Liquid Biopsy for Cerebral Aneurysms: Circulating RNA as Diagnostic and Prognostic Tools—A Systematic Review of Current Evidence and Perspectives
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Risk of Bias
3. Results
4. Discussion
4.1. MicroRNAs
4.2. LncRNAs
4.3. CircRNAs
4.4. Potential Clinical Applications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
AUC | Area under the curve |
cfDNA | Cell-free DNA |
circRNA | Circular RNA |
CSF | Cerebrospinal fluid |
CT | Computed tomography |
ECM | Extracellular matrix |
EV | Extracellular vesicle |
GCS | Glasgow Coma Scale |
HHT | Hereditary hemorrhagic telangiectasia |
IAs | Intracranial aneurysms |
IRB | Institutional Review Board |
ISAT | International Subarachnoid Aneurysm Trial |
ISUIA | International Study of Unruptured Intracranial Aneurysms |
LB | Liquid biopsy |
lncRNA | Long non-coding RNA |
MRI | Magnetic resonance imaging |
PHASES | Population, Hypertension, Age, Size of aneurysm, Earlier subarachnoid hemorrhage, and Site of aneurysm |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
qRT-PCR | Quantitative reverse transcription polymerase chain reaction |
ROBINS-I | Risk Of Bias In Non-randomized Studies of Interventions |
ROC | Receiver operating characteristic |
RNA | Ribonucleic acid |
SAH | Subarachnoid hemorrhage |
UIA | Unruptured intracranial aneurysm |
UIATS | Unruptured Intracranial Aneurysm Treatment Score |
VSMC | Vascular smooth muscle cell |
References
- Mansur, A.; Radovanovic, I. The Expansion of Liquid Biopsies to Vascular Care: An Overview of Existing Principles, Techniques and Potential Applications to Vascular Malformation Diagnostics. Front. Genet. 2024, 15. [Google Scholar] [CrossRef]
- Azad, T.D.; Bettegowda, C. Longitudinal Monitoring of Diffuse Midline Glioma Using Liquid Biopsy. Neuro. Oncol. 2022, 24, 1375–1376. [Google Scholar] [CrossRef]
- Azad, T.D.; Jin, M.C.; Bernhardt, L.J.; Bettegowda, C. Liquid Biopsy for Pediatric Diffuse Midline Glioma: A Review of Circulating Tumor DNA and Cerebrospinal Fluid Tumor DNA. Neurosurg. Focus 2020, 48, E9. [Google Scholar] [CrossRef]
- Batool, S.M.; Yekula, A.; Khanna, P.; Hsia, T.; Gamblin, A.S.; Ekanayake, E.; Escobedo, A.K.; You, D.G.; Castro, C.M.; Im, H.; et al. The Liquid Biopsy Consortium: Challenges and Opportunities for Early Cancer Detection and Monitoring. Cell Rep. Med. 2023, 4, 101198. [Google Scholar] [CrossRef]
- Wang, J.; Bettegowda, C. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms. J. Mol. Diagn. 2017, 19, 24–34. [Google Scholar] [CrossRef]
- Nayak, L.; Bettegowda, C.; Scherer, F.; Galldiks, N.; Ahluwalia, M.; Baraniskin, A.; von Baumgarten, L.; Bromberg, J.E.C.; Ferreri, A.J.M.; Grommes, C.; et al. Liquid Biopsy for Improving Diagnosis and Monitoring of CNS Lymphomas: A RANO Review. Neuro. Oncol. 2024, 26, 993–1011. [Google Scholar] [CrossRef]
- Bonosi, L.; Ferini, G.; Giammalva, G.R.; Benigno, U.E.; Porzio, M.; Giovannini, E.A.; Musso, S.; Gerardi, R.M.; Brunasso, L.; Costanzo, R.; et al. Liquid Biopsy in Diagnosis and Prognosis of High-Grade Gliomas; State-of-the-Art and Literature Review. Life 2022, 12, 407. [Google Scholar] [CrossRef]
