Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines
Abstract
1. Introduction
2. Materials and Methods
3. Dendritic Cell (DC) Vaccines in NSCLC
4. T-Cell-Based Vaccines in NSCLC
5. Natural Killer (NK)-Cell-Based Vaccines in NSCLC
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Matsuda, T.; Fujita, H.; Ono, A.; Toyoda, M.; Saito, R.; Nakamura, Y.; Terao, K.; Mizuguchi, H.; Tanaka, M.; et al. Randomized controlled phase III trial of adjuvant chemoimmunotherapy with activated cytotoxic T cells and dendritic cells from regional lymph nodes of patients with lung cancer. Cancer Immunol Immunother. 2018, 67, 1231–1238. [Google Scholar] [CrossRef]
- Blumenschein, G.R.; Johnson, M.L.; Patel, M.R.; Lakhani, N.J.; Ahn, M.J.; Pant, S.; Liu, S.V.; Heymach, J.V.; Gomez, D.R.; Lee, J.; et al. Phase I clinical trial evaluating the safety and efficacy of ADP-A2M10 SPEAR T cells in patients with MAGE-A10+ advanced non-small cell lung cancer. J. Immunother. Cancer 2022, 10, e003581. [Google Scholar] [CrossRef]
- June, C.H.; Sadelain, M. Chimeric antigen receptor therapy. N. Engl. J. Med. 2018, 379, 64–73. [Google Scholar] [CrossRef]
- Melero, I.; Berman, D.M.; Aznar, M.A.; Korman, A.J.; Gracia, J.L.; Haanen, J. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 2015, 15, 457–472. [Google Scholar] [CrossRef]
- Liu, E.; Marin, D.; Banerjee, P.; Macapinlac, H.A.; Thompson, P.; Basar, R.; Nassif Kerbauy, L.; Overman, B.; Thall, P.; Kaplan, M.; et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 2020, 382, 545–553. [Google Scholar] [CrossRef]
- Yu, W.; Ye, F.; Yuan, X.; Ma, Y.; Mao, C.; Li, X.; Li, J.; Dai, C.; Qian, F.; Li, J.; et al. A Phase I/II Clinical Trial on the Efficacy and Safety of NKT Cells Combined with Gefitinib for Advanced EGFR-Mutated Non-Small-Cell Lung Cancer. BMC Cancer 2021, 21, 877. [Google Scholar] [CrossRef]
- Reck, M.; Remon, J.; Hellmann, M.D. First-line immunotherapy for non–small-cell lung cancer. J. Clin. Oncol. 2022, 40, 586–597. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Stevanović, S.; Draper, L.M.; Langhan, M.M.; Campbell, T.E.; Kwong, M.L.; Wunderlich, J.R.; Dudley, M.E.; Yang, J.C.; Sherry, R.M.; Kammula, U.S.; et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus–targeted tumor-infiltrating T cells. J. Clin. Oncol. 2021, 39, 763–772. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Sahin, U.; Oehm, P.; Derhovanessian, E.; Jabulowsky, R.A.; Vormehr, M.; Gold, M.; Maurus, D.; Schwarck-Kokarakis, D.; Kuhn, A.N.; Omokoko, T.; et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature 2020, 585, 107–112. [Google Scholar] [CrossRef]
- Kumar, V.; Donthireddy, L.; Marvel, D.; Condamine, T.; Wang, F.; Lavilla-Alonso, S.; Hashimoto, A.; Vonteddu, P.; Behera, R.; Goins, M.A.; et al. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell. 2017, 32, 654–668.e5. [Google Scholar] [CrossRef]
- Borch, T.H.; Engell-Noerregaard, L.; Zeeberg Iversen, T.; Ellebaek, E.; Met, Ö.; Hansen, M.; Andersen, M.H.; Straten, P.T.; Svane, I.M. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology 2016, 5, e1207842. [Google Scholar] [CrossRef]
- Carreno, B.M.; Magrini, V.; Becker-Hapak, M.; Kaabinejadian, S.; Hundal, J.; Petti, A.A.; Ly, A.; Lie, W.R.; Hildebrand, W.H.; Mardis, E.R.; et al. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015, 348, 803–808. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. NCT02018458. Baylor Research Institute. Safety Study of Chemotherapy Combined with Dendritic Cell Vaccine to Treat Breast Cancer: National Library of Medicine (US). 2025. Available online: https://clinicaltrials.gov/study/NCT02018458?tab=history (accessed on 12 August 2025).
