Q. PPP2R2B downregulation is associated with immune evasion and predicts poor clinical outcomes in triple-negative breast cancer. Cancer Cell Int. 2021, 21, 13. [Google Scholar] [CrossRef]
- Lapteva, N.; Huang, X.F. CCL5 as an adjuvant for cancer immunotherapy. Expert. Opin. Biol. Ther. 2010, 10, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Huffman, A.P.; Lin, J.H.; Kim, S.I.; Byrne, K.T.; Vonderheide, R.H. CCL5 mediates CD40-driven CD4+ T cell tumor infiltration and immunity. JCI Insight 2020, 5, e137263. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, B.D.; Krensky, A.M.; Nelson, P.J. Kinetics of transcription factors regulating the RANTES chemokine gene reveal a developmental switch in nuclear events during T-lymphocyte maturation. Mol. Cell Biol. 1996, 16, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-H.; Wang, W.-J.; Li, C.-F.; Ko, C.-Y.; Chou, Y.-H.; Chuu, C.-P.; Cheng, T.-L.; Wang, J.-M. The combination of the prodrugs perforin-CEBPD and perforin-granzyme B efficiently enhances the activation of caspase signaling and kills prostate cancer. Cell Death Dis. 2014, 5, e1220. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, A.J.; Garand, M.; Chaussabel, D.; Feng, C.G. Transcriptomic Profiling Identifies Neutrophil-Specific Upregulation of Cystatin F as a Marker of Acute Inflammation in Humans. Front. Immunol. 2021, 12, 634119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Liu, S.; Ao, W.; Lin, J.; Li, Z.; Wu, S.; Ye, H.; Han, X.; Li, D. An atlas of immune cell transcriptomes in human immunodeficiency virus-infected immunological non-responders identified marker genes that control viral replication. Chin. Med. J. 2023, 136, 2694–2705. [Google Scholar] [CrossRef]
- Zhang, P.; Cao, X.; Guan, M.; Li, D.; Xiang, H.; Peng, Q.; Zhou, Y.; Weng, C.; Fang, X.; Liu, X.; et al. CPNE8 Promotes Gastric Cancer Metastasis by Modulating Focal Adhesion Pathway and Tumor Microenvironment. Int. J. Biol. Sci. 2022, 18, 4932–4949. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhu, C.Y.; Bai, J.Y.; Xiao, F.; Tan, S.; Zhou, Q.; Zeng, L. Identification of feature genes and key biological pathways in immune-mediated necrotizing myopathy: High-throughput sequencing and bioinformatics analysis. Comput. Struct. Biotechnol. J. 2023, 21, 2228–2240. [Google Scholar] [CrossRef]
- Li, N.; Nakamura, K.; Jiang, Y.; Tsurui, H.; Matsuoka, S.; Abe, M.; Ohtsuji, M.; Nishimura, H.; Kato, K.; Kawai, T.; et al. Gain-of-function polymorphism in mouse and human Ltk: Implications for the pathogenesis of systemic lupus erythematosus. Hum. Mol. Genet. 2004, 13, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Cater, J.H.; Kumita, J.R.; Zeineddine Abdallah, R.; Zhao, G.; Bernardo-Gancedo, A.; Henry, A.; Winata, W.; Chi, M.; Grenyer, B.S.F.; Townsend, M.L.; et al. Human pregnancy zone protein stabilizes misfolded proteins including preeclampsia- and Alzheimer’s-associated amyloid beta peptide. Proc. Natl. Acad. Sci. USA 2019, 116, 6101–6110. