The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke
Abstract
1. Introduction
2. The Double-Edged Sword: Microglial and Astrocytic C3/C3a Signaling in Stroke and Neurodegeneration
3. Complement System Dynamics in Innate Immunity and Cerebral Ischemia
4. Role of Complement During and After Ischemia/Reperfusion
5. C3-C3aR Axis in Stroke Pathology and Recovery
6. C3aR in Neurogenesis and Plasticity
7. Temporal Dynamics of C3aR Activation: Balancing Neurological Injury and Repair
8. Extending C3a/C3aR-Mediated Neuroprotection to Neonatal Hypoxic-Ischemic Encephalopathy (HIE)
9. Interplay Between Complement and Coagulation Systems
10. Targeting Complement Pathways During Fibrinolysis to Mitigate Brain Injury in Stroke
11. Translational Potential and Limitations of Targeting the C3aR in Ischemic Stroke
12. Future Directions for Studies of Complement Activation in Stroke
13. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Feigin, V.L.; Brainin, M.; Norrving, B.; Martins, S.; Sacco, R.L.; Hacke, W.; Fisher, M.; Pandian, J.; Lindsay, P. World Stroke Organization (WSO): Global stroke fact sheet 2022. Int. J. Stroke 2022, 17, 18–29. [Google Scholar] [CrossRef]
- Ifejika, N.L.; Ifejika, N.L.; Awosika, O.O.; Black, T.; Duncan, P.W.; Harvey, R.L.; Katz, D.I.; Kimberley, T.J.; Lutz, B.; O’Neil, F.; et al. Improving Access to Stroke Rehabilitation and Recovery: A Policy Statement From the American Heart Association/American Stroke Association. Stroke 2025, 56, e218–e233. [Google Scholar] [CrossRef]
- Pekna, M.; Pekny, M.; Nilsson, M. Modulation of neural plasticity as a basis for stroke rehabilitation. Stroke 2012, 43, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Pekny, M.; Wilhelmsson, U.; Tatlisumak, T.; Pekna, M. Astrocyte activation and reactive gliosis—A new target in stroke? Neurosci. Lett. 2019, 689, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Komotar, R.J.; Kim, G.H.; Otten, M.L.; Hassid, B.; Mocco, J.; Sughrue, M.E.; Starke, R.M.; Mack, W.J.; Ducruet, A.F.; Merkow, M.B.; et al. The role of complement in stroke therapy. Curr. Top. Complement II 2008, 632, 22–32. [Google Scholar]
- Ma, Y.; Liu, Y.; Zhang, Z.; Yang, G.-Y. Significance of complement system in ischemic stroke: A comprehensive review. Aging Dis. 2019, 10, 429. [Google Scholar] [CrossRef]
- Komotar, R.J.; Starke, R.M.; Arias, E.J.; Garrett, M.C.; Otten, M.L.; Merkow, M.B.; Hassid, B.; Mocco, J.; Sughrue, M.E.; Kim, G.H.; et al. The complement cascade: New avenues in stroke therapy. Curr. Vasc. Pharmacol. 2009, 7, 287–292. [Google Scholar] [CrossRef]
- Braeuninger, S.; Kleinschnitz, C. Rodent models of focal cerebral ischemia: Procedural pitfalls and translational problems. Exp. Transl. Stroke Med. 2009, 1, 8. [Google Scholar] [CrossRef]
- Pedersen, E.D.; Løberg, E.M.; Vege, E.; Daha, M.R.; Mæhlen, J.; Mollnes, T.E. In Situ deposition of complement in human acute brain ischaemia. Scand. J. Immunol. 2009, 69, 555–562. [Google Scholar] [CrossRef]
- Lee, J.D.; Coulthard, L.G.; Woodruff, T.M. Complement dysregulation in the central nervous system during development and disease. In Seminars in Immunology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Lai, W.; Xie, X.; Zhang, X.; Wang, Y.; Chu, K.; Brown, J.; Chen, L.; Hong, G. Inhibition of complement drives increase in early growth response proteins and neuroprotection mediated by salidroside after cerebral ischemia. Inflammation 2018, 41, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Pandya, C.; Kindelin, A.; Bhatia, K.; Chaudhary, R.; Dwivedi, A.K.; Eschbacher, J.M.; Liu, Q.; Waters, M.F.; Hoda, M.N.; et al. C3a receptor antagonist therapy is protective with or without thrombolysis in murine thromboembolic stroke. Br. J. Pharmacol. 2020, 177, 2466–2477. [Google Scholar] [CrossRef]
- Arumugam, T.V.; Tang, S.-C.; Lathia, J.D.; Cheng, A.; Mughal, M.R.; Chigurupati, S.; Magnus, T.; Chan, S.L.; Jo, D.-G.; Ouyang, X.; et al. Intravenous immunoglobulin (IVIG) protects the brain against experimental stroke by preventing complement-mediated neuronal cell death. Proc. Natl. Acad. Sci. USA 2007, 104, 14104–14109. [Google Scholar] [CrossRef]
- Mead, R.J.; Singhrao, S.K.; Neal, J.W.; Lassmann, H.; Morgan, B.P. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J. Immunol. 2002, 168, 458–465. [Google Scholar] [CrossRef]
- Figueroa, E.; Gordon, L.E.; Feldhoff, P.W.; Lassiter, H.A. The administration of cobra venom factor reduces post-ischemic cerebral injury in adult and neonatal rats. Neurosci. Lett. 2005, 380, 48–53. [Google Scholar] [CrossRef]
- Arumugam, T.; Woodruff, T.; Lathia, J.; Selvaraj, P.; Mattson, M.; Taylor, S. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 2009, 158, 1074–1089. [Google Scholar] [CrossRef]
- Thom, V.; Arumugam, T.V.; Magnus, T.; Gelderblom, M. Therapeutic potential of intravenous immunoglobulin in acute brain injury. Front. Immunol. 2017, 8, 875. [Google Scholar] [CrossRef]