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2023, 23, 75–92. [Google Scholar] [CrossRef]
- Matsuda, T.; Takeuchi, H.; Sakurai, T.; Mayanagi, S.; Booka, E.; Fujita, T.; Higuchi, H.; Taguchi, J.; Hamamoto, Y.; Takaishi, H.; et al. Pilot study of WT1 peptide-pulsed dendritic cell vaccination with docetaxel in esophageal cancer. Oncol Lett. 2018, 16, 1348–1356. [Google Scholar] [CrossRef]
- Zhang, R.; Inagawa, H.; Takahashi, M.; Kawanishi, H.; Kazumura, K.; Tsuchiya, H.; Morishita, N.; Kobayashi, Y.; Masaki, T.; Kobara, H.; et al. Measurement of the phagocytic activity of human peripheral blood using a highly sensitive fluorometric detection device without hemolysis. Anticancer Res. 2017, 37, 3897–3903. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Kim, B.H.; Oh, H.-K.; Kim, D.-W.; Kang, S.-B.; Kim, H.; Shin, E. Programmed cell death ligand-1 protein expression and CD274/PD-L1 gene amplification in colorectal cancer: Implications for prognosis. Cancer Sci. 2018, 109, 2957–2969. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wang, Y.; Yu, J.; Wei, F.; Cao, S.; Zhang, X.; Dong, N.; Li, H.; Ren, X. Autologous cytokine-induced killer cells improves overall survival of metastatic colorectal cancer patients: Results from a phase II clinical trial. Clin Color. Cancer 2016, 15, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Zhong, R.; Ling, X.; Cao, S.; Xu, J.; Zhang, B.; Zhang, X.; Wang, H.; Han, B.; Zhong, H. Safety and efficacy of dendritic cell-based immunotherapy (DCVAC/LuCa) combined with carboplatin/pemetrexed for patients with advanced non-squamous non-small-cell lung cancer without oncogenic drivers. ESMO Open 2022, 7, 100334. [Google Scholar] [CrossRef]
- Garris, C.S.; Arlauckas, S.P.; Kohler, R.H.; Trefny, M.P.; Garren, S.; Piot, C.; Engblom, C.; Pfirschke, C.; Siwicki, M.; Gungabeesoon, J.; et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 2022, 55, 1749. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. NCT05190185. Bethesda (MD): National Library of Medicine (US). Available online: https://clinicaltrials.gov/study/NCT05190185 (accessed on 12 August 2025).
- National Institutes of Health (US). Bethesda (MD): National Library of Medicine (US). Personalized Cancer Vaccine in Treating Patients with Advanced Non-Small Cell Lung Cancer. ClinicalTrials.gov Identifier: NCT02956551. 4 November 2016; [Cited 13 May 2024]. Available online: https://clinicaltrials.gov/study/NCT02956551 (accessed on 12 August 2025).
- Wang, S.; Wang, Z. Efficacy and safety of dendritic cells co-cultured with cytokine-induced killer cells immunotherapy for non-small-cell lung cancer. Int. Immunopharmacol. 2015, 28, 22–28. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. NCT02639858. Bethesda (MD): National Library of Medicine (US). Available online: https://clinicaltrials.gov/study/NCT02639858 (accessed on 12 August 2025).