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, G.; Kong, X. Prognostic Significance of Pregnancy Zone Protein and Its Correlation with Immune Infiltrates in Hepatocellular Carcinoma. Cancer Manag. Res. 2020, 12, 9883–9891. [Google Scholar] [CrossRef]
- Vandooren, J.; Itoh, Y. Alpha-2-Macroglobulin in Inflammation, Immunity and Infections. Front. Immunol. 2021, 12, 803244. [Google Scholar] [CrossRef]
- Huang, H.; Hara, A.; Homma, T.; Yonekawa, Y.; Ohgaki, H. Altered expression of immune defense genes in pilocytic astrocytomas. J. Neuropathol. Exp. Neurol. 2005, 64, 891–901. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.; Carissimo, A.; Panariello, F.; Grimaldi, A.; Bouché, V.; Gambardella, G.; Cacchiarelli, D. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview. Methods Mol. Biol. 2021, 2284, 343–365. [Google Scholar] [PubMed]
- Haque, A.; Engel, J.; Teichmann, S.A.; Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed]
TS | HF | GD | |
---|---|---|---|
Subjects | |||
Sex | F | F | F |
Anthropometric data at blood sampling | |||
Height (cm) | 143 | 163 | 162 |
Weight (kg) | 47 | 55 | 68 |
BMI (kg/m2) | 22.98 | 20.70 | 25.91 |
Age at enrollment (years) | 24 | 43 | 17 |
Age at diagnosis (years) | 5 | N/A | 16 |
Goiter | negative | negative | positive |
Free T4 (fT4) at diagnosis, 0.85–1.86 ng/dL | WNL (T4) | WNL | 6.38 |
TSH at diagnosis, 0.17–4.05 mIU/L | WNL | WNL | <0.01 |
TSHR Ab positive at diagnosis | N/A | negative | positive |
Clinically evident TAO (NOSPECS class II or higher), n (%) | negative | negative | positive |
Clusters of cells | |||
Cluster total | 1913 | 1018 | 1761 |
Th2 GATA3 positive | 493 | 334 | 441 |
Estimated number of cells * | 2150 | 1031 | 1909 |
Gene Symbol | Log2 Fold Change (TS/HF) | p-Value | Gene Title | Gene Location | Ensembl * |
---|---|---|---|---|---|
XIST | −10.572 | 3.03 × 10−106 | X inactive specific transcript | Xq13.2 | ENSG00000229807 |
OVCH1-AS1 | 7.379 | 1.08 × 10−35 | OVCH1 antisense RNA 1 | 12p11.22 | ENSG00000257599 |
SLC35F1 | 4.377 | 1.25 × 10−33 | Solute carrier family 35, member F1 | 6q22.2 | ENSG00000196376 |
AL592183.1 | 6.288 | 1.57 × 10−33 | - | - | ENSG00000273748 |
FMN1 | 4.794 | 2.26 × 10−32 | Formin 1 | 15q13.3 | ENSG00000248905 |
AC068279.2 | −8.045 | 2.77 × 10−31 | - | 2p11.2 | ENSG00000287763 |
MYOM2 | 4.921 | 2.01 × 10−27 | Myomesin 2 | 8p23.3 | ENSG00000036448 |
CALHM6 | −5.436 | 7.25 × 10−24 | Family with sequence similarity 26, member F | 6q22.1 | ENSG00000188820 |
MTRNR2L1 | 3.478 | 1.78 × 10−22 | MT-RNR2-like 1 | 17p11.2 | ENSG00000256618 |
GZMH | 5.995 | 3.83 × 10−22 | Granzyme H | 14q12 | ENSG00000100450 |
