Tau-Targeted Therapeutic Strategies: Mechanistic Targets, Clinical Pipelines, and Analysis of Failures
Abstract
1. Introduction
2. Physiological and Pathological Mechanisms of Tau
2.1. Physiological Roles of Tau in Neurons
2.2. Tau Dysregulation and Pathological Transitions
2.2.1. Phosphorylation: A Central Driver of Tauopathy
2.2.2. Acetylation and Crosstalk with Protein Clearance Pathways
2.2.3. Oxidative Stress-Induced Modifications of Tau
2.2.4. Neuroinflammation as a Catalyst of Tau Propagation
3. Therapeutic Strategies Targeting Tau
3.1. Modulating Enzymes Governing Tau Post-Translational Modifications
3.2. Inhibitors of Tau Aggregation
3.3. Enhancing Tau Clearance via Immunotherapy
3.4. Microtubule-Stabilising Agents as Compensatory Strategies
3.5. Blocking Tau Propagation Across Neural Circuits
3.6. Mechanistic Integration and Combination Therapies
3.7. Biomarker-Guided Stratification and Therapeutic Monitoring
3.8. Emergent Therapies and Direction
4. Overview of Development Status and Pipeline Statistics
Drug | Molecule Type | Development Stage | Company | Clinical Trial ID | Condition | Indication | Route of Administration | Mechanism of Action | Reference |
---|---|---|---|---|---|---|---|---|---|
ANAVEX2-73 | Small Molecule | Phase III | Anavex Life Sciences Corp. (NY, USA) | NCT04314934 | Completed | AD | Oral | A sigma-1 receptor activator that reduces cellular oxidative stress and restores autophagy to enhance cellular homeostasis. | [206] |
Buntanetap (ANVS-401; Posiphen) | Small molecule | Annovis Bio (PA, USA) | NCT06709014 NCT05686044 NCT05357989 | Recruiting Completed Completed | AD AD PD | Oral | Under conditions of iron excess, it enhances the interaction of the iron-responsive element-iron regulatory protein 1 (IRE-IRP1) in the 5′ untranslated region (5′UTR) of target transcripts, thereby selectively reducing the translation of APP, tau, and α-synuclein. This coordinated translational inhibition reduces the burden of misfolded proteins in the amyloid, tau, and synuclein pathways, thereby restoring protein homeostasis. | [207] | |
Bezisterim (NE-3107, Triolex, HE3286) | Small molecule | BioVie Inc. (NV, USA) | NCT04669028 | Completed | AD | Oral | NF-κB inhibitor | [208] | |
LMTX (hydromethylthionine mesylate, TRx 237, HMTM) | Small molecule | TauRx Therapeutics (Aber, UK) | NCT03446001 | Completed | AD | Oral | Tau aggregation inhibitor disrupts tau aggregates by reversing the proteolytic stability of tau proteins. | [209] | |
Nilotinib BE | Small molecule | KeifeRx, LLC (VA, USA) | NCT05143528 | Not yet recruiting | AD | Oral | Administered tyrosine kinase inhibitor. | [210] | |
Neflamapimod (VX 745) | Small molecule | Phase II | Cervomed (formerly, EIP Pharma) (MA, USA) | NCT03435861 NCT05869669 | Completed Completed | AD LBD | Oral | Intracellular enzyme p38 mitogen-activated protein kinase alpha inhibitor. | [211] |
FNP-223 (ASN90) | Small molecule | Ferrer (licensed from Asceneuron) (BCN, ESP) | NCT06355531 | Recruiting | PSP | Oral | O-GlcNAcase enzyme inhibitor. | [212] | |
T3D-959 | Small molecule | 3D Therapeutics (NY, USA) | NCT04251182 | Completed | AD | Oral | Dual PPARδ/γ agonist. | [213] | |
Censavudine (TPN-101, Festinavir) | Small molecule | Transposon Therapeutics (CA, USA) | NCT04993768 NCT04993755 | Unknown Unknown | PSP ALS/FTD | Oral | It is a potent nucleoside analogue reverse transcriptase inhibitor, repurposed to target LINE-1 retrotransposon activity. By blocking LINE-1 reverse transcriptase, it is proposed to attenuate retrotransposition-driven genomic stress and neuroinflammation. In C9orf72-related FTD/ALS, excessive LINE-1 activity has been implicated in the generation of toxic RNA foci and dipeptide repeat proteins. | [214,215] | |
Nicotinamide | Small molecule | Univ. of California, Irvine (CA, USA) | NCT03061474 | Completed | AD | Oral | A coenzyme that inhibits Class III histone deacetylases or sirtuins, which reduces phosphorylation of tau. | [216] | |
Varoglutamstat (PQ912) | Small molecule | Vivoryon Therapeutics (MU, DE) | NCT04498650 | Completed | AD | Oral | A glutaminyl cyclase inhibitor, which inhibits post-translational pyroglutamyl modification at the N-terminal of substrate proteins. | [217,218] | |
LY-3372689 | Small molecule | Eli Lilly (IN, USA) | NCT05063539 | Not recruiting | AD | Oral | Protein O-GlcNAcase inhibitor. | [219] | |
BEY2153 | Small molecule | BeyondBio Inc. (Daejeon, KR) | NCT06885567 | Not yet recruiting | AD | Oral | Blocks both amyloid and tau. | [220] | |
ANAVEX 3–71 (AF710B) | Small molecule | Phase I | Anavex Life Sciences (NY, USA) | NCT04442945 | Completed | AD & FTD | Oral | Targets sigma-1 and muscarinic receptors. It improves cholinergic function and targets the APP metabolism via M1 receptor activation. It provides neuroprotection and anti-amnestic effects via sigma-1 receptor activation. | [221] |
DA-7503 | Small molecule | Dong-A ST Co. (Seoul, KR) | NCT06391827 | Not yet recruiting | AD | Oral | Tau aggregation inhibitor, which selectively binds to tau monomers to inhibit tau oligomer formation. | [222] | |
OLX-07010 | Small molecule | Oligomerix Inc. (NY, USA) | NCT05696483 | Enrolling by invitation | AD & PSP | Oral | Tau self-association inhibitor. It prevents tau oligomers formation and toxicity. | [223] | |
BMS-986446 (PRX-005; Anti-MTBR-Tau) | mAb | Phase III | Bristol-Myers Squibb (NJ, USA) | NCT06268886 | Not recruiting | AD | IV | An anti-microtubule-binding region of tau monoclonal antibody, | [224] |
E2814 | mAb | Eisai Inc. (NJ, USA) | NCT05269394 NCT01760005 | Not recruiting Recruiting | AD AD | IV | Monoclonal IgG1 antibody, which recognises an HVPGG epitope of tau. | [151] | |
AL-101 (GSK-4527226) | mAb | Phase II | GlaxoSmithKline (partnered with Alector) (LON, UK) | NCT06079190 | Not recruiting | AD | IV | A monoclonal antibody to sortilin, which negatively regulates levels of lysosomal protein progranulin leading to neurodegenerative diseases. | [225] |
Posdinemab (JNJ-3657; JNJ-63733657) | mAb | Johnson & Johnson (NJ, USA) | NCT04619420 | Not recruiting | AD | IV | An IgG1/kappa monoclonal anti-phosphorylated tau antibody with high affinity to pT217. | [226] | |
Bepranemab (UCB-0107, RG 6416) | mAb | UCB SA (BXL. BE) | NCT04867616 | Not recruiting | AD | IV | IgG4 monoclonal anti-tau antibody binds to amino acids 235-250. | [227] | |
ADEL-Y01 | mAb | ADEL Inc. (Seoul, KR) | NCT06247345 | Recruiting | AD | IV | Monoclonal antibody targets tau acetylated lysine 280. | [228] | |
APNmAb005 | mAb | Phase I | Aprinoia Therapeutics (MA, USA) | NCT05344989 | Unknown | AD & tauopathies | IV | Monoclonal antibody that recognises conformational epitope associated with tau oligomers. | [229,230] |
LuAF-87908 | mAb | H. Lundbeck AS (Copenhagen, DK) | NCT04149860 | Completed | AD | IV | Monoclonal antibody that targets the C-terminal epitope. | [231] | |
MK-2214 | mAb | Merck & Co. (NJ, USA) | NCT05466422 | Completed | AD | IV | IgG2a monoclonal antibody targets the phosphorylated tau at Ser 413. | [232] | |
VY-7523 (VY-TAU01) | mAb | Voyager Therapeutics (MA, USA) | NCT06874621 | Recruiting | AD | IV | A mAb inhibit tau propagation. | [233] | |
Bepranemab (UCB-0107, RG 6416) | mAb | UCB SA (BXL. BE) | NCT04658199 | Not recruiting | PSP | IV | IgG4 monoclonal anti-tau antibody binds to amino acids 235-250. | [234] | |
Tertomotide (Riavax, GV1001) | Vaccine | Phase II | GemVax & KAEL Co Ltd. (Daejeon, KR) | NCT05189210 NCT06235775 NCT05819658 | Not recruiting Not recruiting Completed | AD PSP PSP | SC | A 16-amino-acid peptide that inhibits neurotoxicity and apoptosis by mimicking the extra-telomere function of hTERT. | [235,236] |
JNJ-2056 (ACI-35030; JNJ 64042056) | Vaccine | Janssen Pharmaceutica N.V. (Beerse, BE) | NCT06544616 | Recruiting | AD | IM | A liposomal vaccine based on SupraAntigen technology that targets pTau as an anti-tau active immunotherapy. | [237] | |
BIIB080 (MAPTRx) | ASO | Phase II | Biogen (MA, USA) | NCT05399888 | Not recruiting | AD | IT | An ASO that targets the mRNA of MAPT. | [178] |
NIO-752 | ASO | Phase I | Novartis (Basel, CH) | NCT06372821 NCT05469360 NCT04539041 | Not yet recruiting Recruiting Completed | AD AD PSP | IT | An ASO that targets the mRNA of MAPT. | [238] |
XPro1595 | Protein | Phase II | INmune Bio (FL, USA) | NCT05522387 NCT05318976 | Not recruiting Not recruiting | AD AD | SC | A soluble TNF inhibitor. | [202] |
LY-3954068 | siRNA | Phase I | Eli Lilly (IN, USA) | NCT06297590 | Recruiting | AD | IT | A siRNA targets MAPT. | [239] |
DDN-A-0101 | Natural extract | Phase I | Pharmacobio (Seongnam, KR) | NCT06367426 | Recruiting | AD | Oral | Aggregation inhibitor for tau and APP. And enhance cholinergic function to prevent acetylcholine from being hydrolysed. It was developed based on the gut–brain microbiota axis platform. | [240] |
5. Analysis of Discontinued Programs
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Wang, Z.; Li, M.; Li, Q. Global Incidence Trends and Projections of Alzheimer Disease and Other Dementias: An Age-Period-Cohort Analysis 2021. J. Glob. Health 2025, 15, 04156. [Google Scholar] [CrossRef]
- Rabinovici, G.D.; Selkoe, D.J.; Schindler, S.E.; Aisen, P.; Apostolova, L.G.; Atri, A.; Greenberg, S.M.; Hendrix, S.B.; Petersen, R.C.; Weiner, M.; et al. Donanemab: Appropriate Use Recommendations. J. Prev. Alzheimers Dis. 2025, 12, 100150. [Google Scholar] [CrossRef]
- Hoy, S.M. Lecanemab: First Approval. Drugs 2023, 83, 359–365. [Google Scholar] [CrossRef]
- Wang, R.; Reddy, P.H. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 57, 1041–1048. [Google Scholar] [CrossRef]
- Hopkins, T.J.; Rupprecht, L.E.; Hayes, M.R.; Blendy, J.A.; Schmidt, H.D. Galantamine, an Acetylcholinesterase Inhibitor and Positive Allosteric Modulator of Nicotinic Acetylcholine Receptors, Attenuates Nicotine Taking and Seeking in Rats. Neuropsychopharmacology 2012, 37, 2310–2321. [Google Scholar] [CrossRef]
- Lancet, T. Lecanemab for Alzheimer’s Disease: Tempering Hype and Hope. Lancet 2022, 400, 1899. [Google Scholar] [CrossRef] [PubMed]