- Ricklin, D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur. J. Immunol. 2024, 54, 2350816. [Google Scholar] [CrossRef] [PubMed]
- Alawieh, A.; Elvington, A.; Tomlinson, S. Complement in the homeostatic and ischemic brain. Front. Immunol. 2015, 6, 417. [Google Scholar] [CrossRef] [PubMed]
- Stokowska, A.; Aswendt, M.; Zucha, D.; Lohmann, S.; Wieters, F.; Suarez, J.M.; Atkins, A.L.; Li, Y.; Miteva, M.; Lewin, J.; et al. Complement C3a treatment accelerates recovery after stroke via modulation of astrocyte reactivity and cortical connectivity. J. Clin. Investig. 2023, 133, e162253. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Rodrigálvarez, A.; Li, Y.; Stokowska, A.; Wu, J.; Dehm, V.; Sourkova, H.; Steinbusch, H.; Mallard, C.; Hagberg, H.; Pekny, M.; et al. C3a receptor signaling inhibits neurodegeneration induced by neonatal hypoxic-ischemic brain injury. Front. Immunol. 2021, 12, 768198. [Google Scholar] [CrossRef]
- Petrovic-Djergovic, D.; Goonewardena, S.N.; Pinsky, D.J. Inflammatory disequilibrium in stroke. Circ. Res. 2016, 119, 142–158. [Google Scholar] [CrossRef]
- Ahmad, S.; Bhatia, K.; Kindelin, A.; Ducruet, A.F. The role of complement C3a receptor in stroke. Neuromol. Med. 2019, 21, 467–473. [Google Scholar] [CrossRef]
- Stokowska, A.; Atkins, A.L.; Morán, J.; Pekny, T.; Bulmer, L.; Pascoe, M.C.; Barnum, S.R.; Wetsel, R.A.; Nilsson, J.A.; Dragunow, M.; et al. Complement peptide C3a stimulates neural plasticity after experimental brain ischaemia. Brain 2017, 140, 353–369. [Google Scholar] [CrossRef]
- Qi, D.; Wei, P.; Cui, Y.; Lenahan, C.; Tao, X.; Jin, P. Inhibition of C3a/C3aR by SB290157 Attenuates Neuroinflammation via PKC/P38/NLRP3 Signaling Pathway After Intracerebral Hemorrhage. Neurocrit. Care 2025, 43, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Ho, B.H.T.; Spicer, B.A.; Dunstone, M.A. Action of the terminal complement pathway on cell membranes. J. Membr. Biol. 2025, 258, 269–304. [Google Scholar] [CrossRef] [PubMed]
- Veerhuis, R.; Nielsen, H.M.; Tenner, A.J. Complement in the brain. Mol. Immunol. 2011, 48, 1592–1603. [Google Scholar] [CrossRef]
- Cribbs, D.H.; Berchtold, N.C.; Perreau, V.; Coleman, P.D.; Rogers, J.; Tenner, A.J.; Cotman, C.W. Extensive innate immune gene activation accompanies brain aging, increasing vulnerability to cognitive decline and neurodegeneration: A microarray study. J. Neuroinflamm. 2012, 9, 179. [Google Scholar] [CrossRef]
- Negro-Demontel, L.; Maleki, A.F.; Reich, D.S.; Kemper, C. The complement system in neurodegenerative and inflammatory diseases of the central nervous system. Front. Neurol. 2024, 15, 1396520. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Pan, Y.; Zhang, C.; Zhao, Y.; Wang, H.; Ma, H.; Sun, J.; Zhang, S.; Yao, J.; Xie, D.; et al. Transcriptome analysis reveals dynamic microglial-induced A1 astrocyte reactivity via C3/C3aR/NF-κB signaling after ischemic stroke. Mol. Neurobiol. 2024, 61, 10246–10270. [Google Scholar] [CrossRef]
- Jeanes, A.; Coulthard, L.G.; Mantovani, S.; Markham, K.; Woodruff, T.M. Co-ordinated expression of innate immune molecules during mouse neurulation. Mol. Immunol. 2015, 68, 253–260. [Google Scholar] [CrossRef]
- Gorelik, A.; Sapir, T.; Haffner-Krausz, R.; Olender, T.; Woodruff, T.M.; Reiner, O. Developmental activities of the complement pathway in migrating neurons. Nat. Commun. 2017, 8, 15096. [Google Scholar] [CrossRef]
- Lee, J.D.; Levin, S.C.; Willis, E.F.; Li, R.; Woodruff, T.M.; Noakes, P.G. Complement components are upregulated and correlate with disease progression in the TDP-43 Q331K mouse model of amyotrophic lateral sclerosis. J. Neuroinflamm. 2018, 15, 171. [Google Scholar] [CrossRef] [PubMed]
- Schartz, N.D.; Tenner, A.J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J. Neuroinflamm. 2020, 17, 354. [Google Scholar] [CrossRef]
- Wu, T.; Dejanovic, B.; Gandham, V.D.; Gogineni, A.; Edmonds, R.; Schauer, S.; Srinivasan, K.; Huntley, M.A.; Wang, Y.; Wang, T.-M.; et al. Complement C3 is activated in human AD brain and is required for neurodegeneration in mouse models of amyloidosis and tauopathy. Cell Rep. 2019, 28, 2111–2123.e6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Fonseca, M.I.; Pisalyaput, K.; Tenner, A.J. Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J. Neurochem. 2008, 106, 2080–2092. [Google Scholar] [CrossRef]
- Habib, N.; McCabe, C.; Medina, S.; Varshavsky, M.; Kitsberg, D.; Dvir-Szternfeld, R.; Green, G.; Dionne, D.; Nguyen, L.; Marshall, J.L.; et al. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci. 2020, 23, 701–706. [Google Scholar] [CrossRef] [PubMed]
- Bourel, J.; Planche, V.; Dubourdieu, N.; Oliveira, A.; Séré, A.; Ducourneau, E.-G.; Tible, M.; Maitre, M.; Lesté-Lasserre, T.; Nadjar, A.; et al. Complement C3 mediates early hippocampal neurodegeneration and memory impairment in experimental multiple sclerosis. Neurobiol. Dis. 2021, 160, 105533. [Google Scholar] [CrossRef]