- Huang, Q.; Sun, Y.; Huang, Q.; Zeng, Y.; Lin, S.; Huang, S.; Cai, Y.; Xu, X.; Kang, D.; Li, H.; et al. Association Between Circular RNAs and Intracranial Aneurysm Rupture Under the Synergistic Effect of Individual Environmental Factors. Front. Neurol. 2021, 12, 594835. [Google Scholar] [CrossRef]
- Wiebers, D.O.; Whisnant, J.P.; Huston, J.; Meissner, I.; Brown, R.D.; Piepgras, D.G.; Forbes, G.S.; Thielen, K.; Nichols, D.; O’Fallon, W.M.; et al. Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment. Lancet 2003, 362, 103–110. [Google Scholar] [CrossRef]
- Molyneux, A.J.; Kerr, R.S.C.; Yu, L.-M.; Clarke, M.; Sneade, M.; Yarnold, J.A.; Sandercock, P.; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Comparison of Effects on Survival, Dependency, Seizures, Rebleeding, Subgroups, and Aneurysm Occlusion. Lancet 2005, 366, 809–817. [Google Scholar] [CrossRef]
- Sturiale, C.L.; Stumpo, V.; Latour, K.; Stifano, V. Merging Prospective and Retrospective Validation Studies for Intracranial Aneurysms Risk Scores: Reflections in the Water. J. Neurosurg. Sci. 2022, 66, 166–168. [Google Scholar] [CrossRef]
- Stumpo, V.; Latour, K.; Trevisi, G.; Valente, I.; D’Arrigo, S.; Mangiola, A.; Olivi, A.; Sturiale, C.L. Retrospective Application of UIATS Recommendations to a Multicenter Cohort of Ruptured Intracranial Aneurysms: How It Would Have Oriented the Treatment Choices? World Neurosurg. 2021, 147, e262–e271. [Google Scholar] [CrossRef]
- Stumpo, V.; Sturiale, C.L. Inquiring the Real-World Clinical Performance of the Unruptured Intracranial Aneurysm Treatment Score (UIATS). Neurosurg. Rev. 2021, 44, 1789–1791. [Google Scholar] [CrossRef]
- Sturiale, C.L.; Stumpo, V.; Ricciardi, L.; Trevisi, G.; Valente, I.; D’Arrigo, S.; Latour, K.; Barbone, P.; Albanese, A. Retrospective Application of Risk Scores to Ruptured Intracranial Aneurysms: Would They Have Predicted the Risk of Bleeding? Neurosurg. Rev. 2021, 44, 1655–1663. [Google Scholar] [CrossRef]
- Bijlenga, P.; Gondar, R.; Schilling, S.; Morel, S.; Hirsch, S.; Cuony, J.; Corniola, M.-V.; Perren, F.; Rüfenacht, D.; Schaller, K. PHASES Score for the Management of Intracranial Aneurysm: A Cross-Sectional Population-Based Retrospective Study. Stroke 2017, 48, 2105–2112. [Google Scholar] [CrossRef]
- Feghali, J.; Yang, W.; Xu, R.; Liew, J.; McDougall, C.G.; Caplan, J.M.; Tamargo, R.J.; Huang, J. R2eD AVM Score. Stroke 2019, 50, 1703–1710. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, n71. [Google Scholar] [CrossRef]
- Jin, H.; Li, C.; Ge, H.; Jiang, Y.; Li, Y. Circulating microRNA: A Novel Potential Biomarker for Early Diagnosis of Intracranial Aneurysm Rupture a Case Control Study. J. Transl. Med. 2013, 11, 296. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Wu, X.; Yang, X.; Zhang, Y.; Li, Y.; Jiang, F. Circulating microRNAs Serve as Novel Biological Markers for Intracranial Aneurysms. J. Am. Heart Assoc. 2014, 3, e000972. [Google Scholar] [CrossRef]
- Su, X.W.; Chan, A.H.Y.; Lu, G.; Lin, M.; Sze, J.; Zhou, J.Y.; Poon, W.S.; Liu, Q.; Zheng, V.Z.Y.; Wong, G.K.C. Circulating microRNA 132-3p and 324-3p Profiles in Patients after Acute Aneurysmal Subarachnoid Hemorrhage. PLoS ONE 2015, 10, e0144724. [Google Scholar] [CrossRef]