- Weingarten, M.D.; Lockwood, A.H.; Hwo, S.Y.; Kirschner, M.W. A Protein Factor Essential for Microtubule Assembly. Proc. Natl. Acad. Sci. USA 1975, 72, 1858–1862. [Google Scholar] [CrossRef]
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-Synuclein in Filamentous Inclusions of Lewy Bodies from Parkinson’s Disease and Dementia with Lewy Bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473. [Google Scholar] [CrossRef]
- Mattson, M.P. Acetylation Unleashes Protein Demons of Dementia. Neuron 2010, 67, 900–902. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Braak, E. Neuropathological Stageing of Alzheimer-Related Changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Leveille, E.; Ross, O.A.; Gan-Or, Z. Tau and MAPT Genetics in Tauopathies and Synucleinopathies. Parkinsonism Relat. Disord. 2021, 90, 142–154. [Google Scholar] [CrossRef]
- Allen, M.; Kachadoorian, M.; Quicksall, Z.; Zou, F.; Chai, H.S.; Younkin, C.; Crook, J.E.; Pankratz, V.S.; Carrasquillo, M.M.; Krishnan, S.; et al. Association of MAPT Haplotypes with Alzheimer’s Disease Risk and MAPT Brain Gene Expression Levels. Alzheimers Res. Ther. 2014, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Dam, T.; Boxer, A.L.; Golbe, L.I.; Höglinger, G.U.; Morris, H.R.; Litvan, I.; Lang, A.E.; Corvol, J.-C.; Aiba, I.; Grundman, M.; et al. Safety and Efficacy of Anti-Tau Monoclonal Antibody Gosuranemab in Progressive Supranuclear Palsy: A Phase 2, Randomized, Placebo-Controlled Trial. Nat. Med. 2021, 27, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s Disease: Inhibition of Amyloid Beta and Tau Tangle Formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [Google Scholar] [CrossRef]
- Hoskin, J.L.; Sabbagh, M.N.; Al-Hasan, Y.; Decourt, B. Tau Immunotherapies for Alzheimer’s Disease. Expert Opin. Investig. Drugs 2019, 28, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, S.; Zempel, H. The Six Brain-specific TAU Isoforms and Their Role in Alzheimer’s Disease and Related Neurodegenerative Dementia Syndromes. Alzheimers Dement. 2024, 20, 3606–3628. [Google Scholar] [CrossRef]
- Parra Bravo, C.; Naguib, S.A.; Gan, L. Cellular and Pathological Functions of Tau. Nat. Rev. Mol. Cell Biol. 2024, 25, 845–864. [Google Scholar] [CrossRef]
- Janelidze, S.; Ashton, N.J.; Orduña Dolado, A.; Nordström, U.; Bali, D.; Forsberg, K.M.E.; Keskin, I.; Mastrangelo, A.; Vacchiano, V.; Liguori, R.; et al. A Comparison of P-tau Assays for the Specificity to Detect Tau Changes in Alzheimer’s Disease. Alzheimers Dement. 2025, 21, e70208. [Google Scholar] [CrossRef]
- Hervy, J.; Bicout, D.J. Dynamical Decoration of Stabilized-Microtubules by Tau-Proteins. Sci. Rep. 2019, 9, 12473. [Google Scholar] [CrossRef]
- Mansuroglu, Z.; Benhelli-Mokrani, H.; Marcato, V.; Sultan, A.; Violet, M.; Chauderlier, A.; Delattre, L.; Loyens, A.; Talahari, S.; Bégard, S.; et al. Loss of Tau Protein Affects the Structure, Transcription and Repair of Neuronal Pericentromeric Heterochromatin. Sci. Rep. 2016, 6, 33047. [Google Scholar] [CrossRef]
- Dixit, R.; Ross, J.L.; Goldman, Y.E.; Holzbaur, E.L.F. Differential Regulation of Dynein and Kinesin Motor Proteins by Tau. Science 2008, 319, 1086–1089. [Google Scholar] [CrossRef]
- Yuzwa, S.A.; Shan, X.; Macauley, M.S.; Clark, T.; Skorobogatko, Y.; Vosseller, K.; Vocadlo, D.J. Increasing O-GlcNAc Slows Neurodegeneration and Stabilizes Tau against Aggregation. Nat. Chem. Biol. 2012, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Iqbal, K.; Grundke-Iqbal, I.; Hart, G.W.; Gong, C.-X. O-GlcNAcylation Regulates Phosphorylation of Tau: A Mechanism Involved in Alzheimer’s Disease. Proc. Natl. Acad. Sci. 2004, 101, 10804–10809. [Google Scholar] [CrossRef] [PubMed]
- Ittner, L.M.; Ke, Y.D.; Delerue, F.; Bi, M.; Gladbach, A.; van Eersel, J.; Wölfing, H.; Chieng, B.C.; Christie, M.J.; Napier, I.A.; et al. Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer’s Disease Mouse Models. Cell 2010, 142, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Bell-Simons, M.; Buchholz, S.; Klimek, J.; Zempel, H. Laser-Induced Axotomy of Human iPSC-Derived and Murine Primary Neurons Decreases Somatic Tau and AT8 Tau Phosphorylation: A Single-Cell Approach to Study Effects of Acute Axonal Damage. Cell. Mol. Neurobiol. 2023, 43, 3497–3510. [Google Scholar] [CrossRef]
- Zempel, H.; Dennissen, F.J.A.; Kumar, Y.; Luedtke, J.; Biernat, J.; Mandelkow, E.-M.; Mandelkow, E. Axodendritic Sorting and Pathological Missorting of Tau Are Isoform-Specific and Determined by Axon Initial Segment Architecture. J. Biol. Chem. 2017, 292, 12192–12207. [Google Scholar] [CrossRef]
- Cohen, T.J.; Guo, J.L.; Hurtado, D.E.; Kwong, L.K.; Mills, I.P.; Trojanowski, J.Q.; Lee, V.M.Y. The Acetylation of Tau Inhibits Its Function and Promotes Pathological Tau Aggregation. Nat. Commun. 2011, 2, 252. [Google Scholar] [CrossRef]
- Min, S.-W.; Cho, S.-H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; et al. Acetylation of Tau Inhibits Its Degradation and Contributes to Tauopathy. Neuron 2010, 67, 953–966. [Google Scholar] [CrossRef]
- Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 Inflammasome Activation Drives Tau Pathology. Nature 2019, 575, 669–673. [Google Scholar] [CrossRef]
- Asai, H.; Ikezu, S.; Tsunoda, S.; Medalla, M.; Luebke, J.; Haydar, T.; Wolozin, B.; Butovsky, O.; Kügler, S.; Ikezu, T. Depletion of Microglia and Inhibition of Exosome Synthesis Halt Tau Propagation. Nat. Neurosci. 2015, 18, 1584–1593. [Google Scholar] [CrossRef]
- Sheng, Z.-H.; Cai, Q. Mitochondrial Transport in Neurons: Impact on Synaptic Homeostasis and Neurodegeneration. Nat. Rev. Neurosci. 2012, 13, 77–93. [Google Scholar] [CrossRef]
- Kjer-Hansen, P.; Phan, T.G.; Weatheritt, R.J. Protein Isoform-Centric Therapeutics: Expanding Targets and Increasing Specificity. Nat. Rev. Drug Discov. 2024, 23, 759–779. [Google Scholar] [CrossRef]
- Sandusky-Beltran, L.A.; Sigurdsson, E.M. Tau Immunotherapies: Lessons Learned, Current Status and Future Considerations. Neuropharmacology 2020, 175, 108104. [Google Scholar] [CrossRef]
- Holzer, M.; Holzapfel, H.-P.; Zedlick, D.; Brückner, M.K.; Arendt, T. Abnormally Phosphorylated Tau Protein in Alzheimer’s Disease: Heterogeneity of Individual Regional Distribution and Relationship to Clinical Severity. Neuroscience 1994, 63, 499–516. [Google Scholar] [CrossRef]
- Courade, J.-P.; Angers, R.; Mairet-Coello, G.; Pacico, N.; Tyson, K.; Lightwood, D.; Munro, R.; McMillan, D.; Griffin, R.; Baker, T.; et al. Epitope Determines Efficacy of Therapeutic Anti-Tau Antibodies in a Functional Assay with Human Alzheimer Tau. Acta Neuropathol. 2018, 136, 729–745. [Google Scholar] [CrossRef]
- Fitzpatrick, A.W.P.; Falcon, B.; He, S.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Crowther, R.A.; Ghetti, B.; Goedert, M.; Scheres, S.H.W. Cryo-EM Structures of Tau Filaments from Alzheimer’s Disease Brain. Nature 2017, 547, 185–190. [Google Scholar] [CrossRef]
- Singh, A.; Maheshwari, S.; Yadav, J.P.; Varshney, A.P.; Singh, S.; Prajapati, B.G. A Review on Tau Targeting Biomimetics Nano Formulations: Novel Approach for Targeting Alzheimer’s Diseases. Cent. Nerv. Syst. Agents Med. Chem. 2024, 24, 294–303. [Google Scholar] [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer’s Disease and Other Tauopathies. Int. J. Mol. Sci. 2022, 23, 12841. [Google Scholar] [CrossRef] [PubMed]
- Boyarko, B.; Hook, V. Human Tau Isoforms and Proteolysis for Production of Toxic Tau Fragments in Neurodegeneration. Front. Neurosci. 2021, 15, 702788. [Google Scholar] [CrossRef] [PubMed]
- Kent, S.A.; Spires-Jones, T.L.; Durrant, C.S. The Physiological Roles of Tau and Aβ: Implications for Alzheimer’s Disease Pathology and Therapeutics. Acta Neuropathol. 2020, 140, 417–447. [Google Scholar] [CrossRef] [PubMed]
- Drechsel, D.N.; Hyman, A.A.; Cobb, M.H.; Kirschner, M.W. Modulation of the Dynamic Instability of Tubulin Assembly by the Microtubule-Associated Protein Tau. Mol. Biol. Cell 1992, 3, 1141. [Google Scholar] [CrossRef] [PubMed]
- Avila, J.; Lucas, J.J.; Pérez, M.; Hernández, F. Role of Tau Protein in Both Physiological and Pathological Conditions. Physiol. Rev. 2004, 84, 361–384. [Google Scholar] [CrossRef]
- Goode, B.L.; Chau, M.; Denis, P.E.; Feinstein, S.C. Structural and Functional Differences between 3-Repeat and 4-Repeat Tau Isoforms: Implications for normal Tau function and the onset of neurodegenerative disease. J. Biol. Chem. 2000, 275, 38182–38189. [Google Scholar] [CrossRef]
- Derisbourg, M.; Leghay, C.; Chiappetta, G.; Fernandez-Gomez, F.-J.; Laurent, C.; Demeyer, D.; Carrier, S.; Buée-Scherrer, V.; Blum, D.; Vinh, J.; et al. Role of the Tau N-Terminal Region in Microtubule Stabilization Revealed by Newendogenous Truncated Forms. Sci. Rep. 2015, 5, 9659. [Google Scholar] [CrossRef]
- Goedert, M.; Spillantini, M.G.; Jakes, R.; Rutherford, D.; Crowther, R.A. Multiple Isoforms of Human Microtubule-Associated Protein Tau: Sequences and Localization in Neurofibrillary Tangles of Alzheimer’s Disease. Neuron 1989, 3, 519–526. [Google Scholar] [CrossRef]
- Novak, P.; Zilka, N.; Zilkova, M.; Kovacech, B.; Skrabana, R.; Ondrus, M.; Fialova, L.; Kontsekova, E.; Otto, M.; Novak, M. AADvac1, an Active Immunotherapy for Alzheimer’s Disease and Non Alzheimer Tauopathies: An Overview of Preclinical and Clinical Development. J. Prev. Alzheimers Dis. 2019, 6, 63–69. [Google Scholar] [CrossRef]
- Iwata-Endo, K.; Sahashi, K.; Kawai, K.; Fujioka, Y.; Okada, Y.; Watanabe, E.; Iwade, N.; Ishibashi, M.; Mohammad, M.; Aldoghachi, A.F.; et al. Correcting Tau Isoform Ratios with a Long-Acting Antisense Oligonucleotide Alleviates 4R-Tauopathy Phenotypes. Mol. Ther. Nucleic Acids 2025, 36, 102503. [Google Scholar] [CrossRef]
- Beaudet, D.; Chaudhary, A.R.; Berger, C.L.; Hendricks, A.G. Cargo-Specific Regulation of Transport by TAU. Biophys. J. 2021, 120, 162a. [Google Scholar] [CrossRef]
- Scholz, T.; Mandelkow, E. Transport and Diffusion of Tau Protein in Neurons. Cell. Mol. Life Sci. 2014, 71, 3139–3150. [Google Scholar] [CrossRef] [PubMed]