- Guo, Z.; Yuan, Y.; Chen, C.; Lin, J.; Ma, Q.; Liu, G.; Gao, Y.; Huang, Y.; Chen, L.; Chen, L.Z.; et al. Durable complete response to nivolumab for lung cancer after dendritic cell vaccination following anti-PD-1 therapy in metastatic gastric cancer. NPJ Precis. Oncol. 2022, 6, 34. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [Google Scholar] [CrossRef]
- Mellman, I.; Coukos, G.; Dranoff, G. Cancer immunotherapy comes of age. Nature 2011, 480, 480–489. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Cho, B.C.; Vanakesa, T.; De Pas, T.; Zielinski, M.; Kim, M.S.; Jassem, J.; Yoshimura, M.; Dahabreh, J.; Nakayama, H.; et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2016, 17, 822–835. [Google Scholar] [CrossRef]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnaik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the treatment of Non–Small-Cell Lung Cancer. N. Engl. J Med. 2015, 372, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Quoix, E.; Ramlau, R.; Westeel, V.; Papai, Z.; Madroszyk, A.; Riviere, A.; Koralewski, P.; Breton, J.-L.; Stoelben, E.; Braun, D.; et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non–small-cell lung cancer: A controlled phase IIb trial. Lancet Oncol. 2011, 12, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Vansteenkiste, J.; Zielinski, M.; Linder, A.; Dahabreh, J.; Gonzalez, E.E.; Malinowski, W.; Lopez-Brea, M.; Vanakesa, T.; Jassem, J.; Kalofonos, H.; et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer: Phase II randomized study results. J. Clin. Oncol. 2013, 31, 2396–2403. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Mirakhur, B. MAGRIT: The largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin. Lung Cancer 2009, 10, 371–374. [Google Scholar] [CrossRef]
- Du, X.; Li, F.; Lizee, G.; Hwu, P.; Deng, L.; Talukder, A.; Hawke, D.; Zou, Q.; Roszik, J.; Stairs, M.; et al. 1177PD—Clinical study of personalized neoantigen peptide vaccination in advanced NSCLC patients. Ann. Oncol. 2019, 30, v478–v479. [Google Scholar] [CrossRef]
- Hibino, M.; Uryu, K.; Takeda, T.; Kunimatsu, Y.; Shiotsu, S.; Uchino, J.; Hirai, S.; Yamada, T.; Okada, A.; Hasegawa, Y. Safety and Immunogenicity of mRNA Vaccines Against Severe Acute Respiratory Syndrome Coronavirus 2 in Patients with Lung Cancer Receiving Immune Checkpoint Inhibitors: A Multicenter Observational Study in Japan. J. Thorac. Oncol. 2022, 17, 1002–1013. [Google Scholar] [CrossRef]
- Spicer, J.D.; Nair, S.M.; Khattak, A.; Lee, J.M.; Brown, M.; Meehan, R.S.; Shariati, N.; Deng, X.; Samkari, A.; Chaft, J.E. CT281: The phase 3 INTerpath-002 study design: Individualized neoantigen therapy (INT) V940 (mRNA-4157) plus pembrolizumab vs placebo plus pembrolizumab for resected early-stage non–small-cell lung cancer (NSCLC). J. Clin. Oncol. 2024, 42, TPS8116. [Google Scholar] [CrossRef]
- Pant, S.; Wainberg, Z.A.; Weekes, C.D.; Furqan, M.; Kasi, P.M.; Devoe, C.E.; Leal, A.D.; Chung, V.; Basturk, O.; VanWyk, H.; et al. Lymph-node-targeted, mKRAS-specific amphiphile vaccine in pancreatic and colorectal cancer: The phase 1 AMPLIFY-201 trial. Nat. Med. 2024, 30, 531–542. [Google Scholar] [CrossRef]
- Ding, Z.; Li, Q.; Zhang, R.; Xie, L.; Shu, Y.; Gao, S.; Wang, P.; Su, X.; Qin, Y.; Wang, Y.; et al. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct. Target. Ther. 2021, 6, 26. [Google Scholar] [CrossRef]
