Prolonged Heat-Treated Mesenchymal Precursor Cells Induce Positive Outcomes Following Transplantation in Cervical Spinal Cord Injury
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Mesenchymal Precursor Cell Cultures
2.3. Neural Stem Cell Culture
2.4. Spinal Cord Injuries
2.5. MPC Preparation for IV Injections
2.6. dMPC Preparation for IV Injections
2.7. Intravenous Injections
2.8. NSC Preparation for Intraspinal Injections
2.9. Intraspinal Injections of NSCs
2.10. Group Designation
2.11. Behavior
2.12. Histology
2.13. Immunostaining
2.14. Dual-Injection Study: NSC Counts
2.15. Statistics
3. Results
3.1. IV Study: Behavioral and Lesion Size Outcome After IV Injection of Dead MPCs
3.2. IV Study: Injury Site Profile After Intravenous Injection of Dead MPCs
3.3. Dual-Transplantation Study: Behavioral Outcome After Dual-Injection of dMPCs with NSCs
3.4. Dual-Transplantation Study: Intraspinal-Injected NSCs Survive and Differentiate After Intravenous Injection of Dead MPCs
3.5. Dual-Transplantation Study: Intravenous Injection of Dead MPCs Results in Transplanted NSCs Differentiating into Astrocytes with Long Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- White, S.V.; Ma, Y.H.E.; Plant, C.D.; Harvey, A.R.; Plant, G.W. Combined Transplantation of Mesenchymal Progenitor and Neural Stem Cells to Repair Cervical Spinal Cord Injury. Cells 2025, 14, 630. [Google Scholar] [CrossRef]
- Akiyama, Y.; Honmou, O.; Kato, T.; Uede, T.; Hashi, K.; Kocsis, J.D. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp. Neurol. 2001, 167, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Ormond, D.R.; Shannon, C.; Oppenheim, J.; Zeman, R.; Das, K.; Murali, R.; Jhanwar-Uniyal, M.; Borlongan, C.V. Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS ONE. 2014, 9, e88916. [Google Scholar] [CrossRef]
- Poplawski, G.H.D.; Kawaguchi, R.; Van Niekerk, E.; Lu, P.; Mehta, N.; Canete, P.; Lie, R.; Dragatsis, I.; Meves, J.M.; Zheng, B.; et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature 2020, 581, 77–82. [Google Scholar] [CrossRef]
- Lu, P.; Freria, C.M.; Graham, L.; Tran, A.N.; Villarta, A.; Yassin, D.; Huie, J.R.; Ferguson, A.R.; Tuszynski, M.H. Rehabilitation combined with neural progenitor cell grafts enables functional recovery in chronic spinal cord injury. JCI Insight 2022, 7, e158000. [Google Scholar] [CrossRef]
- Doulames, V.M.; Weimann, J.M.; Plant, G.W. Human deep cortical neurons promote regeneration and recovery after cervical spinal cord injury. bioRxiv 2021. [Google Scholar] [CrossRef]
- Doulames, V.M.; Marquardt, L.M.; Hefferon, M.E.; Baugh, N.J.; Suhar, R.A.; Wang, A.T.; Dubbin, K.R.; Weimann, J.M.; Palmer, T.D.; Plant, G.W.; et al. Custom-engineered hydrogels for delivery of human hiPSC-derived neurons into the injured cervical spinal cord. Biomaterials 2024, 305, 122400. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, Z.T.; Stigliano, C.; Marzullo, B.; Cibelli, J.; Horner, P.J.; Paluh, J.L. Fully characterized mature human iPS- and NMP-drived motor neurons thrive without neuroprotection in the spinal contusion cavity. Front. Cell. Neurosci. 2022, 15, 725195. [Google Scholar] [CrossRef]
- Zholudeva, L.V.; Fortino, T.; Agrawal, A.; Vila, O.F.; Williams, M.; McDevitt, T.; Lane, M.A.; Srivastava, D. Human spinal interneurons repair the injured spinal cord through synaptic integration. bioRxiv 2024. [Google Scholar] [CrossRef] [PubMed]
- Kanno, H.; Pearse, D.D.; Ozawa, H.; Itoi, E.; Bunge, M.B. Schwann cell transplantation for spinal cord injury repair: Its significant therapeutic potential and prospectus. Rev. Neurosci. 2015, 26, 121–128. [Google Scholar] [CrossRef]