- Mueller, R.L.; Combs, B.; Alhadidy, M.M.; Brady, S.T.; Morfini, G.A.; Kanaan, N.M. Tau: A Signaling Hub Protein. Front. Mol. Neurosci. 2021, 14, 647054. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.-W.; Ondrejcak, T.; Klyubin, I.; Yang, Y.; Walsh, D.M.; Livesey, F.J.; Rowan, M.J. Patient-Derived Tau and Amyloid-β Facilitate Long-Term Depression in Vivo: Role of Tumour Necrosis Factor-α and the Integrated Stress Response. Brain Commun. 2024, 6, fcae333. [Google Scholar] [CrossRef]
- Wang, C.; Holtzman, D.M. Bidirectional Relationship between Sleep and Alzheimer’s Disease: Role of Amyloid, Tau, and Other Factors. Neuropsychopharmacology 2020, 45, 104–120. [Google Scholar] [CrossRef]
- Avila, J.; Perry, G. Memory, Sleep, and Tau Function. J. Alzheimer’s Dis. 2023, 94, 491–495. [Google Scholar] [CrossRef]
- Papanikolopoulou, K.; Roussou, I.G.; Gouzi, J.Y.; Samiotaki, M.; Panayotou, G.; Turin, L.; Skoulakis, E.M.C. Drosophila Tau Negatively Regulates Translation and Olfactory Long-Term Memory, But Facilitates Footshock Habituation and Cytoskeletal Homeostasis. J. Neurosci. 2019, 39, 8315–8329. [Google Scholar] [CrossRef]
- Fuster-Matanzo, A.; Hernández, F.; Ávila, J. Tau Spreading Mechanisms; Implications for Dysfunctional Tauopathies. Int. J. Mol. Sci. 2018, 19, 645. [Google Scholar] [CrossRef]
- Biundo, F.; Del Prete, D.; Zhang, H.; Arancio, O.; D’Adamio, L. A Role for Tau in Learning, Memory and Synaptic Plasticity. Sci. Rep. 2018, 8, 3184. [Google Scholar] [CrossRef] [PubMed]
- Tracy, T.E.; Gan, L. Tau-Mediated Synaptic and Neuronal Dysfunction in Neurodegenerative Disease. Curr. Opin. Neurobiol. 2018, 51, 134–138. [Google Scholar] [CrossRef]
- Fiock, K.L.; Smalley, M.E.; Crary, J.F.; Pasca, A.M.; Hefti, M.M. Increased Tau Expression Correlates with Neuronal Maturation in the Developing Human Cerebral Cortex. eNeuro 2020, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Galas, M.-C.; Bonnefoy, E.; Buee, L.; Lefebvre, B. Emerging Connections Between Tau and Nucleic Acids. In Tau Biology; Takashima, A., Wolozin, B., Buee, L., Eds.; Springer: Singapore, 2019; pp. 135–143. ISBN 978-981-329-358-8. [Google Scholar] [CrossRef]
- Violet, M.; Delattre, L.; Tardivel, M.; Sultan, A.; Chauderlier, A.; Caillierez, R.; Talahari, S.; Nesslany, F.; Lefebvre, B.; Bonnefoy, E.; et al. A Major Role for Tau in Neuronal DNA and RNA Protection in Vivo under Physiological and Hyperthermic Conditions. Front. Cell. Neurosci. 2014, 8, 84. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Adlard, P.A. Untangling Tau and Iron: Exploring the Interaction Between Iron and Tau in Neurodegeneration. Front. Mol. Neurosci. 2018, 11, 276. [Google Scholar] [CrossRef]
- Szabo, L.; Eckert, A.; Grimm, A. Insights into Disease-Associated Tau Impact on Mitochondria. Int. J. Mol. Sci. 2020, 21, 6344. [Google Scholar] [CrossRef]
- Pérez, M.J.; Jara, C.; Quintanilla, R.A. Contribution of Tau Pathology to Mitochondrial Impairment in Neurodegeneration. Front. Neurosci. 2018, 12, 441. [Google Scholar] [CrossRef]
- Kubota, T.; Kirino, Y. Age-Dependent Impairment of Memory and Neurofibrillary Tangle Formation and Clearance in a Mouse Model of Tauopathy. Brain Res. 2021, 1765, 147496. [Google Scholar] [CrossRef]
- Criado-Marrero, M.; Gebru, N.T.; Gould, L.A.; Blazier, D.M.; Vidal-Aguiar, Y.; Smith, T.M.; Abdelmaboud, S.S.; Shelton, L.B.; Wang, X.; Dahrendorff, J.; et al. FKBP52 Overexpression Accelerates Hippocampal-Dependent Memory Impairments in a Tau Transgenic Mouse Model. Npj Aging Mech. Dis. 2021, 7, 9. [Google Scholar] [CrossRef]
- Gonçalves, R.A.; Wijesekara, N.; Fraser, P.E.; De Felice, F.G. Behavioral Abnormalities in Knockout and Humanized Tau Mice. Front. Endocrinol. 2020, 11, 124. [Google Scholar] [CrossRef]
- Ikegami, S.; Harada, A.; Hirokawa, N. Muscle Weakness, Hyperactivity, and Impairment in Fear Conditioning in Tau-Deficient Mice. Neurosci. Lett. 2000, 279, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Sahara, N.; Yanai, R. Limitations of Human Tau-Expressing Mouse Models and Novel Approaches of Mouse Modeling for Tauopathy. Front. Neurosci. 2023, 17, 1149761. [Google Scholar] [CrossRef]
- Zattoni, M.; Mearelli, M.; Vanni, S.; Colini Baldeschi, A.; Tran, T.H.; Ferracin, C.; Catania, M.; Moda, F.; Di Fede, G.; Giaccone, G.; et al. Serpin Signatures in Prion and Alzheimer’s Diseases. Mol. Neurobiol. 2022, 59, 3778–3799. [Google Scholar] [CrossRef]
- Yin, X.; Zhao, C.; Qiu, Y.; Zhou, Z.; Bao, J.; Qian, W. Dendritic/Post-Synaptic Tau and Early Pathology of Alzheimer’s Disease. Front. Mol. Neurosci. 2021, 14, 671779. [Google Scholar] [CrossRef] [PubMed]
- Holper, S.; Watson, R.; Yassi, N. Tau as a Biomarker of Neurodegeneration. Int. J. Mol. Sci. 2022, 23, 7307. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yang, Z.; Zou, J.; Gao, H.; Shao, Z.; Li, C.; Lei, P. Protein Kinases in Neurodegenerative Diseases: Current Understandings and Implications for Drug Discovery. Signal Transduct. Target. Ther. 2025, 10, 146. [Google Scholar] [CrossRef]
- Liao, J.-C.; Yang, T.T.; Weng, R.R.; Kuo, C.-T.; Chang, C.-W. TTBK2: A Tau Protein Kinase beyond Tau Phosphorylation. BioMed Res. Int. 2015, 2015, 575170. [Google Scholar] [CrossRef]
- Biernat, J.; Wu, Y.-Z.; Timm, T.; Zheng-Fischhöfer, Q.; Mandelkow, E.; Meijer, L.; Mandelkow, E.-M. Protein Kinase MARK/PAR-1 Is Required for Neurite Outgrowth and Establishment of Neuronal Polarity. Mol. Biol. Cell 2002, 13, 4013–4028. [Google Scholar] [CrossRef]
- Buée, L.; Troquier, L.; Burnouf, S.; Belarbi, K.; Van der Jeugd, A.; Ahmed, T.; Fernandez-Gomez, F.; Caillierez, R.; Grosjean, M.-E.; Begard, S.; et al. From Tau Phosphorylation to Tau Aggregation: What about Neuronal Death? Biochem. Soc. Trans. 2010, 38, 967–972. [Google Scholar] [CrossRef]
- Jin, Y.; Vadukul, D.M.; Gialama, D.; Ge, Y.; Thrush, R.; White, J.T.; Aprile, F.A. The Diagnostic Potential of Amyloidogenic Proteins. Int. J. Mol. Sci. 2021, 22, 4128. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Salvadó, G.; Janelidze, S.; Pichet Binette, A.; Bali, D.; Karlsson, L.; Palmqvist, S.; Mattsson-Carlgren, N.; Stomrud, E.; Therriault, J.; et al. Plasma P-Tau217 and Tau-PET Predict Future Cognitive Decline among Cognitively Unimpaired Individuals: Implications for Clinical Trials. Nat. Aging 2025, 5, 883–896. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-Tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Calvet, M.; Karikari, T.K.; Ashton, N.J.; Lantero Rodríguez, J.; Milà-Alomà, M.; Gispert, J.D.; Salvadó, G.; Minguillon, C.; Fauria, K.; Shekari, M.; et al. Novel Tau Biomarkers Phosphorylated at T181, T217 or T231 Rise in the Initial Stages of the Preclinical Alzheimer’s Continuum When Only Subtle Changes in Aβ Pathology Are Detected. EMBO Mol. Med. 2020, 12, e12921. [Google Scholar] [CrossRef] [PubMed]
- Köpke, E.; Tung, Y.C.; Shaikh, S.; Alonso, A.C.; Iqbal, K.; Grundke-Iqbal, I. Microtubule-Associated Protein Tau. Abnormal Phosphorylation of a Non-Paired Helical Filament Pool in Alzheimer Disease. J. Biol. Chem. 1993, 268, 24374–24384. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Prokop, S.; Giasson, B.I. “Don’t Phos Over Tau”: Recent Developments in Clinical Biomarkers and Therapies Targeting Tau Phosphorylation in Alzheimer’s Disease and Other Tauopathies. Mol. Neurodegener. 2021, 16, 37. [Google Scholar] [CrossRef]
- Hampel, H.; Goernitz, A.; Buerger, K. Advances in the Development of Biomarkers for Alzheimer’s Disease: From CSF Total Tau and Aβ1–42 Proteins to Phosphorylated Tau Protein. Brain Res. Bull. 2003, 61, 243–253. [Google Scholar] [CrossRef]
- Mukherjee, A.; Biswas, A. CSF P-Tau 231 as Biomarker in Alzheimer’s Disease. Ann. Indian Acad. Neurol. 2022, 25, 995–996. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Lautner, R.; Andreasson, U.; Öhrfelt, A.; Portelius, E.; Bjerke, M.; Hölttä, M.; Rosén, C.; Olsson, C.; Strobel, G.; et al. CSF and Blood Biomarkers for the Diagnosis of Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Lancet Neurol. 2016, 15, 673–684. [Google Scholar] [CrossRef]
- Biernat, J.; Mandelkow, E.-M. The Development of Cell Processes Induced by Tau Protein Requires Phosphorylation of Serine 262 and 356 in the Repeat Domain and Is Inhibited by Phosphorylation in the Proline-Rich Domains. Mol. Biol. Cell 1999, 10, 727–740. [Google Scholar] [CrossRef]
- Sultanakhmetov, G.; Kato, I.; Asada, A.; Saito, T.; Ando, K. Microtubule-Affinity Regulating Kinase Family Members Distinctively Affect Tau Phosphorylation and Promote Its Toxicity in a Drosophila Model. Genes Cells 2024, 29, 337–346. [Google Scholar] [CrossRef]
- Goedert, M.; Jakes, R. Mutations Causing Neurodegenerative Tauopathies. Biochim. Biophys. Acta BBA—Mol. Basis Dis. 2005, 1739, 240–250. [Google Scholar] [CrossRef]
- Ganguly, P.; Do, T.D.; Larini, L.; LaPointe, N.E.; Sercel, A.J.; Shade, M.F.; Feinstein, S.C.; Bowers, M.T.; Shea, J.-E. Tau Assembly: The Dominant Role of PHF6 (VQIVYK) in Microtubule Binding Region Repeat R3. J. Phys. Chem. B 2015, 119, 4582–4593. [Google Scholar] [CrossRef] [PubMed]
- Collin, L.; Bohrmann, B.; Göpfert, U.; Oroszlan-Szovik, K.; Ozmen, L.; Grüninger, F. Neuronal Uptake of Tau/pS422 Antibody and Reduced Progression of Tau Pathology in a Mouse Model of Alzheimer‘s Disease. Brain 2014, 137, 2834–2846. [Google Scholar] [CrossRef] [PubMed]
- Meredith, J.E., Jr.; Sankaranarayanan, S.; Guss, V.; Lanzetti, A.J.; Berisha, F.; Neely, R.J.; Slemmon, J.R.; Portelius, E.; Zetterberg, H.; Blennow, K.; et al. Characterization of Novel CSF Tau and Ptau Biomarkers for Alzheimer’s Disease. PLoS ONE 2013, 8, e76523. [Google Scholar] [CrossRef]
- Hulse, J.P.; Maphis, N.M.; Peabody, J.; Bondu, V.; Chackerian, B.; Bhaskar, K. pS396/pS404 (PHF1) Tau Vaccine Outperforms pS199/pS202 (AT8) in rTg4510 Tauopathy Model. NPJ Vaccines 2025, 10, 94. [Google Scholar] [CrossRef]
- Bhaskar, K.; Konerth, M.; Kokiko-Cochran, O.N.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T. Regulation of Tau Pathology by the Microglial Fractalkine Receptor. Neuron 2010, 68, 19–31. [Google Scholar] [CrossRef]