- Saxena, M.; Marron, T.U.; Kodysh, J.; Finnigan, J.P.; Onkar, S., Jr.; Kaminska, A.; Tuballes, K.; Guo, R.; Sabado, R.L.; Meseck, M.; et al. PGV001 multi peptide personalized Neoantigen Vaccine Platform: Phase I Study in Patients with Solid and Hematologic Malignancies in the Adjuvant Setting. Cancer Discov. 2025, 15, 930–947. [Google Scholar] [CrossRef]
- Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol. 2021, 18, 85–100. [Google Scholar] [CrossRef]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Hsu, J.; Hodgins, J.J.; Marathe, M.; Nicolai, C.J.; Bourgeois-Daigneault, M.C.; Trevino, T.N.; Azimi, C.S.; Scheer, A.K.; Randolph, H.E.; Thompson, T.W.; et al. Contribution of NK cells to immunotherapy mediated by PD-1/PD-L1 blockade. J. Clin. Investig. 2018, 128, 4654–4668. [Google Scholar] [CrossRef] [PubMed]
- Liem, N.T.; Van Phong, N.; Kien, N.T.; Anh, B.V.; Huyen, T.L.; Thao, C.T.; Tu, N.D.; Hiep, D.T.; Hoai Thu, D.T.; Nhung, H.T.M. Phase I Clinical Trial Using Autologous Ex Vivo Expanded NK Cells and Cytotoxic T Lymphocytes for Cancer Treatment in Vietnam. Int. J. Mol. Sci. 2019, 20, 3166. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.G.; Son, G.W.; Choi, M.Y.; Jung, J.S.; Rho, J.K.; Ji, W.; Yoon, B.G.; Jo, J.M.; Kim, Y.M.; Ko, D.H.; et al. Safety and efficacy of SNK01 (autologous natural killer cells) in combination with cytotoxic chemotherapy and/or cetuximab after failure of prior tyrosine kinase inhibitor in non-small cell lung cancer: Non-clinical mouse model and phase I/IIa clinical study. J. Immunother. Cancer 2024, 12, e008585. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulou, E.G.; Kountourakis, P.; Karamouzis, M.V.; Doufexis, D.; Ardavanis, A.; Baxevanis, C.N.; Rigatos, G.; Papamichail, M.; Perez, S.A. A phase I trial of adoptive transfer of allogeneic natural killer cells in patients with advanced non-small cell lung cancer. Cancer Immunol. Immunother. 2010, 59, 1781–1789. [Google Scholar] [CrossRef]
- City of Hope Medical Center. Genetically Engineered Natural Killer (NK) Cells with or Without Atezolizumab for the Treatment of Non-small Cell Lung Cancer Previously Treated with PD-1 and/or PD-L1 Immune Checkpoint Inhibitors. ClinicalTrials.gov Identifier: NCT05334329. Updated 2023. Available online: https://clinicaltrials.gov/study/NCT05334329 (accessed on 12 August 2025).
- Lin, M.; Luo, H.; Liang, S.; Chen, J.; Liu, A.; Niu, L.; Jiang, Y. Pembrolizumab plus allogeneic NK cells in advanced non-small cell lung cancer patients. J. Clin. Investig. 2020, 130, 2560–2569. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, L.; Wang, J.; Zhang, T.; Wang, W.; Wang, X.; Liu, W.; Wu, Y.; Lv, J.; Feng, Q.; et al. Induction PD-1 inhibitor toripalimab plus chemotherapy followed by concurrent chemoradiotherapy and consolidation toripalimab for bulky locally advanced non-small-cell lung cancer: Protocol for a randomized phase II trial (InTRist study). Front. Immunol. 2024, 14, 1341584. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. ID NCT03619954, NK Cells Infusion for Advanced Malignancies. Available online: https://clinicaltrials.gov/study/NCT03619954 (accessed on 12 August 2025).