GNLY | 6.773 | 4.23 × 10−21 | Granulysin | 2p11.2 | ENSG00000115523 |
SHROOM1 | −3.373 | 4.42 × 10−17 | Shroom family member 1 | 5q31.1 | ENSG00000164403 |
PPP1R2C | −7.610 | 2.88 × 10−16 | PPP1R2 family member C | Xp11.3 | ENSG00000102055 |
C1orf21 | 5.161 | 2.68 × 10−15 | Chromosome 1 open reading frame 21 | 1q25.3 | ENSG00000116667 |
ABO | 6.364 | 4.75 × 10−15 | ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase | 9q34.1 | ENSG00000175164 |
OVCH1 | 5.050 | 1.54 × 10−14 | Ovochymase 1 | 12p11.22 | ENSG00000187950 |
FGFBP2 | 5.269 | 2.26 × 10−14 | Fibroblast growth factor binding protein 2 | 4p15.32 | ENSG00000137441 |
NKG7 | 3.470 | 2.28 × 10−14 | Natural killer cell group 7 sequence | 19q13.41 | ENSG00000105374 |
TSIX | −5.571 | 2.28 × 10−14 | TSIX transcript, XIST antisense RNA | Xq13.2 | ENSG00000270641 |
PLEK | 3.875 | 1.51 × 10−13 | Pleckstrin | 2p14 | ENSG00000115956 |
C2orf74 | 2.885 | 1.08 × 10−12 | Chromosome 2 open reading frame 74 | 2p15 | ENSG00000237651 |
AL672277.1 | −6.101 | 1.20 × 10−11 | - | Xp22.33 | ENSG00000237531 |
ADTRP | −2.401 | 4.76 × 10−11 | Androgen-dependent TFPI-regulating protein | 6p24.1 | ENSG00000111863 |
LINC02254 | 3.218 | 6.27 × 10−11 | - | 15q26.2 | ENSG00000259664 |
SEMA4A | −2.710 | 8.19 × 10−11 | Semaphorin 4A | 1q22 | ENSG00000196189 |
LINC01952 | −2.431 | 1.47 × 10−10 | - | 7p13 | ENSG00000234183 |
AC004854.2 | −2.414 | 1.62 × 10−10 | - | 7p13 | ENSG00000272768 |
H2AFX | −1.904 | 2.24 × 10−10 | H2A histone family, member X | 11q23.3 | ENSG00000188486 |
FHIT | −1.850 | 1.96 × 10−9 | Fragile histidine triad | 3p14.2 | ENSG00000189283 |
DUSP4 | −2.408 | 2.22 × 10−9 | Dual specificity phosphatase 4 | 8p12 | ENSG00000120875 |
Gene Symbol | Log2 Fold Change (TS/HF) | p-Value | Gene Title | Gene Location | Ensembl * |
---|---|---|---|---|---|
XIST | −8.682 | 2.00 × 10−50 | X inactive specific transcript | Xq13.2 | ENSG00000229807 |
SLC35F1 | 4.138 | 4.76 × 10−20 | Solute carrier family 35, member F1 | 6q22.2 | ENSG00000196376 |
FMN1 | 4.792 | 4.76 × 10−20 | Formin 1 | 15q13.3 | ENSG00000248905 |
OVCH1-AS1 | 7.455 | 1.27 × 10−17 | OVCH1 antisense RNA 1 | 12p11.22 | ENSG00000257599 |
MYOM2 | 5.568 | 3.23 × 10−16 | Myomesin 2 | 8p23.3 | ENSG00000036448 |
AL592183.1 | 5.178 | 1.10 × 10−15 | - | - | ENSG00000273748 |
MTRNR2L1 | 3.067 | 1.81 × 10−11 | MT-RNR2-like 1 | 17p11.2 | ENSG00000256618 |
AC068279.2 | −6.160 | 6.34 × 10−9 | - | - | ENSG00000287763 |
AC004854.2 | −2.826 | 1.56 × 10−7 | - | - | ENSG00000272768 |
P2RY8 | −1.898 | 1.85 × 10−7 | Purinergic receptor P2Y, G-protein coupled, 8 | Xp22.33 | ENSG00000182162 |
CALHM6 | −4.979 | 1.08 × 10−6 | Calcium homeostasis modulator family member 6 | 6q22.1 | ENSG00000188820 |
MIDN | −1.773 | 6.26 × 10−6 | Midnolin | 19p13.3 | ENSG00000167470 |