- Briel, N.; Pratsch, K.; Roeber, S.; Arzberger, T.; Herms, J. Contribution of the Astrocytic Tau Pathology to Synapse Loss in Progressive Supranuclear Palsy and Corticobasal Degeneration. Brain Pathol. 2020, 31, e12914. [Google Scholar] [CrossRef]
- Mathis, C.A.; Lopresti, B.J.; Ikonomovic, M.D.; Klunk, W.E. Small-Molecule PET Tracers for Imaging Proteinopathies. Semin. Nucl. Med. 2017, 47, 553–575. [Google Scholar] [CrossRef]
- Horie, K.; Salvadó, G.; Barthélemy, N.R.; Janelidze, S.; Li, Y.; He, Y.; Saef, B.; Chen, C.D.; Jiang, H.; Strandberg, O.; et al. CSF MTBR-Tau243 Is a Specific Biomarker of Tau Tangle Pathology in Alzheimer’s Disease. Nat. Med. 2023, 29, 1954–1963. [Google Scholar] [CrossRef]
- Dancy, B.M.; Cole, P.A. Protein Lysine Acetylation by P300/CBP. Chem. Rev. 2015, 115, 2419. [Google Scholar] [CrossRef]
- Min, S.-W.; Sohn, P.D.; Li, Y.; Devidze, N.; Johnson, J.R.; Krogan, N.J.; Masliah, E.; Mok, S.-A.; Gestwicki, J.E.; Gan, L. SIRT1 Deacetylates Tau and Reduces Pathogenic Tau Spread in a Mouse Model of Tauopathy. J. Neurosci. 2018, 38, 3680–3688. [Google Scholar] [CrossRef] [PubMed]
- Castro, T.G.; Ferreira, T.; Matamá, T.; Munteanu, F.-D.; Cavaco-Paulo, A. Acetylation and Phosphorylation Processes Modulate Tau’s Binding to Microtubules: A Molecular Dynamics Study. Biochim. Biophys. Acta BBA—Gen. Subj. 2023, 1867, 130276. [Google Scholar] [CrossRef]
- Kontaxi, C.; Piccardo, P.; Gill, A.C. Lysine-Directed Post-Translational Modifications of Tau Protein in Alzheimer’s Disease and Related Tauopathies. Front. Mol. Biosci. 2017, 4, 56. [Google Scholar] [CrossRef]
- Min, S.-W.; Chen, X.; Tracy, T.E.; Li, Y.; Zhou, Y.; Wang, C.; Shirakawa, K.; Minami, S.S.; Defensor, E.; Mok, S.A.; et al. Critical Role of Acetylation in Tau-Mediated Neurodegeneration and Cognitive Deficits. Nat. Med. 2015, 21, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Trzeciakiewicz, H.; Tseng, J.-H.; Wander, C.M.; Madden, V.; Tripathy, A.; Yuan, C.-X.; Cohen, T.J. A Dual Pathogenic Mechanism Links Tau Acetylation to Sporadic Tauopathy. Sci. Rep. 2017, 7, 44102. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Nguyen, B.A.; Mullapudi, V.; Li, Y.; Saelices, L.; Joachimiak, L.A. Disease-Associated Patterns of Acetylation Stabilize Tau Fibril Formation. Structure 2023, 31, 1025–1037.e4. [Google Scholar] [CrossRef]
- Smith, E.D.; Torrellas, J.; McKenna, R.; Vo, Q.; Mietzsch, M.; Borchelt, D.R.; Prokop, S.; Chakrabarty, P. Acetylation Mimetic and Null Mutations within the Filament Core of P301L Tau Have Varied Effects on Susceptibility to Seeding and Aggregation. J. Neurochem. 2025, 169, e70221. [Google Scholar] [CrossRef]
- Gorsky, M.K.; Burnouf, S.; Sofola-Adesakin, O.; Dols, J.; Augustin, H.; Weigelt, C.M.; Grönke, S.; Partridge, L. Pseudo-Acetylation of Multiple Sites on Human Tau Proteins Alters Tau Phosphorylation and Microtubule Binding, and Ameliorates Amyloid Beta Toxicity. Sci. Rep. 2017, 7, 9984. [Google Scholar] [CrossRef]
- Caballero, B.; Bourdenx, M.; Luengo, E.; Diaz, A.; Sohn, P.D.; Chen, X.; Wang, C.; Juste, Y.R.; Wegmann, S.; Patel, B.; et al. Acetylated Tau Inhibits Chaperone-Mediated Autophagy and Promotes Tau Pathology Propagation in Mice. Nat. Commun. 2021, 12, 2238. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. Cells 2022, 11, 851. [Google Scholar] [CrossRef]
- Xia, Y.; Bell, B.M.; Giasson, B.I. Tau K321/K353 Pseudoacetylation within KXGS Motifs Regulates Tau–Microtubule Interactions and Inhibits Aggregation. Sci. Rep. 2021, 11, 17069. [Google Scholar] [CrossRef] [PubMed]
- Ajit, D.; Trzeciakiewicz, H.; Tseng, J.-H.; Wander, C.M.; Chen, Y.; Ajit, A.; King, D.P.; Cohen, T.J. A Unique Tau Conformation Generated by an Acetylation-Mimic Substitution Modulates P301S-Dependent Tau Pathology and Hyperphosphorylation. J. Biol. Chem. 2019, 294, 16698–16711. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Raptova, R.; Alomar, S.Y.; Alwasel, S.H.; Nepovimova, E.; Kuca, K.; Valko, M. Reactive Oxygen Species, Toxicity, Oxidative Stress, and Antioxidants: Chronic Diseases and Aging. Arch. Toxicol. 2023, 97, 2499–2574. [Google Scholar] [CrossRef] [PubMed]
- Tu, D.; Velagapudi, R.; Gao, Y.; Hong, J.-S.; Zhou, H.; Gao, H.-M. Activation of Neuronal NADPH Oxidase NOX2 Promotes Inflammatory Neurodegeneration. Free Radic. Biol. Med. 2023, 200, 47–58. [Google Scholar] [CrossRef]
- Peng, T.-I.; Jou, M.-J. Oxidative Stress Caused by Mitochondrial Calcium Overload. Ann. N. Y. Acad. Sci. 2010, 1201, 183–188. [Google Scholar] [CrossRef]
- Shiau, J.-P.; Chuang, Y.-T.; Tang, J.-Y.; Yang, K.-H.; Chang, F.-R.; Hou, M.-F.; Yen, C.-Y.; Chang, H.-W. The Impact of Oxidative Stress and AKT Pathway on Cancer Cell Functions and Its Application to Natural Products. Antioxidants 2022, 11, 1845. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, M.; Hashiguchi, T. Chapter Four—Kinase–Kinase Interaction and Modulation of Tau Phosphorylation. In International Review of Cell and Molecular Biology; Jeon, K.W., Ed.; International Review of Cell and Molecular Biology; Academic Press: Cambridge, MA, USA, 2013; Volume 300, pp. 121–160. [Google Scholar] [CrossRef]
- Breitzig, M.; Bhimineni, C.; Lockey, R.; Kolliputi, N. 4-Hydroxy-2-Nonenal: A Critical Target in Oxidative Stress? Am. J. Physiol.—Cell Physiol. 2016, 311, C537–C543. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xu, Y.F.; Chen, X.Q.; Wang, X.C.; Wang, J.-Z. Nitration and Oligomerization of Tau Induced by Peroxynitrite Inhibit Its Microtubule-Binding Activity. FEBS Lett. 2005, 579, 2421–2427. [Google Scholar] [CrossRef]
- Hatters, D.M. Flipping the Switch: How Cysteine Oxidation Directs Tau Amyloid Conformations. J. Biol. Chem. 2021, 297, 101309. [Google Scholar] [CrossRef]
- García-Domínguez, M. Neuroinflammation: Mechanisms, Dual Roles, and Therapeutic Strategies in Neurological Disorders. Curr. Issues Mol. Biol. 2025, 47, 417. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, A.; Rehman, S.A.; Subhani, A.; Khan, M.A.; Rahman, Z.; Iqubal, M.K.; Iqubal, A. Mechanism of Microglia-Mediated Neuroinflammation, Associated Cognitive Dysfunction, and Therapeutic Updates in Alzheimer’s Disease. hLife 2025, 3, 64–81. [Google Scholar] [CrossRef]
- Bachstetter, A.D.; Xing, B.; de Almeida, L.; Dimayuga, E.R.; Watterson, D.M.; Van Eldik, L.J. Microglial P38α MAPK Is a Key Regulator of Proinflammatory Cytokine Up-Regulation Induced by Toll-like Receptor (TLR) Ligands or Beta-Amyloid (Aβ). J. Neuroinflammation 2011, 8, 79. [Google Scholar] [CrossRef]
- Wei, Z.; Mahaman, Y.A.R.; Zhu, F.; Wu, M.; Xia, Y.; Zeng, K.; Yang, Y.; Liu, R.; Wang, J.-Z.; Shu, X.; et al. GSK-3β and ERK1/2 Incongruously Act in Tau Hyperphosphorylation in SPS-Induced PTSD Rats. Aging 2019, 11, 7978–7995. [Google Scholar] [CrossRef]
- Španić, E.; Langer Horvat, L.; Hof, P.R.; Šimić, G. Role of Microglial Cells in Alzheimer’s Disease Tau Propagation. Front. Aging Neurosci. 2019, 11, 271. [Google Scholar] [CrossRef]
- Dinkins, M.B.; Enasko, J.; Hernandez, C.; Wang, G.; Kong, J.; Helwa, I.; Liu, Y.; Terry, A.V.; Bieberich, E. Neutral Sphingomyelinase-2 Deficiency Ameliorates Alzheimer’s Disease Pathology and Improves Cognition in the 5XFAD Mouse. J. Neurosci. 2016, 36, 8653–8667. [Google Scholar] [CrossRef]
- Shi, F.-D.; Yong, V.W. Neuroinflammation across Neurological Diseases. Science 2025, 388, eadx0043. [Google Scholar] [CrossRef]
- Odfalk, K.F.; Bieniek, K.F.; Hopp, S.C. Microglia: Friend and Foe in Tauopathy. Prog. Neurobiol. 2022, 216, 102306. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, L.; Gonzalo-Consuegra, C.; Gómez-Almería, M.; Porras, G.; de Lago, E.; Martín-Requero, Á.; Martínez, A. Tideglusib, a Non-ATP Competitive Inhibitor of GSK-3β as a Drug Candidate for the Treatment of Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2021, 22, 8975. [Google Scholar] [CrossRef]
- Lovestone, S.; Boada, M.; Dubois, B.; Hüll, M.; Rinne, J.O.; Huppertz, H.-J.; Calero, M.; Andrés, M.V.; Gómez-Carrillo, B.; León, T.; et al. A Phase II Trial of Tideglusib in Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 45, 75–88. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Nygaard, H.B.; Chen, K.; Donohue, M.C.; Raman, R.; Rissman, R.A.; Brewer, J.B.; Koeppe, R.A.; Chow, T.W.; Rafii, M.S.; et al. Effect of AZD0530 on Cerebral Metabolic Decline in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2019, 76, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Prins, N.D.; Harrison, J.E.; Chu, H.-M.; Blackburn, K.; Alam, J.J.; Scheltens, P. A Phase 2 Double-Blind Placebo-Controlled 24-Week Treatment Clinical Study of the P38 Alpha Kinase Inhibitor Neflamapimod in Mild Alzheimer’s Disease. Alzheimers Res. Ther. 2021, 13, 106. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, N.M.; Martin, D.; Hutter-Paier, B.; Windisch, M.; Nguyen, T.; Nheu, L.; Sundstrom, L.E.; Costello, A.J.; Hovens, C.M. Sodium Selenate Specifically Activates PP2A Phosphatase, Dephosphorylates Tau and Reverses Memory Deficits in an Alzheimer’s Disease Model. J. Clin. Neurosci. 2010, 17, 1025–1033. [Google Scholar] [CrossRef]
- Eli Lilly and Company. Assessment of Safety, Tolerability, and Efficacy of LY3372689 in Early Symptomatic Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://www.clinicaltrials.gov/study/NCT05063539 (accessed on 11 September 2025).
- Ferrer Internacional, S.A. A Randomized, Double-Blind, Placebo-Controlled, Phase 2 Study to Assess the Efficacy, Safety, and Pharmacokinetics of FNP-223 (Oral Formulation) to Slow the Disease Progression of Progressive Supranuclear Palsy (PSP) (PROSPER). ClinicalTrials.gov, 2025. Available online: https://www.clinicaltrials.gov/study/NCT06355531?term=AREA%5BConditionSearch%5D(%22Progressive%20Supranuclear%20Palsy%22)&rank=3 (accessed on 11 September 2025).
- Biogen. A Phase 1 Randomized, Blinded, Placebo-Controlled, Single- and Multiple-Ascending Dose Study to Evaluate the Safety, Tolerability, and Pharmacokinetics, with an Open-Label Target Occupancy Study of BIIB113 in Healthy Participants. ClinicalTrials.gov, 2024. Available online: https://clinicaltrials.gov/study/NCT05195008 (accessed on 11 September 2025).