- Gharagozloo, M.; Smith, M.D.; Jin, J.; Garton, T.; Taylor, M.; Chao, A.; Meyers, K.; Kornberg, M.D.; Zack, D.J.; Ohayon, J.; et al. Complement component 3 from astrocytes mediates retinal ganglion cell loss during neuroinflammation. Acta Neuropathol. 2021, 142, 899–915. [Google Scholar] [CrossRef]
- Yona, S.; Kim, K.-W.; Wolf, Y.; Mildner, A.; Varol, D.; Breker, M.; Strauss-Ayali, D.; Viukov, S.; Guilliams, M.; Misharin, A.; et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 2013, 38, 79–91. [Google Scholar] [CrossRef]
- Casanova, E.; Fehsenfeld, S.; Mantamadiotis, T.; Lemberger, T.; Greiner, E.; Stewart, A.F.; Schütz, G. A CamKIIα iCre BAC allows brain-specific gene inactivation. Genesis 2001, 31, 37–42. [Google Scholar] [CrossRef]
- Payne, S.; De Val, S.; Neal, A. Endothelial-specific cre mouse models: Is your cre credibile? Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2550–2561. [Google Scholar] [CrossRef] [PubMed]
- Gallerand, A.; Stunault, M.I.; Merlin, J.; Guinamard, R.R.; Yvan-Charvet, L.; Ivanov, S. Myeloid cell diversity and impact of metabolic cues during atherosclerosis. Immunometabolism 2020, 2, e200028. [Google Scholar] [CrossRef]
- Walport, M. Complement-part. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef] [PubMed]
- Walport, M.J. Complement. Second of two parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef]
- Giang, J.; Seelen, M.A.J.; van Doorn, M.B.A.; Rissmann, R.; Prens, E.P.; Damman, J. Complement activation in inflammatory skin diseases. Front. Immunol. 2018, 9, 639. [Google Scholar] [CrossRef]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef]
- Gorsuch, W.B.; Chrysanthou, E.; Schwaeble, W.J.; Stahl, G.L. The complement system in ischemia–reperfusion injuries. Immunobiology 2012, 217, 1026–1033. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, M.; Chen, Z.; Li, C.; Yin, X.; Zhang, X.; Wu, M. The role of the complement system in synaptic pruning after stroke. Aging Dis. 2024, 16, 1452. [Google Scholar] [CrossRef]
- Clarke, A.R.; Christophe, B.R.; Khahera, A.; Sim, J.L.; Connolly, E.S., Jr. Therapeutic modulation of the complement cascade in stroke. Front. Immunol. 2019, 10, 1723. [Google Scholar] [CrossRef]
- Granger, D.N.; Kvietys, P.R. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol. 2015, 6, 524–551. [Google Scholar] [CrossRef] [PubMed]
- Cowled, P.; Fitridge, R. Pathophysiology of reperfusion injury. In Mechanisms of Vascular Disease: A Textbook for Vascular Specialists; Cambridge University Press: Cambridge, UK, 2020; pp. 415–440. [Google Scholar]
- Pluta, R. Neuroinflammation in the Post-Ischemic brain in the presence of amyloid and Tau protein. Discov. Med. 2025, 37, 1–18. [Google Scholar] [CrossRef]
- Chen, S.-F.; Pan, M.-X.; Tang, J.-C.; Cheng, J.; Zhao, D.; Zhang, Y.; Liao, H.-B.; Liu, R.; Zhuang, Y.; Zhang, Z.-F.; et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain 2020, 13, 63. [Google Scholar] [CrossRef]
- Sekeljic, V.; Bataveljic, D.; Stamenkovic, S.; Ułamek, M.; Jabłoński, M.; Radenovic, L.; Pluta, R.; Andjus, P.R. Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct. Funct. 2012, 217, 411–420. [Google Scholar] [CrossRef]
- Pluta, R.; Miziak, B.; Czuczwar, S.J. post-ischemic permeability of the blood–brain barrier to amyloid and platelets as a factor in the maturation of Alzheimer’s Disease-type brain neurodegeneration. Int. J. Mol. Sci. 2023, 24, 10739. [Google Scholar] [CrossRef]
- Széplaki, G.; Szegedi, R.; Hirschberg, K.; Gombos, T.; Varga, L.; Karádi, I.; Entz, L.; Széplaki, Z.; Garred, P.; Prohászka, Z.; et al. Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis 2009, 204, 315–320. [Google Scholar] [CrossRef]
- Pedersen, E.D.; Waje-Andreassen, U.; Vedeler, C.A.; Aamodt, G.; Mollnes, T.E. Systemic complement activation following human acute ischaemic stroke. Clin. Exp. Immunol. 2004, 137, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Zohdy, Y.M.; Garzon-Muvdi, T.; Grossberg, J.A.; Barrow, D.L.; Howard, B.M.; Pradilla, G.; Kobeissy, F.H.; Tomlinson, S.; Alawieh, A.M. Complement inhibition targets a rich-club within the neuroinflammatory network after stroke to improve radiographic and functional outcomes. J. Neuroinflamm. 2025, 22, 1. [Google Scholar] [CrossRef]
- Ducruet, A.F.; Zacharia, B.E.; Sosunov, S.A.; Gigante, P.R.; Yeh, M.L.; Gorski, J.W.; Otten, M.L.; Hwang, R.Y.; DeRosa, P.A.; Hickman, Z.L.; et al. Complement inhibition promotes endogenous neurogenesis and sustained anti-inflammatory neuroprotection following reperfused stroke. PLoS ONE 2012, 7, e38664. [Google Scholar] [CrossRef] [PubMed]
- Pavlovski, D.; Thundyil, J.; Monk, P.N.; Wetsel, R.A.; Taylor, S.M.; Woodruff, T.M. Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. FASEB J. 2012, 26, 3680–3690. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, Y.; Pei, H. C1q and central nervous system disorders. Front. Immunol. 2023, 14, 1145649. [Google Scholar] [CrossRef]