H2AFX | −1.931 | 7.41 × 10−6 | H2A histone family, member X | 11q23.3 | ENSG00000188486 |
AC008569.1 | −1.797 | 2.83 × 10−5 | - | - | ENSG00000267379 |
PPP1R2C | −6.345 | 2.83 × 10−5 | Protein phosphatase 1, regulatory (inhibitor) subunit 2 pseudogene 9 | Xp11.3 | ENSG00000102055 |
CRYBB2 | −4.295 | 2.92 × 10−5 | Crystallin beta B2 | 22q11.23 | ENSG00000244752 |
SHROOM1 | −3.324 | 3.37 × 10−5 | Shroom family member 1 | 5q31.1 | ENSG00000164403 |
SEMA4A | −2.882 | 4.87 × 10−5 | Semaphorin 4A | 1q22 | ENSG00000196189 |
RGCC | −1.543 | 6.60 × 10−5 | Regulator of cell cycle | 13q14.11 | ENSG00000102760 |
ABO | 4.870 | 7.35 × 10−5 | ABO, alpha 1-3-N-acetylgalactosaminyltransferase and alpha 1-3-galactosyltransferase | 9q34.2 | ENSG00000175164 |
C2orf74 | 2.624 | 9.18 × 10−5 | Chromosome 2 open reading frame 74 | 2p15 | ENSG00000237651 |
HLA-DRB5 | −2.902 | 1.75 × 10−4 | Major histocompatibility complex, class II, DR beta 5 | 6p21.32 | ENSG00000198502 |
ADTRP | −2.487 | 2.05 × 10−4 | Androgen-dependent TFPI-regulating protein | 6p24.1 | ENSG00000111863 |
GADD45G | −2.232 | 2.18 × 10−4 | Growth arrest and DNA-damage-inducible, gamma | 9q22.2 | ENSG00000130222 |
GADD45B | −1.515 | 2.27 × 10−4 | Growth arrest and DNA-damage-inducible, beta | 19p13.3 | ENSG00000099860 |
CDKN1A | −1.819 | 2.29 × 10−4 | Cyclin-dependent kinase inhibitor 1A | 6p21.2 | ENSG00000124762 |
LINC02254 | 3.420 | 2.29 × 10−4 | - | 15q26.2 | ENSG00000259664 |
DUSP4 | −2.390 | 2.38 × 10−4 | Dual specificity phosphatase 4 | 8p12 | ENSG00000120875 |
DUSP2 | −1.494 | 3.94 × 10−4 | Dual specificity phosphatase 2 | 2q11.2 | ENSG00000158050 |
AP001160.1 | −1.902 | 4.38 × 10−4 | - | - | ENSG00000256690 |
Gene Symbol | Log2 Fold Change (TS/GD) | p-Value | Gene Title | Gene Location | Ensembl * |
---|---|---|---|---|---|
XIST | −10.871 | 3.82 × 10−94 | X inactive specific transcript | Xq13.2 | ENSG00000229807 |
AC105402.3 | −7.110 | 6.65 × 10−93 | - | 2q23.1 | ENSG00000231079 |
OVCH1-AS1 | 5.334 | 3.34 × 10−36 | OVCH1 antisense RNA 1 | 12p11.22 | ENSG00000257599 |
MYOM2 | 4.690 | 1.49 × 10−32 | Myomesin 2 | 8p23.3 | ENSG00000036448 |
UTS2 | 5.357 | 2.00 × 10−32 | Urotensin 2 | 1p36.23 | ENSG00000049247 |
HLA-DQB1 | 5.452 | 9.76 × 10−28 | HLA-DQB1 antisense RNA 1 | 6p21.32 | ENSG00000179344 |
CCR6 | 3.794 | 4.83 × 10−27 | Chemokine (C-C motif) receptor 6 | 6q27 | ENSG00000112486 |
PTGER2 | 3.658 | 5.00 × 10−25 | Prostaglandin E receptor 2 | 14q22.1 | ENSG00000125384 |
TSIX | −6.267 | 2.33 × 10−24 | TSIX transcript, XIST antisense RNA | Xq13.2 | ENSG00000270641 |
AIF1 | −3.035 | 6.13 × 10−23 | Allograft inflammatory factor 1 | 6p21.33 | ENSG00000204472 |
AL121935.1 | 3.828 | 6.51 × 10−22 | - | 6q27 | ENSG00000284825 |
NRCAM | −3.658 | 1.32 × 10−20 | Neuronal cell adhesion molecule | 7q31.1 | ENSG00000091129 |