- Zhong, Z.; Wu, J.; Yuan, K.; Song, Z.; Ma, Z.; Zhong, Y.; Fang, X.; Zhang, W. Upregulation of microRNA-205 Is a Potential Biomarker for Intracranial Aneurysms. Neuroreport 2019, 30, 812–816. [Google Scholar] [CrossRef]
- Wang, W.-H.; Wang, Y.-H.; Zheng, L.-L.; Li, X.-W.; Hao, F.; Guo, D. MicroRNA-29a: A Potential Biomarker in the Development of Intracranial Aneurysm. J. Neurol. Sci. 2016, 364, 84–89. [Google Scholar] [CrossRef]
- Meeuwsen, J.A.L.; van T Hof, F.N.G.; van Rheenen, W.; Rinkel, G.J.E.; Veldink, J.H.; Ruigrok, Y.M. Circulating microRNAs in Patients with Intracranial Aneurysms. PLoS ONE 2017, 12, e0176558. [Google Scholar] [CrossRef]
- Teng, L.; Chen, Y.; Chen, H.; He, X.; Wang, J.; Peng, Y.; Duan, H.; Li, H.; Lin, D.; Shao, B. Circular RNA Hsa_circ_0021001 in Peripheral Blood: A Potential Novel Biomarker in the Screening of Intracranial Aneurysm. Oncotarget 2017, 8, 107125–107133. [Google Scholar] [CrossRef]
- Lai, N.; Zhang, J.; Qin, F.; Sheng, B.; Fang, X.; Li, Z. Serum microRNAs Are Non-Invasive Biomarkers for the Presence and Progression of Subarachnoid Haemorrhage. Biosci. Rep. 2017, 37, BSR20160480. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, Y.; Ogura, T.; Nakajima, H.; Ikeda, T.; Takeda, R.; Neki, H.; Kohyama, S.; Yamane, F.; Kurogi, R.; Amano, T.; et al. Altered Expression of MicroRNA-15a and Kruppel-Like Factor 4 in Cerebrospinal Fluid and Plasma After Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2017, 108, 909-916.e3. [Google Scholar] [CrossRef]
- Stylli, S.S.; Adamides, A.A.; Koldej, R.M.; Luwor, R.B.; Ritchie, D.S.; Ziogas, J.; Kaye, A.H. miRNA Expression Profiling of Cerebrospinal Fluid in Patients with Aneurysmal Subarachnoid Hemorrhage. J. Neurosurg. 2017, 126, 1131–1139. [Google Scholar] [CrossRef]
- Sima, X.; Sun, H.; Zhou, P.; You, C.; Cai, B. Association between Functional Polymorphisms in the Promoter of the miR-143/145 Cluster and Risk of Intracranial Aneurysm. Sci. Rep. 2017, 7, 43633. [Google Scholar] [CrossRef]
- Ouyang, Y.; Jiang, Y.; Yu, M.; Zhang, M.; Tan, Z. Upregulation of MALAT1 Expression Predicts a Poor Prognosis in the Development of Intracranial Aneurysm (IA). Int. J. Clin. Exp. Pathol. 2017, 10, 5907–5912. [Google Scholar]
- de Paiva Lopes, K.; Vinasco-Sandoval, T.; Vialle, R.A.; Paschoal, F.M.; Bastos, V.A.P.A.; Bor-Seng-Shu, E.; Teixeira, M.J.; Yamada, E.S.; Pinto, P.; Vidal, A.F.; et al. Global miRNA Expression Profile Reveals Novel Molecular Players in Aneurysmal Subarachnoid Haemorrhage. Sci. Rep. 2018, 8, 8786. [Google Scholar] [CrossRef]
- Sheng, B.; Lai, N.; Yao, Y.; Dong, J.; Li, Z.; Zhao, X.; Liu, J.; Li, X.; Fang, X. Early Serum miR-1297 Is an Indicator of Poor Neurological Outcome in Patients with aSAH. Biosci. Rep. 2018, 38, BSR20180646. [Google Scholar] [CrossRef] [PubMed]