- Wang, L.; Bharti; Kumar, R.; Pavlov, P.F.; Winblad, B. Small Molecule Therapeutics for Tauopathy in Alzheimer’s Disease: Walking on the Path of Most Resistance. Eur. J. Med. Chem. 2021, 209, 112915. [Google Scholar] [CrossRef]
- Valor, L.M.; Viosca, J.; Lopez-Atalaya, J.P.; Barco, A. Lysine Acetyltransferases CBP and P300 as Therapeutic Targets in Cognitive and Neurodegenerative Disorders. Curr. Pharm. Des. 2013, 19, 5051–5064. [Google Scholar] [CrossRef]
- Ren, B.; Situ, J.; Huang, X.; Tan, Q.; Xiao, S.; Li, N.; Tian, J.; Du, X.; Ni, J.; Liu, Q. Selenoprotein W Modulates Tau Homeostasis in an Alzheimer’s Disease Mouse Model. Commun. Biol. 2024, 7, 872. [Google Scholar] [CrossRef]
- Vettorazzi, S.; Tuckermann, J. Tau(t)Ing Glucocorticoid Binding. Cell Res. 2025, 35, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wen, J.; Ramirez, L.-M.; Gümüşdil, E.; Pokhrel, P.; Man, V.H.; Ye, H.; Han, Y.; Liu, Y.; Li, P.; et al. Methylene Blue Accelerates Liquid-to-Gel Transition of Tau Condensates Impacting Tau Function and Pathology. Nat. Commun. 2023, 14, 5444. [Google Scholar] [CrossRef]
- Akoury, E.; Pickhardt, M.; Gajda, M.; Biernat, J.; Mandelkow, E.; Zweckstetter, M. Mechanistic Basis of Phenothiazine-Driven Inhibition of Tau Aggregation. Angew. Chem. Int. Ed. 2013, 52, 3511–3515. [Google Scholar] [CrossRef]
- Bieschke, J.; Russ, J.; Friedrich, R.P.; Ehrnhoefer, D.E.; Wobst, H.; Neugebauer, K.; Wanker, E.E. EGCG Remodels Mature α-Synuclein and Amyloid-β Fibrils and Reduces Cellular Toxicity. Proc. Natl. Acad. Sci. USA 2010, 107, 7710–7715. [Google Scholar] [CrossRef]
- Sonawane, S.K.; Chidambaram, H.; Boral, D.; Gorantla, N.V.; Balmik, A.A.; Dangi, A.; Ramasamy, S.; Marelli, U.K.; Chinnathambi, S. EGCG Impedes Human Tau Aggregation and Interacts with Tau. Sci. Rep. 2020, 10, 12579. [Google Scholar] [CrossRef]
- Avila, J. Tau Phosphorylation and Aggregation in Alzheimer’s Disease Pathology. FEBS Lett. 2006, 580, 2922–2927. [Google Scholar] [CrossRef]
- Zapadka, K.L.; Becher, F.J.; Gomes dos Santos, A.L.; Jackson, S.E. Factors Affecting the Physical Stability (Aggregation) of Peptide Therapeutics. Interface Focus 2017, 7, 20170030. [Google Scholar] [CrossRef]
- Moreira, G.G.; Cristóvão, J.S.; Torres, V.M.; Carapeto, A.P.; Rodrigues, M.S.; Landrieu, I.; Cordeiro, C.; Gomes, C.M. Zinc Binding to Tau Influences Aggregation Kinetics and Oligomer Distribution. Int. J. Mol. Sci. 2019, 20, 5979. [Google Scholar] [CrossRef] [PubMed]
- Cherny, R.A.; Barnham, K.J.; Bush, A.I.; Cappai, R.; Gautier, E.C.L.; Masters, C.L.; Carrington, D.; Kocak, G.; Volitakis, I.; Kok, G.B. P4–435: PBT2, a Novel MPAC for the Treatment of Alzheimer’s Disease. Alzheimers Dement. 2006, 2, S646. [Google Scholar] [CrossRef]
- Perez, D.R.; Sklar, L.A.; Chigaev, A. Clioquinol: To Harm or Heal. Pharmacol. Ther. 2019, 199, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.R.; Falsig, J.; Stavenhagen, J.B.; Christensen, S.; Kartberg, F.; Rosenqvist, N.; Finsen, B.; Pedersen, J.T. Antibody-Mediated Clearance of Tau in Primary Mouse Microglial Cultures Requires Fcγ-Receptor Binding and Functional Lysosomes. Sci. Rep. 2019, 9, 4658. [Google Scholar] [CrossRef]
- JNJ-2056, Targeting Tau Protein, Receives FDA Fast Track Designation for Alzheimer Disease. Available online: https://www.pharmacytimes.com/view/jnj-2056-targeting-tau-protein-receives-fda-fast-track-designation-for-alzheimer-disease (accessed on 19 August 2025).
- GemVax & Kael. A Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Design, Prospective, 52-Week, Phase 2 Clinical Study to Evaluate the Safety and Efficacy of GV1001 Administered Subcutaneously for the Treatment of Mild to Moderate AD. ClinicalTrials.gov, 2024. Available online: https://clinicaltrials.gov/study/NCT05189210 (accessed on 11 September 2025).
- GemVax & Kael. Twelve-Months Extension Study to Explore the Long-Term Safety and Efficacy of Subcutaneous Administration of GV1001 1.12 Mg/Day in Patients with Progressive Supranuclear Palsy Who Completed Study GV1001-PSP-CL2-011. ClinicalTrials.gov, 2024. Available online: https://www.clinicaltrials.gov/study/NCT06235775?term=AREA%5BBasicSearch%5D(primovax)&rank=3 (accessed on 11 September 2025).
- Golde, T.E.; Lewis, J.; McFarland, N.R. Anti-Tau Antibodies: Hitting the Target. Neuron 2013, 80, 254–256. [Google Scholar] [CrossRef]
- Roberts, M.; Sevastou, I.; Imaizumi, Y.; Mistry, K.; Talma, S.; Dey, M.; Gartlon, J.; Ochiai, H.; Zhou, Z.; Akasofu, S.; et al. Pre-Clinical Characterisation of E2814, a High-Affinity Antibody Targeting the Microtubule-Binding Repeat Domain of Tau for Passive Immunotherapy in Alzheimer’s Disease. Acta Neuropathol. Commun. 2020, 8, 13. [Google Scholar] [CrossRef]
- Wildsmith, K.R.; Horie, K.; Charil, A.; Barthelemy, N.; Verbel, D.; Reihac-laborde, A.; Gordon, B.; Boyd, P.; Bell, R.; Rawal, S.; et al. Anti-Tau Therapeutic Antibody, E2814, Reduces Early and Late Tau Pathology Biomarkers in Patients with Dominantly-Inherited Alzheimer’s Disease (DIAD). In Proceedings of the Clinical Trials on Alzheimer’s Disease Conference, Madrid, Spain, 29 October–1 November 2024. [Google Scholar]
- Harris, G.A.; Hirschfeld, L.R.; Gonzalez, M.I.; Pritchard, M.C.; May, P.C. Revisiting the Therapeutic Landscape of Tauopathies: Assessing the Current Pipeline and Clinical Trials. Alzheimers Res. Ther. 2025, 17, 129. [Google Scholar] [CrossRef]
- Panza, F.; Dibello, V.; Sardone, R.; Castellana, F.; Zupo, R.; Lampignano, L.; Bortone, I.; Stallone, R.; Cirillo, N.; Damiani, C.; et al. Clinical Development of Passive Tau-Based Immunotherapeutics for Treating Primary and Secondary Tauopathies. Expert Opin. Investig. Drugs 2023, 32, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, E.M. Tau Immunotherapies for Alzheimer’s Disease and Related Tauopathies: Status of Trials and Insights from Preclinical Studies. J. Alzheimers Dis. JAD 2024, 101, S129–S140. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal Antibody Pharmacokinetics and Pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef]
- Schauer, S.P.; Toth, B.; Lee, J.; Honigberg, L.A.; Ramakrishnan, V.; Jiang, J.; Kollmorgen, G.; Bayfield, A.; Wild, N.; Hoffman, J.; et al. Pharmacodynamic Effects of Semorinemab on Plasma and CSF Biomarkers of Alzheimer’s Disease Pathophysiology. Alzheimers Dement. 2024, 20, 8855–8866. [Google Scholar] [CrossRef]
- Monteiro, C.; Toth, B.; Brunstein, F.; Bobbala, A.; Datta, S.; Ceniceros, R.; Sanabria Bohorquez, S.M.; Anania, V.G.; Wildsmith, K.R.; Schauer, S.P.; et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants With Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology 2023, 101, e1391–e1401. [Google Scholar] [CrossRef]
- West, T.; Hu, Y.; Verghese, P.B.; Bateman, R.J.; Braunstein, J.B.; Fogelman, I.; Budur, K.; Florian, H.; Mendonca, N.; Holtzman, D.M. Preclinical and Clinical Development of Abbv-8e12, a Humanized Anti-Tau Antibody, for Treatment of Alzheimer’s Disease and Other Tauopathies. J. Prev. Alzheimers Dis. 2017, 4, 236–241. [Google Scholar] [PubMed]
- Robinson, S.R.; Bishop, G.M.; Lee, H.; Münch, G. Lessons from the AN 1792 Alzheimer Vaccine: Lest We Forget. Neurobiol. Aging 2004, 25, 609–615. [Google Scholar] [CrossRef]
- Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-Targeting Therapies for Alzheimer Disease: Current Status and Future Directions. Nat. Rev. Neurol. 2023, 19, 715–736. [Google Scholar] [CrossRef]
- Ando, K.; Maruko-Otake, A.; Ohtake, Y.; Hayashishita, M.; Sekiya, M.; Iijima, K.M. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet. 2016, 12, e1005917. [Google Scholar] [CrossRef] [PubMed]
- Fellner, S.; Bauer, B.; Miller, D.S.; Schaffrik, M.; Fankhänel, M.; Spruß, T.; Bernhardt, G.; Graeff, C.; Färber, L.; Gschaidmeier, H.; et al. Transport of Paclitaxel (Taxol) across the Blood-Brain Barrier in Vitro and in Vivo. J. Clin. Investig. 2002, 110, 1309–1318. [Google Scholar] [CrossRef]
- Krishna, S.S.; Shaji, N.; Kumar, N.V.; Das, A.; Mangalath, S.; Biswas, L.; Pavithran, K. Emerging Targets and Translational Challenges in Treating Paclitaxel-Induced Peripheral Neuropathy. Mol. Biol. Rep. 2025, 52, 833. [Google Scholar] [CrossRef]
- Epothilone D—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/epothilone-d (accessed on 19 August 2025).
- Khodakiya, A.; Chaudhary, S.; Chaudhary, A.; Prajapati, B.G. Chapter 18—Novel Therapeutic Approaches for Targeting Alzheimer’s Disease. In Alzheimer’s Disease and Advanced Drug Delivery Strategies; Prajapati, B.G., Chellappan, D.K., Kendre, P.N., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 297–318. ISBN 978-0-443-13205-6. [Google Scholar]
- Brunden, K.R.; Yao, Y.; Potuzak, J.S.; Ferrer, N.I.; Ballatore, C.; James, M.J.; Hogan, A.-M.L.; Trojanowski, J.Q.; Smith, A.B.; Lee, V.M.-Y. The Characterization of Microtubule-Stabilizing Drugs as Possible Therapeutic Agents for Alzheimer’s Disease and Related Tauopathies. Pharmacol. Res. Off. J. Ital. Pharmacol. Soc. 2011, 63, 341–351. [Google Scholar] [CrossRef]
- Fitzgerald, D.P.; Emerson, D.L.; Qian, Y.; Anwar, T.; Liewehr, D.J.; Steinberg, S.M.; Silberman, S.; Palmieri, D.; Steeg, P.S. TPI-287, a New Taxane Family Member, Reduces the Brain Metastatic Colonization of Breast Cancer Cells. Mol. Cancer Ther. 2012, 11, 1959–1967. [Google Scholar] [CrossRef]
- Clark, J.A.; Chuckowree, J.A.; Dyer, M.S.; Dickson, T.C.; Blizzard, C.A. Epothilone D Alters Normal Growth, Viability and Microtubule Dependent Intracellular Functions of Cortical Neurons in Vitro. Sci. Rep. 2020, 10, 918. [Google Scholar] [CrossRef] [PubMed]
- Ballatore, C.; Brunden, K.R.; Huryn, D.M.; Trojanowski, J.Q.; Lee, V.M.-Y.; Smith, A.B. Microtubule Stabilizing Agents as Potential Treatment for Alzheimer’s Disease and Related Neurodegenerative Tauopathies. J. Med. Chem. 2012, 55, 8979–8996. [Google Scholar] [CrossRef] [PubMed]
- Basheer, N.; Buee, L.; Brion, J.-P.; Smolek, T.; Muhammadi, M.K.; Hritz, J.; Hromadka, T.; Dewachter, I.; Wegmann, S.; Landrieu, I.; et al. Shaping the Future of Preclinical Development of Successful Disease-Modifying Drugs against Alzheimer’s Disease: A Systematic Review of Tau Propagation Models. Acta Neuropathol. Commun. 2024, 12, 52. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, M.; Hu, Y.; Guo, H.; Zhang, Y.; Huang, Y.; Zhao, L.; Chai, Y.; Wang, Z. Blockade of Exosome Generation by GW4869 Inhibits the Education of M2 Macrophages in Prostate Cancer. BMC Immunol. 2022, 23, 37. [Google Scholar] [CrossRef]
- Yamada, K. Extracellular Tau and Its Potential Role in the Propagation of Tau Pathology. Front. Neurosci. 2017, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Lamanna, W.C.; Esko, J.D. Heparan Sulfate Proteoglycans. Cold Spring Harb. Perspect. Biol. 2011, 3, a004952. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Zheng, T. Role of the Endolysosomal Pathway and Exosome Release in Tau Propagation. Neurochem. Int. 2021, 145, 104988. [Google Scholar] [CrossRef]
- Pei, D.; Buyanova, M. Overcoming Endosomal Entrapment in Drug Delivery. Bioconjug. Chem. 2019, 30, 273–283. [Google Scholar] [CrossRef]
- Cummings, J.; Gold, M.; Mintun, M.; Irizarry, M.; von Eschenbach, A.; Hendrix, S.; Berry, D.; Sampaio, C.; Sink, K.; Landen, J.; et al. Key Considerations for Combination Therapy in Alzheimer’s Clinical Trials: Perspectives from an Expert Advisory Board Convened by the Alzheimer’s Drug Discovery Foundation. J. Prev. Alzheimers Dis. 2025, 12, 100001. [Google Scholar] [CrossRef]
- Mummery, C.J.; Börjesson-Hanson, A.; Blackburn, D.J.; Vijverberg, E.G.B.; De Deyn, P.P.; Ducharme, S.; Jonsson, M.; Schneider, A.; Rinne, J.O.; Ludolph, A.C.; et al. Tau-Targeting Antisense Oligonucleotide MAPTRx in Mild Alzheimer’s Disease: A Phase 1b, Randomized, Placebo-Controlled Trial. Nat. Med. 2023, 29, 1437–1447. [Google Scholar] [CrossRef]
- Penny, L.K.; Lofthouse, R.; Arastoo, M.; Porter, A.; Palliyil, S.; Harrington, C.R.; Wischik, C.M. Considerations for Biomarker Strategies in Clinical Trials Investigating Tau-Targeting Therapeutics for Alzheimer’s Disease. Transl. Neurodegener. 2024, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Dugal-Tessier, J.; Thirumalairajan, S.; Jain, N. Antibody-Oligonucleotide Conjugates: A Twist to Antibody-Drug Conjugates. J. Clin. Med. 2021, 10, 838. [Google Scholar] [CrossRef]
- Eisai Inc. A Phase 2, Placebo-Controlled, Double-Blind, Parallel-Group, Dose-Finding Study to Evaluate Safety, Tolerability, and Biomarker Efficacy of E2814 with Concurrent Lecanemab Treatment in Subjects with Early Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT06602258 (accessed on 11 September 2025).