- Schäfer, M.K.-H.; Schwaeble, W.J.; Post, C.; Salvati, P.; Calabresi, M.; Sim, R.B.; Petry, F.; Loos, M.; Weihe, E. Complement C1q is dramatically up-regulated in brain microglia in response to transient global cerebral ischemia. J. Immunol. 2000, 164, 5446–5452. [Google Scholar] [CrossRef] [PubMed]
- Ruseva, M.M.; Heurich, M. Purification and characterization of human and mouse complement C3. Complement Syst. Methods Protoc. 2014, 1100, 75–91. [Google Scholar]
- De Bruijn, M.; Fey, G.H. Human complement component C3: cDNA coding sequence and derived primary structure. Proc. Natl. Acad. Sci. USA 1985, 82, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Lundwall, A.; Wetsel, R.A.; Domdey, H.; Tack, B.F.; Fey, G.H. Structure of murine complement component C3. I. Nucleotide sequence of cloned complementary and genomic DNA coding for the beta chain. J. Biol. Chem. 1984, 259, 13851–13856. [Google Scholar] [CrossRef]
- Wetsel, R.A.; Lundwall, A.; Davidson, F.; Gibson, T.; Tack, B.F.; Fey, G.H. Structure of murine complement component C3. II. Nucleotide sequence of cloned complementary DNA coding for the alpha chain. J. Biol. Chem. 1984, 259, 13857–13862. [Google Scholar] [CrossRef]
- Zarantonello, A.; Revel, M.; Grunenwald, A.; Roumenina, L. C3-dependent effector functions of complement. Immunol. Rev. 2023, 313, 120–138. [Google Scholar] [CrossRef]
- Fearon, D.T. Identification of the membrane glycoprotein that is the C3b receptor of the human erythrocyte, polymorphonuclear leukocyte, B lymphocyte, and monocyte. J. Exp. Med. 1980, 152, 20–30. [Google Scholar] [CrossRef]
- Ricklin, D.; Mastellos, D.C.; Reis, E.S.; Lambris, J.D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 2018, 14, 26–47. [Google Scholar] [CrossRef] [PubMed]
- Helmy, K.Y.; Katschke, K.J., Jr.; Gorgani, N.N.; Kljavin, N.M.; Elliott, J.M.; Diehl, L.; Scales, S.J.; Ghilardi, N.; van Lookeren Campagne, M. CRIg: A macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 2006, 124, 915–927. [Google Scholar] [CrossRef]
- Brorson, J.; Lin, L.; Wang, J.; Bæk, A.; Billeskov, T.B.; Thybo, F.F.; Just, J.; Haskó, J.; Ravn, C.; Hansen, R.L.; et al. Complementing muscle regeneration—Fibro-adipogenic progenitor and macrophage-mediated repair of elderly human skeletal muscle. Nat. Commun. 2025, 16, 5233. [Google Scholar] [CrossRef]
- McMurray, J.C.; Schornack, B.J.; Weskamp, A.L.; Park, K.J.; Pollock, J.D.; Day, W.G.; Brockshus, A.T.; Beakes, D.E.; Schwartz, D.J.; Mikita, C.P.; et al. Immunodeficiency: Complement disorders. Allergy Asthma Proc. 2024, 45, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ren, J.; Luo, Y.; He, Q.; Zhao, R.; Chang, J.; Yang, Y.; Guo, Z.-N. T cell response in ischemic stroke: From mechanisms to translational insights. Front. Immunol. 2021, 12, 707972. [Google Scholar] [CrossRef]
- Lei, T.-Y.; Ye, Y.-Z.; Zhu, X.-Q.; Smerin, D.; Gu, L.-J.; Xiong, X.-X.; Zhang, H.-F.; Jian, Z.-H. The immune response of T cells and therapeutic targets related to regulating the levels of T helper cells after ischaemic stroke. J. Neuroinflamm. 2021, 18, 25. [Google Scholar] [CrossRef] [PubMed]
- Pekna, M.; Stokowska, A.; Pekny, M. Targeting complement C3a receptor to improve outcome after ischemic brain injury. Neurochem. Res. 2021, 46, 2626–2637. [Google Scholar] [CrossRef]
- Barnum, S.R.; Ames, R.S.; Maycox, P.R.; Hadingham, S.J.; Meakin, J.; Harrison, D.; Parsons, A.A. Expression of the complement C3a and C5a receptors after permanent focal ischemia: An alternative interpretation. Glia 2002, 38, 169–173. [Google Scholar] [CrossRef]
- Van Beek, J.; Bernaudin, M.; Petit, E.; Gasque, P.; Nouvelot, A.; MacKenzie, E.T.; Fontaine, M. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp. Neurol. 2000, 161, 373–382. [Google Scholar] [CrossRef]
- Pekna, M.; Pekny, M. The complement system: A powerful modulator and effector of astrocyte function in the healthy and diseased central nervous system. Cells 2021, 10, 1812. [Google Scholar] [CrossRef]
- Coulthard, L.G.; Hawksworth, O.A.; Conroy, J.; Lee, J.D.; Woodruff, T.M. Complement C3a receptor modulates embryonic neural progenitor cell proliferation and cognitive performance. Mol. Immunol. 2018, 101, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Rodrigálvarez, A.; Ollaranta, R.; Skoog, J.; Pekny, M.; Pekna, M. Hyperactive behavior and altered brain morphology in adult complement C3a receptor deficient mice. Front. Immunol. 2021, 12, 604812. [Google Scholar] [CrossRef]
- Ahmad, S.; Kindelin, A.; Wang, K.; Lambay, A.; Karra, S.; Miller, K.; Bhatia, K.; Fairlie, D.P.; Ahmad, A.S.; Waters, M.F.; et al. The Novel Complement C3ar Antagonist Jr14a Is Neuroprotective In Stroke. Stroke 2022, 53 (Suppl. 1), A15. [Google Scholar] [CrossRef]