- Sheng, B.; Fang, X.; Liu, C.; Wu, D.; Xia, D.; Xu, S.; Lai, N. Persistent High Levels of miR-502-5p Are Associated with Poor Neurologic Outcome in Patients with Aneurysmal Subarachnoid Hemorrhage. World Neurosurg. 2018, 116, e92–e99. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Peng, F.; Zhang, B.; Wang, L.; Guo, E.; Li, Y.; Jiang, C.; Wu, Z.; Liu, A. Lower miR-143/145 and Higher Matrix Metalloproteinase-9 Levels in Circulation May Be Associated with Intracranial Aneurysm Formation and Rupture: A Pilot Study. Clin. Neurol. Neurosurg. 2018, 173, 124–129. [Google Scholar] [CrossRef]
- Xu, J.; Yan, S.; Tan, H.; Ma, L.; Feng, H.; Han, H.; Pan, M.; Yu, L.; Fang, C. The miR-143/145 Cluster Reverses the Regulation Effect of KLF5 in Smooth Muscle Cells with Proliferation and Contractility in Intracranial Aneurysm. Gene 2018, 679, 266–273. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, H.; Su, J.-Y. MicroRNA-29a Contributes to Intracranial Aneurysm by Regulating the Mitochondrial Apoptotic Pathway. Mol. Med. Rep. 2018, 18, 2945–2954. [Google Scholar] [CrossRef]
- Qin, Y. Relationship between the Expression of Plasma Secreted Mir-202-5p and the Condition and Prognosis of Patients with Aneurysmal Subarachnoid Hemorrhage. Master’s Thesis, Guangxi Medical University, Nanning, China, 2019. [Google Scholar]
- Wu, C.; Song, H.; Wang, Y.; Gao, L.; Cai, Y.; Cheng, Q.; Chen, Y.; Zheng, Z.; Liao, Y.; Lin, J.; et al. Long Non-Coding RNA TCONS_00000200 as a Non-Invasive Biomarker in Patients with Intracranial Aneurysm. Biosci. Rep. 2019, 39, BSR20182224. [Google Scholar] [CrossRef]
- Yang, X.; Peng, J.; Pang, J.; Wan, W.; Chen, L. A Functional Polymorphism in the Promoter Region of miR-155 Predicts the Risk of Intracranial Hemorrhage Caused by Rupture Intracranial Aneurysm. J. Cell Biochem. 2019, 120, 18618–18628. [Google Scholar] [CrossRef] [PubMed]
- Man, H.; Bi, W. Expression of a Novel Long Noncoding RNA (lncRNA), GASL1, Is Downregulated in Patients with Intracranial Aneurysms and Regulates the Proliferation of Vascular Smooth Muscle Cells In Vitro. Med. Sci. Monit. 2019, 25, 1133–1139. [Google Scholar] [CrossRef]
- Huang, Q.; Huang, Q.-Y.; Sun, Y.; Wu, S.-Y. High-Throughput Data Reveals Novel Circular RNAs via Competitive Endogenous RNA Networks Associated with Human Intracranial Aneurysms. Med. Sci. Monit. 2019, 25, 4819–4830. [Google Scholar] [CrossRef]
- Zheng, Z.; Chen, Y.; Wang, Y.; Li, Y.; Cheng, Q. MicroRNA-513b-5p Targets COL1A1 and COL1A2 Associated with the Formation and Rupture of Intracranial Aneurysm. Sci. Rep. 2021, 11, 14897. [Google Scholar] [CrossRef]
- Supriya, M.; Christopher, R.; Indira Devi, B.; Bhat, D.I.; Shukla, D. Circulating MicroRNAs as Potential Molecular Biomarkers for Intracranial Aneurysmal Rupture. Mol. Diagn. Ther. 2020, 24, 351–364. [Google Scholar] [CrossRef]
- Liao, B.; Zhou, M.-X.; Zhou, F.-K.; Luo, X.-M.; Zhong, S.-X.; Zhou, Y.-F.; Qin, Y.-S.; Li, P.-P.; Qin, C. Exosome-Derived MiRNAs as Biomarkers of the Development and Progression of Intracranial Aneurysms. J. Atheroscler. Thromb. 2020, 27, 545–610. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; Chu, L.; Chen, W.; Du, Y.; Gu, J. Long Non-Coding RNA HIF1A-AS1 Is Upregulated in Intracranial Aneurysms and Participates in the Regulation of Proliferation of Vascular Smooth Muscle Cells by Upregulating TGF-Β1. Exp. Ther. Med. 2019, 17, 1797–1801. [Google Scholar] [CrossRef]