- Marquardt, L.M.; Doulames, V.M.; Wang, A.T.; Dubbin, K.; Suhar, R.A.; Kratochvil, M.J.; Medress, Z.A.; Plant, G.W.; Heilshorn, S.C. Designer, injectable gels to prevent transplanted Schwann cell loss during spinal cord injury therapy. Sci. Adv. 2020, 6, eaaz1039. [Google Scholar] [CrossRef]
- Coutts, D.J.; Humphries, C.E.; Zhao, C.; Plant, G.W.; Franklin, R.J. Embryonic-derived olfactory ensheathing cells remyelinate focal areas of spinal cord demyelination more efficiently than neonatal or adult-derived cells. Cell Transplant. 2013, 22, 1249–1261. [Google Scholar] [CrossRef]
- Awidi, A.; Al Shudifat, A.; El Adwan, N.; Alqudah, M.; Jamali, F.; Nazer, F.; Sroji, H.; Ahmad, H.; Al-Quzaa, N.; Jafar, H. Safety and potential efficacy of expanded mesenchymal stromal cells of bone marrow and umbilical cord origins in patients with chronic spinal cord injuries: A phase I/II study. Cytotherapy 2024, 26, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Vawda, R.; Badner, A.; Hong, J.; Mikhail, M.; Lakhani, A.; Dragas, R.; Xhima, K.; Barretto, T.; Librach, C.L.; Fehlings, M.G. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl. Med. 2019, 8, 639–649. [Google Scholar] [CrossRef]
- Yao, S.; Pang, M.; Wang, Y.; Wang, X.; Lin, Y.; Lv, Y.; Xie, Z.; Hou, J.; Du, C.; Qiu, Y.; et al. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 2023, 67, 102871. [Google Scholar] [CrossRef] [PubMed]
- Barbour, H.R.; Plant, C.D.; Harvey, A.R.; Plant, G.W. Tissue sparing, behavioral recovery, supraspinal axonal sparing/regeneration following sub-acute glial transplantation in a model of spinal cord contusion. BMC Neurosci. 2013, 14, 106. [Google Scholar]
- Li, B.C.; Xu, C.; Zhang, J.Y.; Li, Y.; Duan, Z.X. Differing Schwann cells and olfactory ensheathing cells behaviors, from interacting with astrocyte, produce similar improvements in contused rat spinal cord’s motor function. J. Mol. Neurosci. 2012, 48, 35–44. [Google Scholar]
- Plant, G.W.; Christensen, C.L.; Oudega, M.; Bunge, M.B. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J. Neurotrauma 2003, 20, 1–16. [Google Scholar] [CrossRef]
- Takami, T.; Oudega, M.; Bates, M.L.; Wood, P.M.; Kleitman, N.; Bunge, M.B. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. J. Neurosci. 2002, 22, 6670–6681. [Google Scholar] [CrossRef]
- Xu, X.M.; Chen, A.; Guenard, V.; Kleitman, N.; Bunge, M.B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J. Neurocytol. 1997, 26, 1–16. [Google Scholar] [CrossRef]
- Barraud, P.; Seferiadis, A.A.; Tyson, L.D.; Zwart, M.F.; Szabo-Rogers, H.L.; Ruhrberg, C.; Liu, K.J.; Baker, C.V. Neural crest origin of olfactory ensheathing glia. Proc. Natl. Acad. Sci. USA 2010, 107, 21040–21045. [Google Scholar] [CrossRef]
- Hodgetts, S.I.; Simmons, P.J.; Plant, G.W. Human mesenchymal precursor cells (Stro-1(+)) from spinal cord injury patients improve functional recovery and tissue sparing in an acute spinal cord injury rat model. Cell Transplant. 2013, 22, 393–412. [Google Scholar] [CrossRef]
- Park, J.H.; Min, J.; Baek, S.R.; Kim, S.W.; Kwon, I.K.; Jeon, S.R. Enhanced neuroregenerative effects by scaffold for the treatment of a rat spinal cord injury with Wnt3a-secreting fibroblasts. Acta Neurochir. 2013, 155, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Tetzlaff, W.; Okon, E.B.; Karimi-Abdolrezaee, S.; Hill, C.E.; Sparling, J.S.; Plemel, J.R.; Plunet, W.T.; Tsai, E.C.; Baptiste, D.; Smithson, L.J.; et al. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 2011, 28, 1611–1682. [Google Scholar] [CrossRef]
- Jin, Y.; Neuhuber, B.; Singh, A.; Bouyer, J.; Lepore, A.; Bonner, J.; Himes, T.; Campanelli, J.T.; Fischer, I. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury. J. Neurotrauma 2011, 28, 579–594. [Google Scholar] [CrossRef]
- Yu, T.B.; Cheng, Y.S.; Zhao, P.; Kou, D.W.; Sun, K.; Chen, B.H.; Wang, A.M. Immune therapy with cultured microglia grafting into the injured spinal cord promoting the recovery of rat’s hind limb motor function. Chin. J. Traumatol. 2009, 12, 291–295. [Google Scholar]