- Yang, J.; Zhi, W.; Wang, L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024, 29, 2812. [Google Scholar] [CrossRef]
- Dominguez-Meijide, A.; Vasili, E.; Outeiro, T.F. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci. 2020, 10, 858. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tepper, K.; Kaniyappan, S.; Biernat, J.; Wegmann, S.; Mandelkow, E.-M.; Müller, D.J.; Mandelkow, E. Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity. J. Biol. Chem. 2014, 289, 20318–20332. [Google Scholar] [CrossRef] [PubMed]
- Prezel, E.; Elie, A.; Delaroche, J.; Stoppin-Mellet, V.; Bosc, C.; Serre, L.; Fourest-Lieuvin, A.; Andrieux, A.; Vantard, M.; Arnal, I. Tau Can Switch Microtubule Network Organizations: From Random Networks to Dynamic and Stable Bundles. Mol. Biol. Cell 2018, 29, 154–165. [Google Scholar] [CrossRef]
- Gogola, A.; Minhas, D.S.; Villemagne, V.L.; Cohen, A.D.; Mountz, J.M.; Pascoal, T.A.; Laymon, C.M.; Mason, N.S.; Ikonomovic, M.D.; Mathis, C.A.; et al. Direct Comparison of the Tau PET Tracers 18F-Flortaucipir and 18F-MK-6240 in Human Subjects. J. Nucl. Med. 2022, 63, 108–116. [Google Scholar] [CrossRef]
- Schönecker, S.; Palleis, C.; Franzmeier, N.; Katzdobler, S.; Ferschmann, C.; Schuster, S.; Finze, A.; Scheifele, M.; Prix, C.; Fietzek, U.; et al. Symptomatology in 4-Repeat Tauopathies Is Associated with Data-Driven Topology of [18F]-PI-2620 Tau-PET Signal. NeuroImage Clin. 2023, 38, 103402. [Google Scholar] [CrossRef]
- Barthélemy, N.R.; Bateman, R.J.; Hirtz, C.; Marin, P.; Becher, F.; Sato, C.; Gabelle, A.; Lehmann, S. Cerebrospinal Fluid Phospho-Tau T217 Outperforms T181 as a Biomarker for the Differential Diagnosis of Alzheimer’s Disease and PET Amyloid-Positive Patient Identification. Alzheimers Res. Ther. 2020, 12, 26. [Google Scholar] [CrossRef]
- Kwon, H.S.; Hwang, M.; Koh, S.-H.; Choi, S.H.; Lee, J.-H.; Kim, H.-J.; Park, S.-H.; Park, H.-H.; Jeong, J.H.; Han, M.H.; et al. Comparison of Plasma P-Tau217 and p-Tau181 in Predicting Amyloid Positivity and Prognosis among Korean Memory Clinic Patients. Sci. Rep. 2025, 15, 7791. [Google Scholar] [CrossRef] [PubMed]
- Brum, W.S.; Cullen, N.C.; Janelidze, S.; Ashton, N.J.; Zimmer, E.R.; Therriault, J.; Benedet, A.L.; Rahmouni, N.; Tissot, C.; Stevenson, J.; et al. A Two-Step Workflow Based on Plasma p-Tau217 to Screen for Amyloid β Positivity with Further Confirmatory Testing Only in Uncertain Cases. Nat. Aging 2023, 3, 1079–1090. [Google Scholar] [CrossRef]
- Edwards, A.L.; Collins, J.A.; Junge, C.; Kordasiewicz, H.; Mignon, L.; Wu, S.; Li, Y.; Lin, L.; DuBois, J.; Hutchison, R.M.; et al. Exploratory Tau Biomarker Results From a Multiple Ascending-Dose Study of BIIB080 in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1344–1352. [Google Scholar] [CrossRef]
- Mirzaei, N.; Shi, H.; Oviatt, M.; Doustar, J.; Rentsendorj, A.; Fuchs, D.-T.; Sheyn, J.; Black, K.L.; Koronyo, Y.; Koronyo-Hamaoui, M. Alzheimer’s Retinopathy: Seeing Disease in the Eyes. Front. Neurosci. 2020, 14, 921. [Google Scholar] [CrossRef]
- Abozaid, O.A.R.; Sallam, M.W.; Ahmed, E.S.A. Mesenchymal Stem Cells Modulate SIRT1/MiR-134/GSK3β Signaling Pathway in a Rat Model of Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2022, 9, 458–468. [Google Scholar] [CrossRef]
- McArthur, N.; Squire, J.D.; Onyeachonam, O.J.; Bhatt, N.N.; Jerez, C.; Holberton, A.L.; Tessier, P.M.; Wood, L.B.; Kayed, R.; Kane, R.S. Generation of Nanobodies with Conformational Specificity for Tau Oligomers That Recognize Tau Aggregates from Human Alzheimer’s Disease Samples. Biomater. Sci. 2024, 12, 6033–6046. [Google Scholar] [CrossRef]
- Bashir, S.; Uzair, M.; Abualait, T.; Arshad, M.; Khallaf, R.A.; Niaz, A.; Thani, Z.; Yoo, W.-K.; Túnez, I.; Demirtas-Tatlidede, A.; et al. Effects of Transcranial Magnetic Stimulation on Neurobiological Changes in Alzheimer’s Disease. Mol. Med. Rep. 2022, 25, 109. [Google Scholar] [CrossRef] [PubMed]
- Kivipelto, M.; Mangialasche, F.; Snyder, H.M.; Allegri, R.; Andrieu, S.; Arai, H.; Baker, L.; Belleville, S.; Brodaty, H.; Brucki, S.M.; et al. World-Wide FINGERS Network: A Global Approach to Risk Reduction and Prevention of Dementia. Alzheimers Dement. J. Alzheimers Assoc. 2020, 16, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Janssen Research & Development, LLC. A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group, Multicenter Study with a Long-Term Extension Treatment Period to Assess the Efficacy and Safety of JNJ-63733657, an Anti-Tau Monoclonal Antibody, in Participants with Early Alzheimer’s Disease. ClinicalTrials.gov, 2024. Available online: https://www.clinicaltrials.gov/study/NCT04619420 (accessed on 11 September 2025).
- Mauri, M.; Elli, T.; Caviglia, G.; Uboldi, G.; Azzi, M. RAWGraphs: A Visualisation Platform to Create Open Outputs. In Proceedings of the 12th Biannual Conference on Italian SIGCHI Chapter, Cagliari, Italy, 18–20 September 2017; ACM: New York, NY, USA, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Belzile, J.-P.; Sabalza, M.; Craig, M.; Clark, E.; Morello, C.S.; Spector, D.H. Trehalose, an mTOR-Independent Inducer of Autophagy, Inhibits Human Cytomegalovirus Infection in Multiple Cell Types. J. Virol. 2016, 90, 1259–1277. [Google Scholar] [CrossRef]
- Xu, L.; Wu, X.; Zhao, S.; Hu, H.; Wang, S.; Zhang, Y.; Chen, J.; Zhang, X.; Zhao, Y.; Ma, R.; et al. Harnessing Nanochaperone-Mediated Autophagy for Selective Clearance of Pathogenic Tau Protein in Alzheimer’s Disease. Adv. Mater. 2024, 36, 2313869. [Google Scholar] [CrossRef]
- Lane, R.M. Rationale for and Development of Ionis-MAPTRx, the First Tau-Lowering Antisense Oligonucleotide, in Patients with Mild AD. In Proceedings of the 142nd Annual Meeting of the American Neurological Association, San Diego, CA, USA, 16–17 October 2017. [Google Scholar]
- MacPherson, K.P.; Sompol, P.; Kannarkat, G.T.; Chang, J.; Sniffen, L.; Wildner, M.E.; Norris, C.M.; Tansey, M.G. Peripheral Administration of the Soluble TNF Inhibitor XPro1595 Modifies Brain Immune Cell Profiles, Decreases Beta-Amyloid Plaque Load, and Rescues Impaired Long-Term Potentiation in 5xFAD Mice. Neurobiol. Dis. 2017, 102, 81–95. [Google Scholar] [CrossRef]
- Wang, W.; Zhou, Q.; Jiang, T.; Li, S.; Ye, J.; Zheng, J.; Wang, X.; Liu, Y.; Deng, M.; Ke, D.; et al. A Novel Small-Molecule PROTAC Selectively Promotes Tau Clearance to Improve Cognitive Functions in Alzheimer-like Models. Theranostics 2021, 11, 5279–5295. [Google Scholar] [CrossRef]
- Sandhof, C.A.; Murray, H.F.B.; Silva, M.C.; Haggarty, S.J. Targeted Protein Degradation with Bifunctional Molecules as a Novel Therapeutic Modality for Alzheimer’s Disease & Beyond. Neurotherapeutics 2025, 22, e00499. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Huang, Z.; Pei, H.; Jia, Z.; Zheng, J. Molecular Glue-Mediated Targeted Protein Degradation: A Novel Strategy in Small-Molecule Drug Development. iScience 2024, 27, 110712. [Google Scholar] [CrossRef]
- Macfarlane, S.; Grimmer, T.; Teo, K.; O’Brien, T.J.; Woodward, M.; Grunfeld, J.; Mander, A.; Brodtmann, A.; Brew, B.J.; Morris, P.; et al. Blarcamesine for the Treatment of Early Alzheimer’s Disease: Results from the ANAVEX2-73-AD-004 Phase IIB/III Trial. J. Prev. Alzheimers Dis. 2025, 12, 100016. [Google Scholar] [CrossRef]
- Fang, C.; Hernandez, P.; Liow, K.; Damiano, E.; Zetterberg, H.; Blennow, K.; Feng, D.; Chen, M.; Maccecchini, M. Buntanetap, a Novel Translational Inhibitor of Multiple Neurotoxic Proteins, Proves to Be Safe and Promising in Both Alzheimer’s and Parkinson’s Patients. J. Prev. Alzheimers Dis. 2023, 10, 25–33. [Google Scholar] [CrossRef]
- Haroon, J.; Jordan, K.; Mahdavi, K.; Rindner, E.; Becerra, S.; Surya, J.R.; Zielinski, M.; Venkatraman, V.; Goodenowe, D.; Hofmeister, K.; et al. A Phase 2, Open-Label Study of Anti-Inflammatory NE3107 in Patients with Dementias. Medicine 2024, 103, e39027. [Google Scholar] [CrossRef]
- Wischik, C.M.; Bentham, P.; Gauthier, S.; Miller, S.; Kook, K.; Schelter, B.O. Oral Tau Aggregation Inhibitor for Alzheimer’s Disease: Design, Progress and Basis for Selection of the 16 Mg/Day Dose in a Phase 3, Randomized, Placebo-Controlled Trial of Hydromethylthionine Mesylate. J. Prev. Alzheimers Dis. 2022, 9, 780–790. [Google Scholar] [CrossRef]
- Turner, R.S.; Hebron, M.L.; Lawler, A.; Mundel, E.E.; Yusuf, N.; Starr, J.N.; Anjum, M.; Pagan, F.; Torres-Yaghi, Y.; Shi, W.; et al. Nilotinib Effects on Safety, Tolerability, and Biomarkers in Alzheimer’s Disease. Ann. Neurol. 2020, 88, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; Prins, N.; Lammertsma, A.; Yaqub, M.; Gouw, A.; Wink, A.M.; Chu, H.; van Berckel, B.N.M.; Alam, J. An Exploratory Clinical Study of P38α Kinase Inhibition in Alzheimer’s Disease. Ann. Clin. Transl. Neurol. 2018, 5, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Permanne, B.; Sand, A.; Ousson, S.; Nény, M.; Hantson, J.; Schubert, R.; Wiessner, C.; Quattropani, A.; Beher, D. O-GlcNAcase Inhibitor ASN90 Is a Multimodal Drug Candidate for Tau and α-Synuclein Proteinopathies. ACS Chem. Neurosci. 2022, 13, 1296–1314. [Google Scholar] [CrossRef]
- Tong, M.; Deochand, C.; Didsbury, J.; de la Monte, S.M. T3D-959: A Multi-Faceted Disease Remedial Drug Candidate for the Treatment of Alzheimer’s Disease. J. Alzheimers Dis. JAD 2016, 51, 123–138. [Google Scholar] [CrossRef]
- Transposon Therapeutics, Inc. A Phase 2a Study of TPN-101 in Patients with Progressive Supranuclear Palsy (PSP). ClinicalTrials.gov, 2023. Available online: https://clinicaltrials.gov/study/NCT04993768 (accessed on 11 September 2025).