- Wang, W.-X.; Springer, J.E.; Hatton, K.W. MicroRNAs as Biomarkers for Predicting Complications Following Aneurysmal Subarachnoid Hemorrhage. Int. J. Mol. Sci. 2021, 22, 9492. [Google Scholar] [CrossRef]
- Yang, G.; Qin, H.; Liu, B.; Zhao, X.; Yin, H. Mesenchymal Stem Cells-Derived Exosomes Modulate Vascular Endothelial Injury via miR-144-5p/PTEN in Intracranial Aneurysm. Hum. Cell 2021, 34, 1346–1359. [Google Scholar] [CrossRef]
- Yuan, X.; Bian, X.; Wei, W.; Bao, Q.; Liu, P.; Jiang, W. miR-34a Regulates Phenotypic Modulation of Vascular Smooth Muscle Cells in Intracranial Aneurysm by Targeting CXCR3 and MMP-2. Genet. Mol. Biol. 2021, 44, e20200124. [Google Scholar] [CrossRef]
- Zheng, C.; Mao, C.; Tang, K.; Ceng, S.; Shu, H. A Two-miRNA Signature (miR-21 and miR-92) in Peripheral Whole Blood as a Potential Biomarker for Diagnosis of Human Cerebral Aneurysms. Arch. Med. Sci. 2020, 20, 726–735. [Google Scholar] [CrossRef]
- Jin, H.; Jiang, Y.; Liu, X.; Meng, X.; Li, Y. Cell-Free microRNA-21: Biomarker for Intracranial Aneurysm Rupture. Chin. Neurosurg. J. 2020, 6, 15. [Google Scholar] [CrossRef]
- Chen, X.; Yang, S.; Yang, J.; Liu, Q.; Li, M.; Wu, J.; Wang, H.; Wang, S. The Potential Role of Hsa_circ_0005505 in the Rupture of Human Intracranial Aneurysm. Front. Mol. Biosci. 2021, 8, 670691. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-B.; Wu, Y.-T.; Guo, X.-X.; Xiang, C.; Chen, P.-S.; Qin, W.; Shi, Z.-S. Circular RNA Hsa_circ_0007990 as a Blood Biomarker for Unruptured Intracranial Aneurysm with Aneurysm Wall Enhancement. Front. Immunol. 2022, 13, 1061592. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ding, Y.; Wu, L.; Jiang, C.; Wang, C. The Roles and Diagnostic Value of miRNA-1246 in the Serum of Patients with Intracranial Aneurysms. Transl Neurosci. 2022, 13, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Yao, J.; Zheng, Y.; Shen, F.; Zhao, H.; Hu, J.; Leng, B.; Yang, P.; Liu, X. Comprehensive Mass Spectrometry for Development of Proteomic Biomarkers of Intracranial Aneurysms. Talanta 2022, 240, 123159. [Google Scholar] [CrossRef]
- Li, Y.; Wu, A.; Dai, W.; Liu, R.; Jiang, B.; Zhou, R. Cerebrospinal Fluid Exosomal miR-152-3p Predicts the Occurrence of Subarachnoid Haemorrhage and Regulates Vascular Smooth Muscle Cell Dysfunction. Folia Neuropathol. 2022, 60, 185–194. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, X.; Liu, L.; Pu, Y. Altered Expression of Specific MicroRNAs in Plasma of Aneurysmal Subarachnoid Hemorrhage Patients. Front. Neurol. 2022, 13, 842888. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, H.; Qi, X.; Guan, C.; Que, S. Circular RNA Hsa_circ_0000690 as a Potential Biomarker for Diagnosis and Prognosis of Intracranial Aneurysm: Closely Relating to the Volume of Hemorrhage. Brain Behav. 2023, 13, e2929. [Google Scholar] [CrossRef]
- Han, L.; Zhou, H.; Guo, Z.; Jiang, C.; Wang, Z.; Zhang, H.; Liu, D. Exosomal lncRNA DUXAP8 Affecting CHPF2 in the Pathogenesis of Intracranial Aneurysms. Gene 2024, 908, 148253. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Tang, Y.; Zhou, C. Plasma Circulating Proteins and Intracranial Aneurysm Susceptibility: A Proteome-Wide Mendelian Randomization Analysis. World Neurosurg. 2025, 198, 124015. [Google Scholar] [CrossRef]