- Ahmad, S.; Contreras, J.; Bhatia, K.; Fairlie, D.P.; Waters, M.F.; Ducruet, A.F. Abstract TP320: The Novel Potent Complement C3a Receptor (C3aR) Antagonist JR14a Confers Robust Neuroprotection in Stroke. Stroke 2024, 55 (Suppl. 1), ATP320. [Google Scholar] [CrossRef]
- Tang, J.; Maihemuti, N.; Fang, Y.; Tan, J.; Jia, M.; Mu, Q.; Huang, K.; Gan, H.; Zhao, J. JR14a: A Novel Antagonist of C3aR Attenuates Neuroinflammation in Cerebral Ischemia-Reperfusion Injury. Brain Res. Bull. 2024, 213, 110986. [Google Scholar] [CrossRef]
- Ahmad, S.; Kindelin, A.; Alam Khan, S.; Ahmed, M.; Hoda, N.; Bhatia, K.; Ducruet, A.F. C3a receptor inhibition protects brain endothelial cells against oxygen-glucose deprivation/reperfusion. Exp. Neurobiol. 2019, 28, 216. [Google Scholar] [CrossRef]
- Mocco, J.; Mack, W.J.; Ducruet, A.F.; Sosunov, S.A.; Sughrue, M.E.; Hassid, B.G.; Nair, M.N.; Laufer, I.; Komotar, R.J.; Claire, M.; et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ. Res. 2006, 99, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, T.M.; Tenner, A.J. A commentary on: “NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease”. A cautionary note regarding C3aR. Front. Immunol. 2015, 6, 220. [Google Scholar] [CrossRef]
- Lian, H.; Yang, L.; Cole, A.; Sun, L.; Chiang, A.C.-A.; Fowler, S.W.; Shim, D.J.; Rodriguez-Rivera, J.; Taglialatela, G.; Jankowsky, J.L.; et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 2015, 85, 101–115. [Google Scholar] [CrossRef]
- Mathieu, M.-C.; Sawyer, N.; Greig, G.M.; Hamel, M.; Kargman, S.; Ducharme, Y.; Lau, C.K.; Friesen, R.W.; O’nEill, G.P.; Gervais, F.G.; et al. The C3a receptor antagonist SB 290157 has agonist activity. Immunol. Lett. 2005, 100, 139–145. [Google Scholar] [CrossRef]
- Proctor, L.M.; Arumugam, T.V.; Shiels, I.; Reid, R.C.; Fairlie, D.P.; Taylor, S.M. Comparative anti-inflammatory activities of antagonists to C3a and C5a receptors in a rat model of intestinal ischaemia/reperfusion injury. Br. J. Pharmacol. 2004, 142, 756–764. [Google Scholar] [CrossRef]
- Rowley, J.A.; Reid, R.C.; Poon, E.K.Y.; Wu, K.-C.; Lim, J.; Lohman, R.-J.; Hamidon, J.K.; Yau, M.-K.; Halili, M.A.; Durek, T.; et al. Potent thiophene antagonists of human complement C3a receptor with anti-inflammatory activity. J. Med. Chem. 2020, 63, 529–541. [Google Scholar] [CrossRef]
- Luo, P.; Xin, W.; Guo, S.; Li, X.; Zhang, Q.; Xu, Y.; He, X.; Wang, Y.; Fan, W.; Yuan, Q.; et al. Structural insights into the agonist activity of the nonpeptide modulator JR14a on C3aR. Cell Discov. 2025, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ko, S.; Choi, C.; Bae, J.; Byeon, H.; Seok, C.; Choi, H.-J. Structural insights into small-molecule agonist recognition and activation of complement receptor C3aR. EMBO J. 2025, 44, 2803–2826. [Google Scholar] [CrossRef]
- Shinjyo, N.; de Pablo, Y.; Pekny, M.; Pekna, M. Complement peptide C3a promotes astrocyte survival in response to ischemic stress. Mol. Neurobiol. 2016, 53, 3076–3087. [Google Scholar] [CrossRef] [PubMed]
- Clarkson, A.N.; Huang, B.S.; MacIsaac, S.E.; Mody, I.; Carmichael, S.T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 2010, 468, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Overman, J.J.; Clarkson, A.N.; Wanner, I.B.; Overman, W.T.; Eckstein, I.; Maguire, J.L.; Dinov, I.D.; Toga, A.W.; Carmichael, S.T. A role for ephrin-A5 in axonal sprouting, recovery, and activity-dependent plasticity after stroke. Proc. Natl. Acad. Sci. USA 2012, 109, E2230–E2239. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Cui, Y.; Roberts, C.; Lu, M.; Wilhelmsson, U.; Pekny, M.; Chopp, M. Beneficial effects of gfap/vimentin reactive astrocytes for axonal remodeling and motor behavioral recovery in mice after stroke. Glia 2014, 62, 2022–2033. [Google Scholar] [CrossRef]
- Aswendt, M.; Wilhelmsson, U.; Wieters, F.; Stokowska, A.; Schmitt, F.J.; Pallast, N.; de Pablo, Y.; Mohammed, L.; Hoehn, M.; Pekna, M.; et al. Reactive astrocytes prevent maladaptive plasticity after ischemic stroke. Prog. Neurobiol. 2022, 209, 102199. [Google Scholar] [CrossRef] [PubMed]
- Hasel, P.; Rose, I.V.L.; Sadick, J.S.; Kim, R.D.; Liddelow, S.A. Neuroinflammatory astrocyte subtypes in the mouse brain. Nat. Neurosci. 2021, 24, 1475–1487. [Google Scholar] [CrossRef]
- Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.-S.; Peterson, T.C.; et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017, 541, 481–487. [Google Scholar] [CrossRef]
- Pekny, M.; Pekna, M.; Messing, A.; Steinhäuser, C.; Lee, J.-M.; Parpura, V.; Hol, E.M.; Sofroniew, M.V.; Verkhratsky, A. Astrocytes: A central element in neurological diseases. Acta Neuropathol. 2016, 131, 323–345. [Google Scholar] [CrossRef]
- Li, L.; Lundkvist, A.; Andersson, D.; Wilhelmsson, U.; Nagai, N.; Pardo, A.C.; Nodin, C.; Ståhlberg, A.; Aprico, K.; Larsson, K.; et al. Protective role of reactive astrocytes in brain ischemia. J. Cereb. Blood Flow Metab. 2008, 28, 468–481. [Google Scholar] [CrossRef]