- Multhoff, G.; Seier, S.; Stangl, S.; Sievert, W.; Shevtsov, M.; Werner, C.; Pockley, A.G.; Blankenstein, C.; Hildebrandt, M.; Offner, R.; et al. Targeted Natural Killer Cell-Based Adoptive Immunotherapy for the Treatment of Patients with NSCLC after Radiochemotherapy: A Randomized Phase II Clinical Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 5368–5379. [Google Scholar] [CrossRef]
- Kellermann, G.; Mograbi, B.; Hofman, P.; Brest, P. Shared epitopes create safety and efficacy concerns in several cancer vaccines. J. Immunother. Cancer 2025, 13, e012217. [Google Scholar] [CrossRef]
Year | Phase & Design | Intervention | Population | Key Outcomes | Reference |
---|---|---|---|---|---|
2017 | Phase I, pilot study | Autologous DCs pulsed with WT1 peptide + chemotherapy | Advanced NSCLC | Combination therapy was safe and feasible. WT1-specific immune responses were observed and correlated with a trend towards improved survival | [21] |
2018 | Phase II, randomized | Allogeneic DCs/CIK cells + Chemotherapy vs. Chemotherapy alone | Stage IIIB/IV NSCLC | Improved ORR and DCR. Significantly longer PFS (6.5 vs. 4.3 mo) and OS (21.0 vs. 14.5 mo) in the combination group. | [24] |
2017 | Phase I/II, open-label | DCs with MUC1 peptide | Advanced NSCLC, refractory cases | Safe, PR 2/16, SD 7/16, increased MUC1-specific T-cell responses | [22] |
2018 | Phase I, open-label | DCs with WT1 + MUC1 peptides | Post-first-line chemotherapy | Safe, enhanced antigen-specific CTL activity, median PFS ~4.5 months | [23] |
2020 | Phase I and II, single arm | DCVAC/LuCa (allogeneic dendritic cell vaccine) + Carboplatin/Pemetrexed chemotherapy | Advanced NSCLC | Promising median Overall Survival (OS) of 15.5 months. Disease Control Rate (DCR) of 70.6%. Associated with increased cytotoxic T-cell and NK cell activity. | [25] |
2020 | Phase II, randomized | DCs + chemotherapy | Stage III NSCLC post-CRT | Ongoing, interim safety confirmed, PFS results awaited | [30] |
2021 | Phase I/II, open-label | Autologous DCs pulsed with tumor lysate + Nivolumab | Advanced NSCLC | Well-tolerated and induced neoantigen-specific T-cell activation, culminating in a durable complete response, demonstrating preliminary efficacy | [31] |
2016 | Phase I, open-label | Autologous DCs electroporated with mRNA encoding personalized neoantigens | Advanced NSCLC | Well-tolerated, robust mutation-specific T-cell responses in in a patient with PD-1 blockade-resistant NSCLC | [28] |
2015 | Phase II, multi-centre | Allogeneic DC/CIK + Anti-PD-1 | Advanced NSCLC post-IO failure | Enhanced ORR and DCR; prolonged PFS; well-tolerated. | [29] |
20125 | Phase I/II, open-label | DCs with exosome pulsed tumor antigens | Advanced NSCLC | Ongoing, early immune response data are promising | [27] |
Year | Phase & Design | Intervention | Population | Key Outcomes | Reference |
---|---|---|---|---|---|
2015 | Phase IIb, randomized | Viral-vector (MVA) vaccine encoding MUC1 + IL-2 | Advanced MUC1-positive NSCLC, first line | In the TrPAL-low subgroup: improved PFS (HR 0.66) and OS (HR 0.67), epitope spreading, tolerable safety | [37] |
2012 | Phase II, randomized | Peptide vaccine + chemotherapy | Stage IIIB/IV NSCLC | Immunogenic but no significant PFS/OS benefit, acceptable safety | [38] |
2017 | Phase III, randomized (adjuvant) | Adjuvant peptide vaccine | Completely resected NSCLC (IB-IIIA) | No DFS benefit, safe, program halted for NSCLC | [39] |