ABO | 6.056 | 2.16 × 10−20 | ABO blood group (transferase A, alpha 1-3-N-acetylgalactosaminyltransferase; transferase B, alpha 1-3-galactosyltransferase) | 9p34.1 | ENSG00000175164 |
GZMK | 3.363 | 7.84 × 10−20 | Granzyme K | 5q11.2 | ENSG00000113088 |
ARHGEF10 | −3.967 | 7.84 × 10−20 | Rho guanine nucleotide exchange factor (GEF) 10 | 8p23.3 | ENSG00000104728 |
MYBL1 | 3.034 | 1.05 × 10−19 | MYB proto-oncogene like 1 | 8q13.1 | ENSG00000185697 |
CALHM6 | −4.911 | 1.15 × 10−19 | Calcium homeostasis modulator family member 6 | 6q22.1 | ENSG00000188820 |
RPS26 | 2.641 | 1.82 × 10−19 | Ribosomal protein S26 | 12q13.2 | ENSG00000197728 |
GREM2 | 5.193 | 3.48 × 10−19 | Gremlin 2, DAN family BMP antagonist | 1q43 | ENSG00000180875 |
NFKBID | −3.060 | 2.13 × 10−18 | Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, delta | 19q13.12 | ENSG00000167604 |
EGR1 | −3.644 | 1.70 × 10−17 | Early growth response 1 | 5q31.2 | ENSG00000120738 |
MIR155HG | −3.011 | 1.78 × 10−17 | MIR155 host gene | 21q21.3 | ENSG00000234883 |
RASGRP3 | −3.044 | 1.93 × 10−17 | RAS guanyl releasing protein 3 | 2p22.3 | ENSG00000152689 |
MTRNR2L1 | 2.647 | 3.63 × 10−17 | MT-RNR2-like 1 | 17p11.2 | ENSG00000256618 |
SGK1 | −2.563 | 9.54 × 10−17 | Serum/glucocorticoid regulated kinase 1 | 6q23.2 | ENSG00000118515 |
TAF4B | −2.547 | 1.56 × 10−16 | TATA-box binding protein associated factor 4b | 18q11.2 | ENSG00000141384 |
GNLY | 4.384 | 2.02 × 10−16 | Granulysin | 2p11.2 | ENSG00000115523 |
CFH | 3.345 | 2.33 × 10−16 | Complement factor H | 1q31.3 | ENSG00000000971 |
AC103591.3 | −2.648 | 9.13 × 10−16 | - | 1p31.1 | ENSG00000273338 |
HLA-DQA2 | 6.853 | 9.58 × 10−16 | Major histocompatibility complex, class II, DQ alpha 2 | 6p21.32 | ENSG00000237541 |
Gene Symbol | Log2 Fold Change (TS/GD) | p-Value | Gene Title | Gene Location | Ensembl * |
---|---|---|---|---|---|
AC105402.3 | −7.194 | 4.36 × 10−60 | - | - | ENSG00000231079 |
XIST | −9.058 | 1.75 × 10−47 | X inactive specific transcript | Xq13.2 | ENSG00000229807 |
MYOM2 | 5.730 | 1.16 × 10−19 | Myomesin 2 | 8p23.3 | ENSG00000036448 |
OVCH1-AS1 | 6.255 | 5.39 × 10−19 | OVCH1 antisense RNA 1 | 12p11.22 | ENSG00000257599 |
AIF1 | −3.349 | 1.46 × 10−16 | Allograft inflammatory factor 1 | 6p21.33 | ENSG00000204472 |
CCR6 | 3.846 | 8.59 × 10−16 | Chemokine (C-C motif) receptor 6 | 6q27 | ENSG00000112486 |
RPS26 | 2.624 | 4.35 × 10−15 | Ribosomal protein S26 | 12q13.2 | ENSG00000197728 |
UTS2 | 5.219 | 2.28 × 10−14 | Urotensin 2 | 1p36.23 | ENSG00000049247 |
MIR181A1HG | −3.142 | 6.48 × 10−12 | MIR181A1 host gene | 1q32.1 | ENSG00000229989 |
GREM2 | 6.964 | 1.42 × 10−11 | Gremlin 2, DAN family BMP antagonist | 1q43 | ENSG00000180875 |
ARHGEF10 | −4.897 | 1.99 × 10−11 | Rho guanine nucleotide exchange factor (GEF) 10 | 8p23.3 | ENSG00000104728 |