- Ma, S.F.; Chen, Y.J.; Zhang, J.X.; Shen, L.; Wang, R.; Zhou, J.S.; Hu, J.G.; Lu, H.Z. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav. Immun. 2015, 45, 157–170. [Google Scholar] [CrossRef]
- White, S.V.; Czisch, C.E.; Han, M.H.; Plant, C.D.; Harvey, A.R.; Plant, G.W. Intravenous Transplantation Of Mesenchymal Progenitors Distribute Solely To The Lungs And Improve Outcomes in Cervical Spinal Cord Injury. Stem Cells 2016, 34, 1812–1825. [Google Scholar] [CrossRef]
- Haase, S.C.; Rovak, J.M.; Dennis, R.G.; Kuzon, W.M.; Cederna, P.S., Jr. Recovery of muscle contractile function following nerve gap repair with chemically acellularized peripheral nerve grafts. J. Reconstr. Microsurg. 2003, 19, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Hudson, T.W.; Liu, S.Y.; Schmidt, C.E. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng. 2004, 10, 1346–1358. [Google Scholar] [CrossRef] [PubMed]
- Mligiliche, N.; Kitada, M.; Ide, C. Grafting of detergent-denatured skeletal muscles provides effective conduits for extension of regenerating axons in the rat sciatic nerve. Arch. Histol. Cytol. 2001, 64, 29–36. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Evans, P.J.; Mackinnon, S.E.; Levi, A.D.; Wade, J.A.; Hunter, D.A.; Nakao, Y.; Midha, R. Cold preserved nerve allografts: Changes in basement membrane, viability, immunogenicity, and regeneration. Muscle Nerve 1998, 21, 1507–1522. [Google Scholar] [CrossRef]
- Ide, C. Nerve regeneration and Schwann cell basal lamina: Observations of the long-term regeneration. Arch. Histol. Jpn. 1983, 46, 243–257. [Google Scholar] [CrossRef]
- Ide, C.; Tohyama, K.; Yokota, R.; Nitatori, T.; Onodera, S. Schwann cell basal lamina and nerve regeneration. Brain Res. 1983, 288, 61–75. [Google Scholar] [CrossRef]
- Osawa, T.; Ide, C.; Tohyama, K. Nerve regeneration through cryo-treated xenogeneic nerve grafts. Arch. Histol. Jpn. 1987, 50, 193–208. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.E.; Hudson, A.R.; Falk, R.E.; Kline, D.; Hunter, D. Peripheral nerve allograft: An assessment of regeneration across pretreated nerve allografts. Neurosurgery 1984, 15, 690–693. [Google Scholar] [CrossRef]
- Mackinnon, S.E.; Hudson, A.R.; Falk, R.E.; Kline, D.; Hunter, D. Peripheral nerve allograft: An immunological assessment of pretreatment methods. Neurosurgery 1984, 14, 167–171. [Google Scholar] [CrossRef]
- Enver, M.K.; Hall, S.M. Are Schwann cells essential for axonal regeneration into muscle autografts? Neuropathol. Appl. Neurobiol. 1994, 20, 587–598. [Google Scholar] [CrossRef]
- Cui, Q.; Pollett, M.A.; Symons, N.A.; Plant, G.W.; Harvey, A.R. A new approach to CNS repair using chimeric peripheral nerve grafts. J. Neurotrauma 2003, 20, 17–31. [Google Scholar] [CrossRef]
- Bamber, N.I.; Li, H.; Aebischer, P.; Xu, X.M. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords. Neural Plast. 1999, 6, 103–121. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.M.; Enver, K. Axonal regeneration through heat pretreated muscle autografts. An immunohistochemical and electron microscopic study. J. Hand Surg. 1994, 19, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.A.; Wagers, A.J.; Beilhack, A.; Dusich, J.; Bachmann, M.H.; Negrin, R.S.; Weissman, I.L.; Contag, C.H. Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc. Natl. Acad. Sci. USA 2004, 101, 221–226. [Google Scholar] [CrossRef] [PubMed]