- Bardehle, S.; Krüger, M.; Buggenthin, F.; Schwausch, J.; Ninkovic, J.; Clevers, H.; Snippert, H.J.; Theis, F.J.; Meyer-Luehmann, M.; Bechmann, I.; et al. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat. Neurosci. 2013, 16, 580–586. [Google Scholar] [CrossRef] [PubMed]
- Pekny, M.; Pekna, M. Astrocyte reactivity and reactive astrogliosis: Costs and benefits. Physiol. Rev. 2014, 94, 1077–1098. [Google Scholar] [CrossRef]
- Rupalla, K.; Allegrini, P.R.; Sauer, D.; Wiessner, C. Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice. Acta Neuropathol. 1998, 96, 172–178. [Google Scholar] [CrossRef]
- Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 2012, 43, 3063–3070. [Google Scholar] [CrossRef]
- Perego, C.; Fumagalli, S.; De Simoni, M.-G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflamm. 2011, 8, 174. [Google Scholar] [CrossRef] [PubMed]
- Jauneau, A.-C.; Ischenko, A.; Chatagner, A.; Benard, M.; Chan, P.; Schouft, M.-T.; Patte, C.; Vaudry, H.; Fontaine, M. Interleukin-1β and anaphylatoxins exert a synergistic effect on NGF expression by astrocytes. J. Neuroinflamm. 2006, 3, 8. [Google Scholar] [CrossRef]
- Zhu, L.; Su, Q.; Jie, X.; Liu, A.; Wang, H.; He, B.; Jiang, H. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation. Sci. Rep. 2016, 6, 27983. [Google Scholar] [CrossRef]
- Rahpeymai, Y.; Hietala, M.A.; Wilhelmsson, U.; Fotheringham, A.; Davies, I.; Nilsson, A.-K.; Zwirner, J.; Wetsel, R.A.; Gerard, C.; Pekny, M.; et al. Complement: A novel factor in basal and ischemia-induced neurogenesis. EMBO J. 2006, 25, 1364–1374. [Google Scholar] [CrossRef]
- Stokowska, A.; Pekna, M. Complement C3a: Shaping the plasticity of the post-stroke brain. In Cellular and Molecular Approaches to Regeneration and Repair; Springer: Berlin/Heidelberg, Germany, 2018; pp. 521–541. [Google Scholar]
- Litvinchuk, A.; Wan, Y.-W.; Swartzlander, D.B.; Chen, F.; Cole, A.; Propson, N.E.; Wang, Q.; Zhang, B.; Liu, Z.; Zheng, H. Complement C3aR inactivation attenuates tau pathology and reverses an immune network deregulated in tauopathy models and Alzheimer’s disease. Neuron 2018, 100, 1337–1353. e5. [Google Scholar] [CrossRef] [PubMed]
- Vasek, M.J.; Garber, C.; Dorsey, D.; Durrant, D.M.; Bollman, B.; Soung, A.; Yu, J.; Perez-Torres, C.; Frouin, A.; Wilton, D.K.; et al. A complement–microglial axis drives synapse loss during virus-induced memory impairment. Nature 2016, 534, 538–543. [Google Scholar] [CrossRef]
- Propson, N.E.; Roy, E.R.; Litvinchuk, A.; Köhl, J.; Zheng, H. Endothelial C3a receptor mediates vascular inflammation and blood-brain barrier permeability during aging. J. Clin. Investig. 2021, 131, e140966. [Google Scholar] [CrossRef]
- Pekna, M.; Siqin, S.; de Pablo, Y.; Stokowska, A.; Naluai, Å.T.; Pekny, M. Astrocyte responses to complement peptide C3a are highly context-dependent. Neurochem. Res. 2023, 48, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Lian, H.; Litvinchuk, A.; Chiang, A.C.-A.; Aithmitti, N.; Jankowsky, J.L.; Zheng, H. Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J. Neurosci. 2016, 36, 577–589. [Google Scholar] [CrossRef]
- Crider, A.; Feng, T.; Pandya, C.D.; Davis, T.; Nair, A.; Ahmed, A.O.; Baban, B.; Turecki, G.; Pillai, A. Complement component 3a receptor deficiency attenuates chronic stress-induced monocyte infiltration and depressive-like behavior. Brain Behav. Immun. 2018, 70, 246–256. [Google Scholar] [CrossRef]
- Wu, F.; Zou, Q.; Ding, X.; Shi, D.; Zhu, X.; Hu, W.; Liu, L.; Zhou, H. Complement component C3a plays a critical role in endothelial activation and leukocyte recruitment into the brain. J. Neuroinflamm. 2016, 13, 23. [Google Scholar] [CrossRef]
- Ducruet, A.F.; Hassid, B.G.; Mack, W.J.; Sosunov, S.A.; Otten, M.L.; Fusco, D.J.; Hickman, Z.L.; Kim, G.H.; Komotar, R.J.; Mocco, J.; et al. C3a receptor modulation of granulocyte infiltration after murine focal cerebral ischemia is reperfusion dependent. J. Cereb. Blood Flow Metab. 2008, 28, 1048–1058. [Google Scholar] [CrossRef] [PubMed]
- Werner, Y.; Mass, E.; Kumar, P.A.; Ulas, T.; Händler, K.; Horne, A.; Klee, K.; Lupp, A.; Schütz, D.; Saaber, F.; et al. Cxcr4 distinguishes HSC-derived monocytes from microglia and reveals monocyte immune responses to experimental stroke. Nat. Neurosci. 2020, 23, 351–362. [Google Scholar] [CrossRef]
- Wattananit, S.; Tornero, D.; Graubardt, N.; Memanishvili, T.; Monni, E.; Tatarishvili, J.; Miskinyte, G.; Ge, R.; Ahlenius, H.; Lindvall, O.; et al. Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci. 2016, 36, 4182–4195. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Lei, B.; Dong, C.; Chen, J.; Chen, S.; Jiang, K.; Zeng, Y.; Su, H.; Jin, H.; Qiu, X.; et al. Complement inhibition alleviates donor brain death-induced liver injury and posttransplant cascade injury by regulating phosphoinositide 3-kinase signaling. Am. J. Transplant. 2023, 23, 484–497. [Google Scholar] [CrossRef]