MYBL1 | 3.148 | 1.99 × 10−11 | MYB proto-oncogene like 1 | 8q13.1 | ENSG00000185697 |
PTGER2 | 3.031 | 6.15 × 10−11 | Prostaglandin E receptor 2 | 14q22.1 | ENSG00000125384 |
MTRNR2L1 | 2.645 | 1.69 × 10−10 | MT-RNR2-like 1 | 17p11.2 | ENSG00000256618 |
HLA-DQB1 | 5.067 | 1.78 × 10−10 | Major histocompatibility complex, class II, DQ beta 1 | 6p21.32 | ENSG00000179344 |
NFKBID | −3.401 | 1.78 × 10−10 | NFKB inhibitor delta | 19q13.12 | ENSG00000167604 |
WHAMM | −2.236 | 2.62 × 10−10 | WAS protein homolog associated with actin, golgi membranes and microtubules | 15q25.2 | ENSG00000156232 |
TSIX | −6.009 | 3.04 × 10−10 | TSIX transcript, XIST antisense RNA | Xq13.2 | ENSG00000270641 |
NRCAM | −3.700 | 4.58 × 10−10 | neuronal cell adhesion molecule | 7q31.1 | ENSG00000091129 |
EGR1 | −3.853 | 4.73 × 10−10 | Early growth response 1 | 5q31.2 | ENSG00000120738 |
RASGRP3 | −2.966 | 6.59 × 10−10 | RAS guanyl releasing protein 3 | 2p22.3 | ENSG00000152689 |
SGK1 | −2.434 | 1.01 × 10−9 | Serum/glucocorticoid regulated kinase 1 | 6q23.2 | ENSG00000118515 |
AC103591.3 | −2.805 | 3.14 × 10−9 | - | - | ENSG00000273338 |
AL121935.1 | 3.566 | 7.31 × 10−9 | - | - | ENSG00000284825 |
TAF4B | −2.438 | 7.72 × 10−9 | TATA-box binding protein associated factor 4b | 18q11.2 | ENSG00000141384 |
CHKA | −2.280 | 1.20 × 10−8 | Choline kinase alpha | 11q13.2 | ENSG00000110721 |
CRIP2 | 2.598 | 1.20 × 10−8 | Cysteine-rich protein 2 | 14q32.33 | ENSG00000182809 |
AC008569.1 | −2.192 | 1.20 × 10−8 | - | - | ENSG00000267379 |
JUN | −1.974 | 2.06 × 10−8 | Jun proto-oncogene | 1p32.1 | ENSG00000177606 |
EZH2 | −2.361 | 3.66 × 10−8 | Enhancer of zeste homolog 2 | 7q36.1 | ENSG00000106462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, S.Y.; Baek, I.-C.; Cho, W.K.; Jung, M.H.; Kim, T.-G.; Suh, B.-K. Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves’ Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study. Cells 2025, 14, 93. https://doi.org/10.3390/cells14020093
Sim SY, Baek I-C, Cho WK, Jung MH, Kim T-G, Suh B-K. Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves’ Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study. Cells. 2025; 14(2):93. https://doi.org/10.3390/cells14020093
Chicago/Turabian StyleSim, Soo Yeun, In-Cheol Baek, Won Kyoung Cho, Min Ho Jung, Tai-Gyu Kim, and Byung-Kyu Suh. 2025. "Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves’ Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study" Cells 14, no. 2: 93. https://doi.org/10.3390/cells14020093
APA StyleSim, S. Y., Baek, I.-C., Cho, W. K., Jung, M. H., Kim, T.-G., & Suh, B.-K. (2025). Immune Gene Expression Profiling in Individuals with Turner Syndrome, Graves’ Disease, and a Healthy Female by Single-Cell RNA Sequencing: A Comparative Study. Cells, 14(2), 93. https://doi.org/10.3390/cells14020093