- Smith, R.A.; Raugi, D.N.; Wu, V.H.; Leong, S.S.; Parker, K.M.; Oakes, M.K.; Sow, P.S.; Ba, S.; Seydi, M.; Gottlieb, G.S.; et al. The Nucleoside Analog BMS-986001 Shows Greater in Vitro Activity against HIV-2 than against HIV-1. Antimicrob. Agents Chemother. 2015, 59, 7437–7446. [Google Scholar] [CrossRef] [PubMed]
- Green, K.N.; Steffan, J.S.; Martinez-Coria, H.; Sun, X.; Schreiber, S.S.; Thompson, L.M.; LaFerla, F.M. Nicotinamide Restores Cognition in Alzheimer’s Disease Transgenic Mice via a Mechanism Involving Sirtuin Inhibition and Selective Reduction of Thr231-Phosphotau. J. Neurosci. 2008, 28, 11500–11510. [Google Scholar] [CrossRef]
- Feldman, H.H.; Messer, K.; Qiu, Y.; Sabbagh, M.; Galasko, D.; Turner, R.S.; Lopez, O.; Smith, A.; Durant, J.; Lupo, J.-L.; et al. Varoglutamstat: Inhibiting Glutaminyl Cyclase as a Novel Target of Therapy in Early Alzheimer’s Disease. J. Alzheimers Dis. 2024, 101, S79–S93. [Google Scholar] [CrossRef]
- Scheltens, P.; Hallikainen, M.; Grimmer, T.; Duning, T.; Gouw, A.A.; Teunissen, C.E.; Wink, A.M.; Maruff, P.; Harrison, J.; van Baal, C.M.; et al. Safety, Tolerability and Efficacy of the Glutaminyl Cyclase Inhibitor PQ912 in Alzheimer’s Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase 2a Study. Alzheimers Res. Ther. 2018, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Kielbasa, W.; Goldsmith, P.; Donnelly, K.B.; Nuthall, H.N.; Shcherbinin, S.; Fleisher, A.S.; Hendle, J.; DuBois, S.L.; Lowe, S.L.; Zhang, F.F.; et al. Discovery and Clinical Translation of Ceperognastat, an O-GlcNAcase (OGA) Inhibitor, for the Treatment of Alzheimer’s Disease. Alzheimers Dement. Transl. Res. Clin. Interv. 2024, 10, e70020. [Google Scholar] [CrossRef]
- BeyondBio Inc. A Multicenter, Randomized, Double-Blind, Parallel Design, Placebo-Controlled, Phase 2 Clinical Trial and Open-Label Extension Study to Evaluate the Safety and Efficacy for BEY2153 in Patients with Early Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT06885567 (accessed on 11 September 2025).
- Fisher, A.; Bezprozvanny, I.; Wu, L.; Ryskamp, D.A.; Bar-Ner, N.; Natan, N.; Brandeis, R.; Elkon, H.; Nahum, V.; Gershonov, E.; et al. AF710B, a Novel M1/Σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease. Neurodegener. Dis. 2016, 16, 95–110. [Google Scholar] [CrossRef]
- Lee, M.J.; Choi, S.; Moon, J.; Lee, H.; Kim, E.; Lee, D.Y.; Lim, S.; Kim, Y.K.; Pae, A.N. DA-7503, a Novel Tau Aggregation Inhibitor, Ameliorates Tau Pathology and Reduces CSF Tau in Transgenic Mouse Models of Alzheimer’s Disease and Primary Tauopathies. Alzheimers Dement. 2025, 20, e084642. [Google Scholar] [CrossRef]
- Ljubenkov, P.A. 15th Conference Clinical Trials Alzheimer’s Disease, November 29–December 2, 2022, San Francisco, CA, USA: Posters (Clinical Trial Alzheimer’s Disease). J. Prev. Alzheimers Dis. 2022, 9, 51–248. [Google Scholar] [CrossRef]
- van Dyck, C.H.; Kahl, A.; Abelian, G.; Donovan, M.; Ahuja, M.; Watson, D.; Ossenkoppele, R.; Iwatsubo, T.; Hansson, O. TargetTau-1: Design of a Phase 2 Trial to Evaluate the Efficacy, Safety, and Tolerability of BMS-986446, an anti-MTBR Tau Monoclonal Antibody, in Patients with Early Alzheimer’s Disease. Alzheimers Dement. 2025, 20, e094677. [Google Scholar] [CrossRef]
- Budda, B.; Mitra, A.; Park, L.; Long, H.; Kurnellas, M.; Bien-Ly, N.; Estacio, W.; Burgess, B.; Chao, G.; Schwabe, T.; et al. Development of AL101 (GSK4527226), a Progranulin-Elevating Monoclonal Antibody, as a Potential Treatment for Alzheimer’s Disease. Alzheimers Res. Ther. 2025, 17, 174. [Google Scholar] [CrossRef] [PubMed]
- Galpern, W.R.; Triana-Baltzer, G.; Li, L.; Van Kolen, K.; Timmers, M.; Haeverans, K.; Janssens, L.; Kolb, H.; Nandy, P.; Aida, K.; et al. Phase 1 Studies of the Anti-Tau Monoclonal Antibody JNJ-63733657 in Healthy Participants and Participants with Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2024, 11, 1592–1603. [Google Scholar] [CrossRef]
- UCB Biopharma SRL. A Patient- and Investigator-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Tolerability of Bepranemab (UCB0107) in Study Participants with Prodromal to Mild Alzheimer’s Disease (AD), Followed by an Open-Label Extension Period. ClinicalTrials.gov, 2024. Available online: https://clinicaltrials.gov/study/NCT04867616 (accessed on 11 September 2025).
- Song, H.-L.; Kim, N.-Y.; Park, J.; Kim, M.I.; Jeon, Y.-N.; Lee, S.-J.; Cho, K.; Shim, Y.-L.; Lee, K.-H.; Mun, Y.-S.; et al. Monoclonal Antibody Y01 Prevents Tauopathy Progression Induced by Lysine 280–Acetylated Tau in Cell and Mouse Models. J. Clin. Invest. 2023, 133, e156537. [Google Scholar] [CrossRef]
- Fukumoto, H.; Kao, T.; Tai, C.; Jang, M.; Miyamoto, M. High-molecular-weight Oligomer Tau (HMWoTau) Species Are Dramatically Increased in Braak-stage Dependent Manner in the Frontal Lobe of Human Brains, Demonstrated by a Novel Oligomer Tau ELISA with a Mouse Monoclonal Antibody (APNmAb005). FASEB J. 2024, 38, e70160. [Google Scholar] [CrossRef] [PubMed]
- APRINOIA Therapeutics, LLC. A Phase 1, Randomized, Double-Blind, Placebo-Controlled, Single Ascending Dose Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Immunogenicity of APNmAb005 in Healthy Subjects. ClinicalTrials.gov, 2023. Available online: https://clinicaltrials.gov/study/NCT05344989 (accessed on 11 September 2025).
- H. Lundbeck A/S. Interventional, Randomized, Double-Blind, Placebo-Controlled, Single-Ascending-Dose Study Investigating the Safety, Tolerability, and Pharmacokinetic Properties of Lu AF87908 in Healthy Subjects and Patients with Alzheimer’s Disease. ClinicalTrials.gov, 2023. Available online: https://clinicaltrials.gov/study/NCT04149860 (accessed on 11 September 2025).
- Merck Sharp & Dohme LLC. A Multiple Ascending Dose Clinical Trial to Evaluate the Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of MK-2214 in Adults with Mild Cognitive Impairment or Mild-to-Moderate Alzheimer’s Disease. ClinicalTrials.gov, 2024. Available online: https://www.clinicaltrials.gov/study/NCT05466422 (accessed on 11 September 2025).
- Voyager Therapeutics. VY7523-102: A Randomized, Placebo-Controlled, Double-Blind Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Preliminary Efficacy of Multiple Ascending Intravenous Doses of VY7523 in Participants with Early Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://www.clinicaltrials.gov/study/NCT06874621 (accessed on 11 September 2025).
- UCB Biopharma SRL. An Open-Label Extension Study to Evaluate the Safety and Tolerability of Long-Term UCB0107 Administration in Study Participants with Progressive Supranuclear Palsy. ClinicalTrials.gov, 2025. Available online: https://www.clinicaltrials.gov/study/NCT04658199 (accessed on 11 September 2025).
- Koh, S.-H.; Kwon, H.S.; Choi, S.H.; Jeong, J.H.; Na, H.R.; Lee, C.N.; Yang, Y.; Lee, A.Y.; Lee, J.-H.; Park, K.W.; et al. Efficacy and Safety of GV1001 in Patients with Moderate-to-Severe Alzheimer’s Disease Already Receiving Donepezil: A Phase 2 Randomized, Double-Blind, Placebo-Controlled, Multicenter Clinical Trial. Alzheimers Res. Ther. 2021, 13, 66. [Google Scholar] [CrossRef]
- Park, H.-H.; Lee, K.-Y.; Kim, S.; Lee, J.W.; Choi, N.-Y.; Lee, E.-H.; Lee, Y.J.; Lee, S.-H.; Koh, S.-H. The Novel Vaccine Peptide GV1001 Effectively Blocks β-Amyloid Toxicity by Mimicking the Extra-Telomeric Functions of Human Telomerase Reverse Transcriptase. Neurobiol. Aging 2014, 35, 1255–1274. [Google Scholar] [CrossRef]
- Janssen Pharmaceutica N.V., Belgium. A Multicenter, Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Study, to Assess Efficacy, Safety and Immunogenicity of JNJ-64042056, a Phosphorylated Tau Targeted Active Immunotherapy, in Participants with Preclinical Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT06544616 (accessed on 11 September 2025).
- Novartis Pharmaceuticals. A Randomized, Participant, Investigator and Sponsor Blinded, Placebo-Controlled Study to Evaluate the Safety, Tolerability and Pharmacokinetics of Multiple Ascending Doses of Intrathecally Administered NIO752 in Participants with Progressive Supranuclear Palsy. ClinicalTrials.gov, 2024. Available online: https://www.clinicaltrials.gov/study/NCT04539041 (accessed on 11 September 2025).
- Eli Lilly and Company. A Single- and Multiple-Ascending Dose Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of LY3954068 in Patients with Early Symptomatic Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT06297590 (accessed on 11 September 2025).
- Pharmacobio. A Dose-Blocked-Randomized, Double-Blind, Placebo-Controlled, Single and Multiple Dosing, Dose-Escalation Phase I Clinical Trial to Evaluate the Safety, Tolerability, Pharmacokinetics/Pharmacodynamics of DDN-A-0101 in Healthy Adults and Elderly Subjects. ClinicalTrials.gov, 2024. Available online: https://clinicaltrials.gov/study/NCT06367426 (accessed on 11 September 2025).
- Teng, E.; Manser, P.T.; Pickthorn, K.; Brunstein, F.; Blendstrup, M.; Sanabria Bohorquez, S.; Wildsmith, K.R.; Toth, B.; Dolton, M.; Ramakrishnan, V.; et al. Safety and Efficacy of Semorinemab in Individuals With Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Ayalon, G.; Lee, S.-H.; Adolfsson, O.; Foo-Atkins, C.; Atwal, J.K.; Blendstrup, M.; Booler, H.; Bravo, J.; Brendza, R.; Brunstein, F.; et al. Antibody Semorinemab Reduces Tau Pathology in a Transgenic Mouse Model and Engages Tau in Patients with Alzheimer’s Disease. Sci. Transl. Med. 2021, 13, eabb2639. [Google Scholar] [CrossRef]
- Cassava Sciences, Inc. An Open-Label, Long-Term Extension Study to Evaluate the Safety and Tolerability of Simufilam 100 mg Tablets in Participants with Mild to Moderate Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://www.clinicaltrials.gov/study/NCT05575076 (accessed on 11 September 2025).
- Burstein, A.H.; Sabbagh, M.; Andrews, R.; Valcarce, C.; Dunn, I.; Altstiel, L. Development of Azeliragon, an Oral Small Molecule Antagonist of the Receptor for Advanced Glycation Endproducts, for the Potential Slowing of Loss of Cognition in Mild Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2018, 5, 149–154. [Google Scholar] [CrossRef]
- Burstein, A.H.; Grimes, I.; Galasko, D.R.; Aisen, P.S.; Sabbagh, M.; Mjalli, A.M. Effect of TTP488 in Patients with Mild to Moderate Alzheimer’s Disease. BMC Neurol. 2014, 14, 12. [Google Scholar] [CrossRef]
- Asceneuron, S.A. A Phase 2, Randomized, Double-Blind, Placebo-Controlled, Parallel Group Study of ASN51 in Adults with Early Alzheimer’s Disease. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT06677203 (accessed on 11 September 2025).