- Deng, J.; Ning, K.; Liu, D.; Wu, D.; Wan, R.; Ge, J. MiR-140 Promotes the Progression of Intracranial Aneurysms by Targeting BCL2L2. Neuroreport 2023, 34, 38–45. [Google Scholar] [CrossRef]
- Liu, F.; Hao, S.; Wang, J.; Chen, L.; Jiang, N.; Liu, L.; Wang, X. Differential Expression of LncRNA MIAT and Its Clinical Significance in Intracranial Aneurysms. Brain Behav. 2025, 15, e70500. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Li, Z.; Da, L.; Liu, J.; Huang, C.; Zha, Z. LncRNA PVT1 Promotes Intracranial Aneurysm Development via USP10/KLF4/NLRP3 Axis-Mediated Pyroptosis in Human Cerebral Smooth Muscle Cells. J. Biochem. Mol. Toxicol. 2025, 39, e70102. [Google Scholar] [CrossRef]
- Ansari, S.K.; Gokalp, E.E.; Ozkara, E.; Aykac, O.; Cilingir, O.; Colak, E.; Ozdemir, A.O.; Artan, S. The Role of miRNA Expression Profiles in Different Biofluids İn Aneurysm Rupture. J. Korean. Neurosurg. Soc. 2025. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, Y.-W.; Yan, L.; Ma, J.; Han, X.-W.; Shui, S.-F. Dysregulation of microRNA-23b-3p Contributes to the Development of Intracranial Aneurysms by Targeting Phosphatase and Tensin Homolog. Int. J. Mol. Med. 2018, 42, 1637–1643. [Google Scholar] [CrossRef]
- Yang, F.; Xing, W.-W.; Shen, D.-W.; Tong, M.-F.; Xie, F.-M. Effect of miR-126 on Intracranial Aneurysms and Its Predictive Value for Rupture of Aneurysms. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 3245–3253. [Google Scholar] [CrossRef]
- Zou, L.; Hou, Y.; Yu, B.; Li, S.; Du, Y. The Effect of Intravascular Interventional Embolization and Craniotomy on MMP-2, MMP-9 and Caspase3 in Serum of Intracranial Aneurysm Patients. Exp. Ther. Med. 2018, 16, 4511–4518. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, H.; Liu, J.; Tong, J. Long Non-Coding RNA MIAT Knockdown Prevents the Formation of Intracranial Aneurysm by Downregulating ENC1 via MYC. Front. Physiol. 2021, 11, 572605. [Google Scholar] [CrossRef]
- Wang, F.; Huang, Q.-Y.; Zeng, Y.-L.; Kang, X.-D.; Huang, Q. Circular RNA Hsa_circ_0008433 Drives Vascular Smooth Muscle Cell Modulation in Intracranial Aneurysm Pathogenesis. Adv. Clin. Exp. Med. 2025, 34. [Google Scholar] [CrossRef]
- Garcia, G.; Pinto, S.; Ferreira, S.; Lopes, D.; Serrador, M.J.; Fernandes, A.; Vaz, A.R.; de Mendonça, A.; Edenhofer, F.; Malm, T.; et al. Emerging Role of miR-21-5p in Neuron-Glia Dysregulation and Exosome Transfer Using Multiple Models of Alzheimer’s Disease. Cells 2022, 11, 3377. [Google Scholar] [CrossRef]
- Churov, A.V.; Oleinik, E.K.; Knip, M. MicroRNAs in Rheumatoid Arthritis: Altered Expression and Diagnostic Potential. Autoimmun. Rev. 2015, 14, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Al-Ward, H.; Chen, W.; Gao, W.; Zhang, C.; Yang, X.; Xiong, Y.; Wang, X.; Agila, R.; Xu, H.; Sun, Y.E. Can miRNAs in MSCs-EVs Offer a Potential Treatment for Hypoxic-Ischemic Encephalopathy? Stem. Cell Rev. Rep. 2025, 21, 236–253. [Google Scholar] [CrossRef]