- van der Bogt, K.E.; Hellingman, A.A.; Lijkwan, M.A.; Bos, E.J.; de Vries, M.R.; van Rappard, J.R.; Fischbein, M.P.; Quax, P.H.; Robbins, R.C.; Hamming, J.F.; et al. Molecular imaging of bone marrow mononuclear cell survival and homing in murine peripheral artery disease. JACC Cardiovasc. Imaging 2012, 5, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Short, B.J.; Brouard, N.; Simmons, P.J. Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol. Biol. 2009, 482, 259–268. [Google Scholar]
- Azari, H.; Rahman, M.; Sharififar, S.; Reynolds, B.A. Isolation and expansion of the adult mouse neural stem cells using the neurosphere assay. J. Vis. Exp. 2010, 5, 1. [Google Scholar]
- Schallert, T.; Fleming, S.M.; Leasure, J.L.; Tillerson, J.L.; Bland, S.T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 2000, 39, 777–787. [Google Scholar] [CrossRef]
- Cantinieaux, D.; Quertainmont, R.; Blacher, S.; Rossi, L.; Wanet, T.; Noel, A.; Brook, G.; Schoenen, J.; Franzen, R. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: An original strategy to avoid cell transplantation. PLoS ONE 2013, 8, e69515. [Google Scholar] [CrossRef]
- Liang, P.; Liu, J.; Xiong, J.; Liu, Q.; Zhao, J.; Liang, H.; Zhao, L.; Tang, H. Neural stem cell-conditioned medium protects neurons and promotes propriospinal neurons relay neural circuit reconnection after spinal cord injury. Cell Transplant. 2014, 23 (Suppl. S1), 45–56. [Google Scholar] [CrossRef]
- Carrade, D.D.; Lame, M.W.; Kent, M.S.; Clark, K.C.; Walker, N.J.; Borjesson, D.L. Comparative Analysis of the Immunomodulatory Properties of Equine Adult-Derived Mesenchymal Stem Cells. Cell Med. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Kuroda, Y.; Dezawa, M. Mesenchymal stem cells and their subpopulation, pluripotent muse cells, in basic research and regenerative medicine. Anat. Rec. 2014, 297, 98–110. [Google Scholar] [CrossRef]
- Li, Y.W.; Zhang, C.; Sheng, Q.J.; Bai, H.; Ding, Y.; Dou, X.G. Mesenchymal stem cells rescue acute hepatic failure by polarizing M2 macrophages. World J. Gastroenterol. 2017, 23, 7978–7988. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Li, Q.; Liu, K.; Hou, J.; Shao, C.; Wang, Y. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat. Rev. Nephrol. 2018, 14, 493–507. [Google Scholar] [CrossRef]
- Aggarwal, S.; Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005, 105, 1815–1822. [Google Scholar] [CrossRef]
- Kim, Y.; Jo, S.; Kim, W.H.; Kweon, O.-K. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res. Ther. 2015, 6, 229. [Google Scholar] [CrossRef]
- Squillaro, T.; Severino, V.; Alessio, N.; Farina, A.; Di Bernardo, G.; Cipollaro, M.; Peluso, G.; Chambery, A.; Galderisi, U. De-regulated expression of the BRG1 chromatin remodeling factor in bone marrow mesenchymal stromal cells induces senescence associated with the silencing of NANOG and changes in the levels of chromatin proteins. Cell Cycle 2015, 14, 1315–1326. [Google Scholar] [CrossRef] [PubMed]
- de Magalhães, J.P.; Passos, J.F. Stress, cell senescence and organismal ageing. Mech. Ageing Dev. 2018, 170, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Uchida, K.; Guerrero, A.R.; Watanabe, S.; Sugita, D.; Takeura, N.; Yoshida, A.; Long, G.; Wright, K.T.; Johnson, W.E.; et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J. Neurotrauma 2012, 29, 1614–1625. [Google Scholar] [CrossRef]
- Ribarski-Chorev, I.; Schudy, G.; Strauss, C.; Schlesinger, S. Short heat shock has a long-term effect on mesenchymal stem cells’ transcriptome. iScience 2023, 26, 107305. [Google Scholar] [CrossRef]
- Coppé, J.-P.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.-Y.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. [Google Scholar] [CrossRef]
- Gorgoulis, V.; Adams, P.D.; Alimonti, A.; Bennett, D.C.; Bischof, O.; Bishop, C.; Campisi, J.; Collado, M.; Evangelou, K.; Ferbeyre, G.; et al. Cellular Senescence: Defining a Path Forward. Cell 2019, 179, 813–827. [Google Scholar] [CrossRef] [PubMed]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 2002, 85, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Arif, M.; Taha, A.E.; Noreldin, A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019, 79, 120–134. [Google Scholar] [CrossRef] [PubMed]