- Princen, K.; Van Dooren, T.; van Gorsel, M.; Louros, N.; Yang, X.; Dumbacher, M.; Bastiaens, I.; Coupet, K.; Dupont, S.; Cuveliers, E.; et al. Pharmacological Modulation of Septins Restores Calcium Homeostasis and Is Neuroprotective in Models of Alzheimer’s Disease. Science 2024, 384, eadd6260. [Google Scholar] [CrossRef]
- Nery, F.C.; Kaliszczak, M.; Suttle, B.; Jones, L.; Wu, S.; Xie, J.; Curiale, G.; Yesilalan, E.; Hirschhorn, B.; Wilkes, D.; et al. Results of the First-in-Human, Randomized, Double-Blind, Placebo-Controlled, Single- and Multiple-Ascending Dose Study of BIIB113 in Healthy Volunteers. J. Prev. Alzheimers Dis. 2025, 12, 100302. [Google Scholar] [CrossRef]
- Ji, C.; Sigurdsson, E.M. Current Status of Clinical Trials on Tau Immunotherapies. Drugs 2021, 81, 1135–1152. [Google Scholar] [CrossRef] [PubMed]
- Imbimbo, B.P.; Balducci, C.; Ippati, S.; Watling, M. Initial Failures of Anti-Tau Antibodies in Alzheimer’s Disease Are Reminiscent of the Amyloid-β Story. Neural Regen. Res. 2022, 18, 117–118. [Google Scholar] [CrossRef]
- Mangrulkar, S.V.; Dabhekar, S.V.; Neje, P.; Parkarwar, N.; Turankar, A.; Taksande, B.G.; Umekar, M.J.; Nakhate, K.T. In Vivo Animal Models Development and Their Limitations for Brain Research. In Application of Nanocarriers in Brain Delivery of Therapeutics; Alexander, A., Ed.; Springer Nature: Singapore, 2024; pp. 315–339. ISBN 978-981-9728-59-6. [Google Scholar]
- Geerts, H.; Bergeler, S.; Walker, M.; van der Graaf, P.H.; Courade, J.-P. Analysis of Clinical Failure of Anti-Tau and Anti-Synuclein Antibodies in Neurodegeneration Using a Quantitative Systems Pharmacology Model. Sci. Rep. 2023, 13, 14342. [Google Scholar] [CrossRef]
- Congdon, E.E.; Jiang, Y.; Sigurdsson, E.M. Targeting Tau Only Extracellularly Is Likely to Be Less Efficacious than Targeting It Both Intra- and Extracellularly. Semin. Cell Dev. Biol. 2022, 126, 125–137. [Google Scholar] [CrossRef]
- Levert, S.; Pilliod, J.; Aumont, É.; Armanville, S.; Tremblay, C.; Calon, F.; Leclerc, N. Direct and Indirect Effects of Filamin A on Tau Pathology in Neuronal Cells. Mol. Neurobiol. 2023, 60, 1021–1039. [Google Scholar] [CrossRef]
- Aumont, E.; Tremblay, C.; Levert, S.; Bennett, D.A.; Calon, F.; Leclerc, N. Evidence of Filamin A Loss of Solubility at the Prodromal Stage of Neuropathologically-Defined Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 1038343. [Google Scholar] [CrossRef] [PubMed]
- Tai, H.-C.; Serrano-Pozo, A.; Hashimoto, T.; Frosch, M.P.; Spires-Jones, T.L.; Hyman, B.T. The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System. Am. J. Pathol. 2012, 181, 1426–1435. [Google Scholar] [CrossRef]
- Tsujikawa, K.; Hamanaka, K.; Riku, Y.; Hattori, Y.; Hara, N.; Iguchi, Y.; Ishigaki, S.; Hashizume, A.; Miyatake, S.; Mitsuhashi, S.; et al. Actin-Binding Protein Filamin-A Drives Tau Aggregation and Contributes to Progressive Supranuclear Palsy Pathology. Sci. Adv. 2022, 8, eabm5029. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Cecon, E.; Dam, J.; Pei, Z.; Jockers, R.; Burns, L.H. Simufilam Reverses Aberrant Receptor Interactions of Filamin A in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13927. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Lee, K.-C.; Pei, Z.; Khan, A.; Bakshi, K.; Burns, L.H. PTI-125 Binds and Reverses an Altered Conformation of Filamin A to Reduce Alzheimer’s Disease Pathogenesis. Neurobiol. Aging 2017, 55, 99–114. [Google Scholar] [CrossRef]
- Cassava Sciences, Inc. A 12-Month, Open-Label Safety Study of Simufilam Followed by a 6-Month Randomized Withdrawal and 6 Additional Months Open-Label in Mild-to-Moderate Alzheimer’s Disease Patients. ClinicalTrials.gov, 2025. Available online: https://clinicaltrials.gov/study/NCT04388254 (accessed on 11 September 2025).
- Creekmore, B.C.; Watanabe, R.; Lee, E.B. Neurodegenerative Disease Tauopathies. Annu. Rev. Pathol. 2024, 19, 345–370. [Google Scholar] [CrossRef] [PubMed]
- reMYND. A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Phase 2a Exploratory Study With Placebo Run-in to Investigate PK/PD Effects, Safety, Tolerability and Pharmacokinetics of REM0046127 Oral Suspension Compared with Placebo in Subjects with Mild to Moderate Alzheimer’s Disease. ClinicalTrials.gov, 2024. Available online: https://clinicaltrials.gov/study/NCT05478031 (accessed on 11 September 2025).
- Remynd Tests Optimized Septin Modulator against Alzheimer’s Disease in Phase 1 Clinical Trial. Available online: https://www.remynd.com/news-2/remynd-tests-optimized-septin-modulator-against-alzheimers-disease-in-phase-1-clinical-trial (accessed on 15 August 2025).
- Reddy, V.P.; Aryal, P.; Soni, P. RAGE Inhibitors in Neurodegenerative Diseases. Biomedicines 2023, 11, 1131. [Google Scholar] [CrossRef]
- Sabbagh, M.; Dunn, I.; Gooch, A.; Soeder, T.; Kieburtz, K.; Valcarce, C.; Altstiel, L.D.; Burstein, A.H. Safety and Efficacy Results from the Phase 3, Multicenter, 18-month STEADFAST Trial of Azeliragon in Participants with Mild Alzheimer’s Disease. In Proceedings of the 2018 CTAD Conference, Barcelona, Spain, 26 October 2018. [Google Scholar]
- Buracchio, T.; Campbell, M.; Krudys, K. Assessing Clinical Meaningfulness in Clinical Trials for Alzheimer’s Disease: A U.S. Regulatory Perspective. Alzheimers Dement. Transl. Res. Clin. Interv. 2025, 11, e70113. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, Y.; Wang, P. Functions of Glutaminyl Cyclase and Its Isoform in Diseases. Vis. Cancer Med. 2023, 4, 1. [Google Scholar] [CrossRef]
- Barreira da Silva, R.; Leitao, R.M.; Pechuan-Jorge, X.; Werneke, S.; Oeh, J.; Javinal, V.; Wang, Y.; Phung, W.; Everett, C.; Nonomiya, J.; et al. Loss of the Intracellular Enzyme QPCTL Limits Chemokine Function and Reshapes Myeloid Infiltration to Augment Tumor Immunity. Nat. Immunol. 2022, 23, 568–580. [Google Scholar] [CrossRef] [PubMed]
- Vivoryon. Vivoryon Therapeutics N.V. Provides Update on VIVIAD Phase 2b Study of Varoglutamstat in Early Alzheimer’s Disease. 2024. Available online: https://www.vivoryon.com/vivoryon-therapeutics-n-v-provides-update-on-viviad-phase-2b-study-of-varoglutamstat-in-early-alzheimers-disease/ (accessed on 11 September 2025).
- Schlenzig, D.; Manhart, S.; Cinar, Y.; Kleinschmidt, M.; Hause, G.; Willbold, D.; Funke, S.A.; Schilling, S.; Demuth, H.-U. Pyroglutamate Formation Influences Solubility and Amyloidogenicity of Amyloid Peptides. Biochemistry 2009, 48, 7072–7078. [Google Scholar] [CrossRef]
- Bayer, T.A. Pyroglutamate Aβ Cascade as Drug Target in Alzheimer’s Disease. Mol. Psychiatry 2022, 27, 1880–1885. [Google Scholar] [CrossRef]
- Mirian, A.; Moszczynski, A.; Soleimani, S.; Aubert, I.; Zinman, L.; Abrahao, A. Breached Barriers: A Scoping Review of Blood-Central Nervous System Barrier Pathology in Amyotrophic Lateral Sclerosis. Front. Cell. Neurosci. 2022, 16, 851563. [Google Scholar] [CrossRef]
- Danis, C.; Dupré, E.; Bouillet, T.; Denéchaud, M.; Lefebvre, C.; Nguyen, M.; Mortelecque, J.; Cantrelle, F.-X.; Rain, J.-C.; Hanoulle, X.; et al. Inhibition of Tau Neuronal Internalization Using Anti-Tau Single Domain Antibodies. Nat. Commun. 2025, 16, 3162. [Google Scholar] [CrossRef]
Drug | Molecule Type | Last Known Development Stage | Company | Clinical Trial ID | Indication | Route of Administration | Mechanism of Action | Reference |
---|---|---|---|---|---|---|---|---|
Semorinemab | mAb | Phase II | Genentech (CA, USA) | NCT03828747 NCT03289143 | AD | IV | Anti-tau mAb acts by targeting misfolded tau. | [158,241,242] |
Simufilam (PTI-125) | Small-molecule | Phase III | Cassava Sciences, Inc. (TX, USA) | NCT05575076 | AD | Oral | It binds to an altered form of the protein filamin A (FLNA) | [132,245] |
Azeliragon (PF 04494700; RAGE antagonist; TTP 488) | Small-molecule | vTv Therapeutics (NC, USA) | NCT03980730 | AD | Oral | RAGE antagonist | [246,247] | |
ASN-51 | Small-molecule | Phase II | Asceneuron (VD, CH) | NCT06677203 | AD | Oral | Prevents the buildup of toxic tau aggregates by inhibiting O-GlcNAcase. | [248] |
ReS-19T (REM0046127) | Small-molecule | reMYND (Leuven. BE) | NCT05478031 | AD | Oral | It modulates Orai calcium channel activity to restore disrupted calcium homeostasis in neurons. | [249] | |
Varoglutamstat (PQ912) | Small-molecule | Vivoryon Therapeutics (MU. DE) | NCT03919162 | AD | Oral | A glutaminyl cyclase inhibitor, which inhibits post-translational pyroglutamyl modification at the N-terminal of substrate proteins. | [217] | |
BIIB113 | Small-molecule | Phase I | Biogen (MA, USA) | NCT05195008 | AD | Oral | Protein O-GlcNAcase inhibitor. | [250] |
Drug | PK Issues | Dosing Issues | Endpoint Limitations | Population Issues | Design Flaws |
---|---|---|---|---|---|
Semorinemab | Suboptimal brain exposure suspected; extracellular target may miss intracellular pathogenic tau | – | Missed co-primary; no slowing of clinical progression; no tau-PET reduction over 73 weeks | Intervention at late symptomatic stages; potential insufficient target engagement in prodromal–mild AD | Observation window may be inadequate; epitope not pathology-enriched; limited specificity to pathological tau |
ASN-51 | High CSF occupancy but low synaptic interface engagement (CSF → ISF → synaptic gradient) | – | Occupancy–efficacy disconnect (CSF PD may overestimate neuronal interface engagement) | – | Single-node strategy may be insufficient for redundant tau pathology; consider combinations |
BIIB113 | Similar to ASN-51: limited synaptic engagement despite high CSF occupancy | – | Occupancy–efficacy disconnect | – | Single-node strategy; translational limits of animal models |
Simufilam/PTI-125 | – | – | No significant benefit on primary endpoints in Phase III | Applied in late symptomatic phase; potential regional dependence and heterogeneous biology with underrepresented tau activity | Pathway recalibration may be insufficient at late stage; mechanism may be region-dependent early |
ReS-19T | Excellent brain exposure in Phase I | Dose-limiting hepatotoxicity at higher exposure. | – | – | – |
Azeliragon | – | Narrow therapeutic window | Primary endpoint not met; observation duration likely too short (ADAS-Cog changes over 6 months highly variable) | Population heterogeneity (mild AD) | Treatment duration/endpoint alignment suboptimal; limited mechanistic efficacy |
PQ912 | – | – | Failed primary and secondary endpoints; benefits may require longer exposure | – | Mechanism leaves existing plaques unaddressed; anti-inflammatory systemic actions dilute central effects; may need combination therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, X.; Li, H.; Zhang, B.; Li, Y.; Zhu, Z. Tau-Targeted Therapeutic Strategies: Mechanistic Targets, Clinical Pipelines, and Analysis of Failures. Cells 2025, 14, 1506. https://doi.org/10.3390/cells14191506
Shen X, Li H, Zhang B, Li Y, Zhu Z. Tau-Targeted Therapeutic Strategies: Mechanistic Targets, Clinical Pipelines, and Analysis of Failures. Cells. 2025; 14(19):1506. https://doi.org/10.3390/cells14191506
Chicago/Turabian StyleShen, Xinai, Huan Li, Beiyu Zhang, Yunan Li, and Zheying Zhu. 2025. "Tau-Targeted Therapeutic Strategies: Mechanistic Targets, Clinical Pipelines, and Analysis of Failures" Cells 14, no. 19: 1506. https://doi.org/10.3390/cells14191506
APA StyleShen, X., Li, H., Zhang, B., Li, Y., & Zhu, Z. (2025). Tau-Targeted Therapeutic Strategies: Mechanistic Targets, Clinical Pipelines, and Analysis of Failures. Cells, 14(19), 1506. https://doi.org/10.3390/cells14191506