- Faraldi, M.; Gomarasca, M.; Banfi, G.; Lombardi, G. Free Circulating miRNAs Measurement in Clinical Settings. Adv. Clin. Chem. 2018, 87, 113–139. [Google Scholar] [CrossRef] [PubMed]
Author, Year | Biomarker | Type | N. IA | IA vs. Control | Rupt vs. Non-Rupt | Source |
---|---|---|---|---|---|---|
Jin, 2013 [18] | miR-574 | miRNA | 24 | ↓ | Plasma | |
miR-22 | miRNA | 24 | ↑ | Plasma | ||
miR-21 | miRNA | 24 | ↑ | Serum | ||
miR-671-5p | miRNA | 24 | ↑ | Plasma | ||
miR-720 | miRNA | 24 | ↑ | Plasma | ||
miR-936 | miRNA | 24 | ↓ | Plasma | ||
miR-365 | miRNA | 24 | ↓ | Plasma | ||
miR-498 | miRNA | 24 | ↑ | Plasma | ||
miR-106b | miRNA | 24 | ↑ | Plasma | ||
Li, 2014 [19] | miR-16 | miRNA | 40 | ↑ | Plasma | |
miR-25 | miRNA | 40 | ↑ | Plasma | ||
Su, 2015 [20] | miR-132 | miRNA | 58 | ↑ | Plasma | |
miR-324 | miRNA | 58 | ↑ | Plasma | ||
Zhong, 2019 [21] | miR-205 | miRNA | 91 | ↑ | Plasma/Blood | |
Wang, 2016 [22] | miR-29a-3p | Exosomal miRNA | 165 | ↓ | ↓ | Plasma |
Meeuwsen, 2017 [23] | miR-200a-3p | miRNA | 15 | ↑ | Serum | |
miR-183-5p | miRNA | 15 | ↓ | ↓ | Serum | |
miR-let7p-5p | miRNA | 40 | ↓ | Serum | ||
Teng, 2017 [24] | circ_0021001 | CircRNA | 223 | ↓ | Serum | |
Lai, 2017 [25] | miR-502-5p | miRNA | 60 | ↑ | Serum | |
miR-1297 | miRNA | 60 | ↑ | Serum | ||
miR-4320 | miRNA | 60 | ↑ | Serum | ||
Kikkawa, 2017 [26] | miR-6724 | miRNA | 10 | ↑ | Plasma/CSF | |
miR-15a | miRNA | 10 | ↑ | Plasma/CSF | ||
Stylli, 2017 [27] | miR-451a | miRNA | 20 | ↑ | CSF | |
Sima, 2017 [28] | miR-145 (*) | miRNA | 60 | ↓ | Plasma | |
miR-143-5p | miRNA | 60 | ↓ | Plasma | ||
Ouyang, 2017 [29] | MALAT1 | lncRNA | 105 | ↑ | ↑ | Blood |
Lopes, 2018 [30] | miR-let-7f-5p | miRNA | 30 | ↑ | Serum | |
miR-486-5p | miRNA | 30 | ↓ | Blood | ||
miR-126-5p | miRNA | 30 | ↓ | Blood | ||
miR-17-5p | miRNA | 30 | ↓ | Blood | ||
miR-451a | miRNA | 30 | ↓ | Blood | ||
miR-146a-5p | miRNA | 30 | ↑ | Blood | ||
miR-589-5p | miRNA | 30 | ↑ | Blood | ||
miR-941 | miRNA | 30 | ↑ | Blood | ||
Sheng, 2018 (1) [31] | miR-1297 | miRNA | 128 | ↑ | Serum | |
Sheng, 2018 (2) [32] | miR-502-5p | miRNA | 129 | ↑ | Serum | |
Feng, 2018 [33] | miR-143 | miRNA | 17 | ↓ | ↓ | Plasma |
miR-145 (*) | miRNA | 17 | ↓ | ↓ | Plasma | |
Xu, 2018 [34] | miR-145/miR-145-5p (*) | Exosomal miRNA | 30 | ↓ | Plasma | |
miR-143 / 143-3p / 143-5p | miRNA | 30 | ↓ | Serum | ||
Zhao, 2018 [35] | miR-29a-3p (*) | Exosomal miRNA | 24 | ↑ | Blood | |
Qin, 2019 [36] | miR-202-5p | Exosomal miRNA | NA | ↑ | Serum | |
Wu, 2019 [37] | TCONS_00000200 | lncRNA | 30 | ↑ | Plasma | |
ENST00000511927 | lncRNA | 30 | ↑ | Plasma | ||
Yang, 2019 [38] | miR-155 | miRNA | 94 | ↑ | Blood | |
Man, 2019 [39] | GASL1 | lncRNA | 68 | ↓ | Serum | |
Huang, 2019 [40] | circ_0072309 | CircRNA | 30 | ↓ | Serum | |
circ_0008433 | CircRNA | 30 | ↑ | Serum | ||
Zheng, 2020 [41] | miR-92a | miRNA | 91 | ↑ | Blood | |
miR-21 | miRNA | 91 | ↑ | Blood | ||
Yang, 2020 [38] | miR-126 | miRNA | 102 | ↑ | Serum | |
Supriya, 2020 [42] | miR-27b-3p | miRNA | 88 | ↓ | Serum | |
miR-15a-5p | miRNA | 88 | ↑ | Serum | ||
miR-34a-5p (*) | miRNA | 88 | ↑ | Serum | ||
miR-374a-5p | miRNA | 88 | ↑ | Serum | ||