- Shimoni, C.; Goldstein, M.; Ribarski-Chorev, I.; Schauten, I.; Nir, D.; Strauss, C.; Schlesinger, S. Heat Shock Alters Mesenchymal Stem Cell Identity and Induces Premature Senescence. Front. Cell Dev. Biol. 2020, 8, 565970. [Google Scholar] [CrossRef] [PubMed]
- Nakazaki, M.; Morita, T.; Lankford, K.L.; Askenase, P.W.; Kocsis, J.D. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell. Vesicles 2021, 10, e12137. [Google Scholar] [CrossRef]
- Liu, W.; Tang, P.; Wang, J.; Ye, W.; Ge, X.; Rong, Y.; Ji, C.; Wang, Z.; Bai, J.; Fan, J.; et al. Extracellular vesicles derived from melatonin-preconditioned mesenchymal stem cells containing USP29 repair traumatic spinal cord injury by stabilizing NRF2. J. Pineal Res. 2021, 71, e12769. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Q.; Qin, Y.; Xu, Y.; Zhao, J.; Xie, Y.; Li, C.; Qin, T.; Jin, Y.; Jiang, L.; et al. Exosomes derived from CD271+CD56+ bone marrow mesenchymal stem cell subpopoulation identified by single-cell RNA sequencing promote axon regeneration after spinal cord injury. Theranostics 2024, 14, 510–527. [Google Scholar] [CrossRef]
- Liu, W.Z.; Ma, Z.J.; Li, J.R.; Kang, X.W. Mesenchymal stem cell-derived exosomes: Therapeutic opportunities and challenges for spinal cord injury. Stem Cell Res. Ther. 2021, 12, 102. [Google Scholar] [CrossRef]
- Sarkar, S.; Barnaby, R.; Faber, Z.; Taub, L.; Roche, C.; Vietje, B.; Taatjes, D.J.; Wargo, M.J.; Weiss, D.J.; Bonfield, T.L.; et al. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Reduce Pseudomonas aeruginosa Lung Infection and Inflammation in Mice. bioRxiv 2025. [Google Scholar] [CrossRef]
- Sarkar, S.; Barnaby, R.; Nymon, A.; Charpentier, L.A.; Taub, L.; Kelley, T.J.; Stanton, B.A. Let-7b-5p loaded Mesenchymal Stromal Cell Extracellular Vesicles reduce Pseudomonas-biofilm formation and inflammation in CF Bronchial Epithelial Cells. bioRxiv 2025. [Google Scholar] [CrossRef]
Group | Abbreviations | n= |
---|---|---|
Intravenous HBSS D1 | HBSS | 5 |
Intravenous MPC D1 | MPC | 5 |
Intravenous dead MPC D1 | dMPC | 5 |
Intraspinal NSC D3 | NSC_D3 | 8 |
Intravenous MPC D1 with intraspinal NSC D3 | MPC_D1/NSC_D3 | 9 |
Intravenous dead MPC D1 with intraspinal NSC D3 | dMPC_D1/NSC_D3 | 8 |
Intraspinal NSC D7 | NSC_D7 | 8 |
Intravenous MPC D1 with intraspinal NSC D7 | MPC_D1/NSC_D7 | 9 |
Intravenous dead MPC D1 with intraspinal NSC D7 | dMPC_D1/NSC_D7 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, S.V.; Ma, Y.H.E.; Plant, C.D.; Harvey, A.R.; Plant, G.W. Prolonged Heat-Treated Mesenchymal Precursor Cells Induce Positive Outcomes Following Transplantation in Cervical Spinal Cord Injury. Cells 2025, 14, 1488. https://doi.org/10.3390/cells14191488
White SV, Ma YHE, Plant CD, Harvey AR, Plant GW. Prolonged Heat-Treated Mesenchymal Precursor Cells Induce Positive Outcomes Following Transplantation in Cervical Spinal Cord Injury. Cells. 2025; 14(19):1488. https://doi.org/10.3390/cells14191488
Chicago/Turabian StyleWhite, Seok Voon, Yee Hang Ethan Ma, Christine D. Plant, Alan R. Harvey, and Giles W. Plant. 2025. "Prolonged Heat-Treated Mesenchymal Precursor Cells Induce Positive Outcomes Following Transplantation in Cervical Spinal Cord Injury" Cells 14, no. 19: 1488. https://doi.org/10.3390/cells14191488
APA StyleWhite, S. V., Ma, Y. H. E., Plant, C. D., Harvey, A. R., & Plant, G. W. (2025). Prolonged Heat-Treated Mesenchymal Precursor Cells Induce Positive Outcomes Following Transplantation in Cervical Spinal Cord Injury. Cells, 14(19), 1488. https://doi.org/10.3390/cells14191488