2019 | Phase I, open-label | Personalized peptide neoantigen vaccine ± chemo | Advanced NSCLC post-chemo | Induced neoantigen-specific CD8+ T cells, stable disease in a subset | [40] |
2022 | Phase I/II, open-label | mRNA multivalent vaccine + PD-L1 blockade | Advanced NSCLC | Safe, immune activation, disease control in subsets with ICIs | [41] |
2024 | Phase III, randomized (adjuvant) | Personalized mRNA neoantigen vaccine + pembrolizumab | Resected high-risk NSCLC | Recruiting; primary endpoint DFS, results pending | [42] |
2023 | Phase I | Lymph node-targeted amphiphile peptide vaccine | KRAS-mutant solid tumors; lung planned | High immunogenicity in MRD cohorts; expansion to lung planned, favorable safety | [43] |
2023–2025 | Phase I, single-arm | Personalized neoantigen mRNA vaccines | Advanced NSCLC | Feasible manufacturing; strong immunogenicity, safe, clinical activity variable | [44] |
2024–2025 | Phase I | Personalized multi-peptide vaccine + ICI | Mixed solid tumors including NSCLC | Feasible, immunogenic, early disease control signals | [45] |
Year | Phase & Design | Intervention | Population | Key Outcomes | Reference |
---|---|---|---|---|---|
2018 | Preclinical | PD-1/PD-L1 immune checkpoint blockade with focus on NK cell contribution | Advanced NSCLC | efficacy; their loss reduced benefit, highlighting NK cell–intrinsic PD-1/PD-L1 signaling in tumor immunity | [48] |
2019 | Phase I | Ex vivo-expanded NK cells + cytotoxic T lymphocytes | NSCLC, relapsed or refractory | Good safety, enhanced NK cell cytotoxicity | [49] |
2024 | Phase I/IIb, open-label | Autologous NK cells + cytotoxic chemotherapy ± cetuximab | NSCLC, heavily pretreated | Safe, no dose-limiting toxicities; 25% objective response rate, 100% disease control, median PFS 143 days | [50] |
2010 | Phase I | Allogeneic NK-cell therapy | Advanced NSCLC | Feasibility and safety demonstrated | [51] |
2023 | Phase I | Engineered NK cells) ± Atezolizumab | Advanced NSCLC patients | Safety, tolerability, preliminary efficacy | [52] |
2020 | Phase I/II | NK-cell + Pembrolizumab | Advanced Metastatic NSCLC | Safe and well-tolerated; enhanced anti-tumor activity; improved ORR and PFS | [53] |
2021 | Phase II, randomized | NK-cell vaccine + anti-PD-1 therapy | Advanced NSCLC | Improved PFS vs. control, manageable toxicity | [54] |
2020 | Phase I/II | NK cell infusion + chemotherapy | Advanced NSCLC | Ongoing, safety data pending | [55] |
2020 | Phase II | Allogeneic NK-cell vaccine + chemotherapy | Metastatic NSCLC | Ongoing | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masroor Ali Beg, M.; Aslam, M.; Ayaz, A.; Akhtar, M.S.; Zaman, W. Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines. Cells 2025, 14, 1453. https://doi.org/10.3390/cells14181453
Masroor Ali Beg M, Aslam M, Ayaz A, Akhtar MS, Zaman W. Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines. Cells. 2025; 14(18):1453. https://doi.org/10.3390/cells14181453
Chicago/Turabian StyleMasroor Ali Beg, Mirza, Mohammad Aslam, Asma Ayaz, Muhammad Saeed Akhtar, and Wajid Zaman. 2025. "Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines" Cells 14, no. 18: 1453. https://doi.org/10.3390/cells14181453
APA StyleMasroor Ali Beg, M., Aslam, M., Ayaz, A., Akhtar, M. S., & Zaman, W. (2025). Advances in Non-Small Cell Lung Cancer Cellular Immunotherapy: A Progress in Dendritic Cell, T-Cell, and NK Cell Vaccines. Cells, 14(18), 1453. https://doi.org/10.3390/cells14181453