miR-146a-5p | miRNA | 88 | ↓ | Serum | ||
miR-376c-3p | miRNA | 88 | ↓ | Serum | ||
miR-18b-5p | miRNA | 88 | ↓ | Serum | ||
miR-24-3p | miRNA | 88 | ↓ | Serum | ||
Liao, 2020 [43] | miR-145/miR-145-5p (*) | Exosomal miRNA | 12 | ↑ | ↑ | Plasma |
miR-29a-3p (*) | Exosomal miRNA | 12 | ↑ | ↑ | Plasma | |
Xu, 2021 [44] | HIF1A-AS1 | lncRNA | 56 | ↑ | Blood | |
Wang, 2021 [45] | miR-29a-3p (*) | miRNA | 165 | ↑ | CSF | |
Let-7b-5p | miRNA | 31 | ↑ | CSF | ||
miR-15b-5p | miRNA | 31 | ↑ | CSF | ||
miR-17-5p | miRNA | 31 | ↑ | CSF | ||
miR-19b-3p | miRNA | 31 | ↑ | CSF | ||
miR-20a-5p | miRNA | 31 | ↑ | CSF | ||
miR-24 | miRNA | 31 | ↑ | CSF | ||
Yang, 2021 [46] | miR-144-5p | Exosomal miRNA | 12 | ↓ | Serum | |
Yuan, 2021 [47] | miR-34a / 34a-5 (*) | miRNA | 20 | ↓ | Serum | |
Zheng, 2021 [48] | miR-513b-5p | miRNA | 100 | ↓ | ↓ | Serum |
Jin, 2021 [49] | miRNA-21 | miRNA | 40 | ↑ | Serum | |
Chen, 2021 [50] | circ_0005505 | CircRNA | 5 | ↓ | Blood | |
Huang, 2021 [8] | circ_0008433 | CircRNA | 347 | ↓ | Blood | |
circ_0001946 | CircRNA | 347 | ↓ | Blood | ||
Wu, 2022 [51] | Circ_0007990 | CircRNA | 18 | ↑ | Serum | |
Jiang, 2022 [52] | miRNA-1246 | miRNA | 58 | ↑ | Blood | |
Xiong, 2022 [53] | miR-125a | miRNA | 50 | ↑ | Plasma | |
Li, 2022 [54] | miR-152-3p | miRNA | 135 | ↓ | CSF | |
Zheng, 2022 [55] | miR-23b-3p | miRNA | 65 | ↓ | Plasma | |
miR-20b-5p | miRNA | 65 | ↓ | Plasma | ||
miR-590-5p | miRNA | 65 | ↓ | Plasma | ||
miR-142-3p | miRNA | 65 | ↓ | Plasma | ||
miR-29b-3p | miRNA | 65 | ↓ | Plasma | ||
Huang, 2023 [56] | Circ_0000690 | CircRNA | 216 | ↓ | Serum | |
Han, 2024 [57] | DUXZP8 | lncRNA | 312 | ↑ | Serum | |
Zou, 2024 [58] | miR-34a / 34a-5 (*) | miRNA | 20 | ↓ | Serum | |
Deng, 2024 [59] | miR-140 | miRNA | 25 | ↑ | Serum | |
Liu, 2025 [60] | MIAT | lncRNA | 88 | ↑ | ↑ | Blood |
Chen, 2025 [61] | PTV1 | lncRNA | 90 | ↑ | Serum | |
Ansari, 2025 [62] | miR-29a (*) | miRNA | 24 | ↑ | ↑ | Blood/serum/CSF |
miR-200a-3p | miRNA | 24 | ↑ | ↑ | Blood/serum/CSF | |
miR-4 | miRNA | 24 | ↑ | ↑ | Blood/serum/CSF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palermo, M.; Olivi, A.; Sturiale, C.L. Liquid Biopsy for Cerebral Aneurysms: Circulating RNA as Diagnostic and Prognostic Tools—A Systematic Review of Current Evidence and Perspectives. Cells 2025, 14, 1525. https://doi.org/10.3390/cells14191525
Palermo M, Olivi A, Sturiale CL. Liquid Biopsy for Cerebral Aneurysms: Circulating RNA as Diagnostic and Prognostic Tools—A Systematic Review of Current Evidence and Perspectives. Cells. 2025; 14(19):1525. https://doi.org/10.3390/cells14191525
Chicago/Turabian StylePalermo, Matteo, Alessandro Olivi, and Carmelo Lucio Sturiale. 2025. "Liquid Biopsy for Cerebral Aneurysms: Circulating RNA as Diagnostic and Prognostic Tools—A Systematic Review of Current Evidence and Perspectives" Cells 14, no. 19: 1525. https://doi.org/10.3390/cells14191525
APA StylePalermo, M., Olivi, A., & Sturiale, C. L. (2025). Liquid Biopsy for Cerebral Aneurysms: Circulating RNA as Diagnostic and Prognostic Tools—A Systematic Review of Current Evidence and Perspectives. Cells, 14(19), 1525. https://doi.org/10.3390/cells14191525