- Asgari, E.; Le Friec, G.; Yamamoto, H.; Perucha, E.; Sacks, S.S.; Köhl, J.; Cook, H.T.; Kemper, C. C3a modulates IL-1β secretion in human monocytes by regulating ATP efflux and subsequent NLRP3 inflammasome activation. Blood J. Am. Soc. Hematol. 2013, 122, 3473–3481. [Google Scholar] [CrossRef]
- Wadhwa, M.; Prabhakar, A.; Anand, J.P.; Ray, K.; Prasad, D.; Kumar, B.; Panjwani, U. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain Behav. Immun. 2019, 82, 129–144. [Google Scholar] [CrossRef]
- Young, K.G.; Yan, K.; Picketts, D.J. C3aR signaling and gliosis in response to neurodevelopmental damage in the cerebellum. J. Neuroinflamm. 2019, 16, 135. [Google Scholar] [CrossRef] [PubMed]
- Sauter, R.J.; Sauter, M.; Reis, E.S.; Emschermann, F.N.; Nording, H.; Ebenhöch, S.; Kraft, P.; Münzer, P.; Mauler, M.; Rheinlaender, J.; et al. Functional relevance of the anaphylatoxin receptor C3aR for platelet function and arterial thrombus formation marks an intersection point between innate immunity and thrombosis. Circulation 2018, 138, 1720–1735. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Ye, C.-H.; Teng, Z.-F.; Zhou, K.; Pan, L.-L.; Ouyan, M.-D.; Zheng, Z.; Lu, M.; Li, S.-L.; Zheng, P.-C.; et al. Targeting complement C3/C3aR pathway restores rejuvenation factor PF4 and mitigates neurocognitive impairments in age-related perioperative neurocognitive disorders. Mol. Psychiatry 2025, 1–11. [Google Scholar] [CrossRef]
- McAdams, R.M.; Fleiss, B.; Traudt, C.; Schwendimann, L.; Snyder, J.M.; Haynes, R.L.; Natarajan, N.; Gressens, P.; Juul, S.E. Long-term neuropathological changes associated with cerebral palsy in a nonhuman primate model of hypoxic-ischemic encephalopathy. Dev. Neurosci. 2017, 39, 124–140. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.T.; Bartley, J.H.; Wimborne, H.J.; Walker, A.L.; Hess, D.C.; Hill, W.D.; Carroll, J.E. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005, 6, 63. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, T.; Ding, X.; Zhao, X.; Liu, Q.; Xia, Z.; Cao, Q.; Yan, F.; Chen, L.; Zhu, M.; et al. Iron overload facilitates neonatal hypoxic–ischemic brain damage via SLC7A11-mediated ferroptosis. J. Neurosci. Res. 2023, 101, 1107–1124. [Google Scholar] [CrossRef]
- Shah, T.A.; Nejad, J.E.; Pallera, H.K.; Lattanzio, F.A.; Farhat, R.; Kumar, P.S.; Hair, P.S.; Bass, W.T.; Krishna, N.K. Therapeutic hypothermia modulates complement factor C3a and C5a levels in a rat model of hypoxic ischemic encephalopathy. Pediatr. Res. 2017, 81, 654–662. [Google Scholar] [CrossRef]
- Jacobs, S.E.; Berg, M.; Hunt, R.; Tarnow-Mordi, W.O.; Inder, T.E.; Davis, P.G. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev. 2013, 2013, CD003311. [Google Scholar] [CrossRef]
- Heese, K.; Hock, C.; Otten, U. Inflammatory signals induce neurotrophin expression in human microglial cells. J. Neurochem. 1998, 70, 699–707. [Google Scholar] [CrossRef]
- Holtzman, D.M.; Sheldon, R.A.; Jaffe, W.; Cheng, Y.; Ferriero, D.M. Nerve growth factor protects the neonatal brain against hypoxic–ischemic injury. Ann. Neurol. 1996, 39, 114–122. [Google Scholar] [CrossRef]
- Lukoyanov, N.V.; Pereira, P.A.; Paula-Barbosa, M.M.; Cadete-Leite, A. Nerve growth factor improves spatial learning and restores hippocampal cholinergic fibers in rats withdrawn from chronic treatment with ethanol. Exp. Brain Res. 2003, 148, 88–94. [Google Scholar] [CrossRef]
- Madduri, S.; Papaloïzos, M.; Gander, B. Synergistic effect of GDNF and NGF on axonal branching and elongation in vitro. Neurosci. Res. 2009, 65, 88–97. [Google Scholar] [CrossRef]
- Shinjyo, N.; Ståhlberg, A.; Dragunow, M.; Pekny, M.; Pekna, M. Complement-derived anaphylatoxin C3a regulates in vitro differentiation and migration of neural progenitor cells. Stem Cells 2009, 27, 2824–2832. [Google Scholar] [CrossRef]
- Morán, J.; Stokowska, A.; Walker, F.R.; Mallard, C.; Hagberg, H.; Pekna, M. Intranasal C3a treatment ameliorates cognitive impairment in a mouse model of neonatal hypoxic–ischemic brain injury. Exp. Neurol. 2017, 290, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Ferluga, J.; Kouser, L.; Murugaiah, V.; Sim, R.B.; Kishore, U. Potential influences of complement factor H in autoimmune inflammatory and thrombotic disorders. Mol. Immunol. 2017, 84, 84–106. [Google Scholar] [CrossRef] [PubMed]
- Markiewski, M.M.; Nilsson, B.; Ekdahl, K.N.; Mollnes, T.E.; Lambris, J.D. Complement and coagulation: Strangers or partners in crime? Trends Immunol. 2007, 28, 184–192. [Google Scholar] [CrossRef] [PubMed]
- de la Rosa, X.; Cervera, A.; Kristoffersen, A.K.; Valdés, C.P.; Varma, H.M.; Justicia, C.; Durduran, T.; Chamorro, Á.; Planas, A.M. Mannose-binding lectin promotes local microvascular thrombosis after transient brain ischemia in mice. Stroke 2014, 45, 1453–1459. [Google Scholar] [CrossRef]
- Orsini, F.; Villa, P.; Parrella, S.; Zangari, R.; Zanier, E.R.; Gesuete, R.; Stravalaci, M.; Fumagalli, S.; Ottria, R.; Reina, J.J.; et al. Targeting mannose-binding lectin confers long-lasting protection with a surprisingly wide therapeutic window in cerebral ischemia. Circulation 2012, 126, 1484–1494. [Google Scholar] [CrossRef]
- Orsini, F.; Fumagalli, S.; Császár, E.; Tóth, K.; De Blasio, D.; Zangari, R.; Lénárt, N.; Dénes, Á.; De Simoni, M.-G. Mannose-binding lectin drives platelet inflammatory phenotype and vascular damage after cerebral ischemia in mice via IL (interleukin)-1α. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2678–2690. [Google Scholar] [CrossRef]
- Esmon, C.T. The impact of the inflammatory response on coagulation. Thromb. Res. 2004, 114, 321–327. [Google Scholar] [CrossRef]
- Wojta, J.; Kaun, C.; Zorn, G.; Ghannadan, M.; Hauswirth, A.W.; Sperr, W.R.; Fritsch, G.; Printz, D.; Binder, B.R.; Schatzl, G.; et al. C5a stimulates production of plasminogen activator inhibitor-1 in human mast cells and basophils. Blood J. Am. Soc. Hematol. 2002, 100, 517–523. [Google Scholar] [CrossRef]
- Sims, P.J.; Wiedmer, T. The response of human platelets to activated components of the complement system. Immunol. Today 1991, 12, 338–342. [Google Scholar] [CrossRef]
- Zwaal, R.F.A.; Bevers, E.M.; Comfurius, P.; Rosing, J.; Tilly, R.H.J.; Verhallen, P.F.J. Loss of membrane phospholipid asymmetry during activation of blood platelets and sickled red cells; mechanisms and physiological significance. Mol. Cell. Biochem. 1989, 91, 23–31. [Google Scholar] [CrossRef]
- Koupenova, M.; Livada, A.C.; Morrell, C.N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 2022, 130, 288–308. [Google Scholar] [CrossRef] [PubMed]
- Garred, P.; Tenner, A.J.; Mollnes, T.E. Therapeutic targeting of the complement system: From rare diseases to pandemics. Pharmacol. Rev. 2021, 73, 792–827. [Google Scholar] [CrossRef] [PubMed]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Pryzdial, E.L.G.; Leatherdale, A.; Conway, E.M. Coagulation and complement: Key innate defense participants in a seamless web. Front. Immunol. 2022, 13, 918775. [Google Scholar] [CrossRef]
- Polley, M.; Nachman, R. Human platelet activation by C3a and C3a des-arg. J. Exp. Med. 1983, 158, 603–615. [Google Scholar] [CrossRef]
- Saggu, G.; Cortes, C.; Emch, H.N.; Ramirez, G.; Worth, R.G.; Ferreira, V.P. Identification of a novel mode of complement activation on stimulated platelets mediated by properdin and C3 (H2O). J. Immunol. 2013, 190, 6457–6467. [Google Scholar] [CrossRef]
- Devine, D.V.; Rosse, W.F. Regulation of the activity of platelet-bound C3 convertase of the alternative pathway of complement by platelet factor H. Proc. Natl. Acad. Sci. USA 1987, 84, 5873–5877. [Google Scholar] [CrossRef]
- Carron, J.; Bates, R.; Smith, A.; Tetoz, T.; Arellano, A.; Gordon, D.; Burns, G. Factor H co-purifies with thrombospondin isolated from platelet secretate. Biochim. Biophys. Acta (BBA) Gen. Subj. 1996, 1289, 305–311. [Google Scholar] [CrossRef]
- Nikolajsen, C.L.; Dyrlund, T.F.; Poulsen, E.T.; Enghild, J.J.; Scavenius, C. Coagulation factor XIIIa substrates in human plasma: Identification and incorporation into the clot. J. Biol. Chem. 2014, 289, 6526–6534. [Google Scholar] [CrossRef]
- Thangaraj, S.S.; Christiansen, S.H.; Graversen, J.H.; Sidelmann, J.J.; Hansen, S.W.K.; Bygum, A.; Gram, J.B. Contact activation-induced complex formation between complement factor H and coagulation factor XIIa. J. Thromb. Haemost. 2020, 18, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Puy, C.; Pang, J.; Reitsma, S.E.; Lorentz, C.U.; Tucker, E.I.; Gailani, D.; Gruber, A.; Lupu, F.; McCarty, O.J.T. Cross-talk between the complement pathway and the contact activation system of coagulation: Activated factor XI neutralizes complement factor H. J. Immunol. 2021, 206, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.E., 3rd. Biological effects of C1 inhibitor. Drug News Perspect. 2004, 17, 439–446. [Google Scholar] [CrossRef]
- Krarup, A.; Wallis, R.; Presanis, J.S.; Gál, P.; Sim, R.B.; Sommer, P. Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE 2007, 2, e623. [Google Scholar] [CrossRef]
- Wiedmer, T.; Esmon, C.T.; Sims, P.J. Complement proteins C5b-9 stimulate procoagulant activity through platelet prothrombinase. Blood 1986, 68, 875–880. [Google Scholar] [CrossRef]
- Ritis, K.; Doumas, M.; Mastellos, D.; Micheli, A.; Giaglis, S.; Magotti, P.; Rafail, S.; Kartalis, G.; Sideras, P.; Lambris, J.D. A novel C5a receptor-tissue factor cross-talk in neutrophils links innate immunity to coagulation pathways. J. Immunol. 2006, 177, 4794–4802. [Google Scholar] [CrossRef]
- Huber-Lang, M.; Sarma, J.V.; Zetoune, F.S.; Rittirsch, D.; Neff, T.A.; McGuire, S.R.; Lambris, J.D.; Warner, R.L.; Flierl, M.A.; Hoesel, L.M.; et al. Generation of C5a in the absence of C3: A new complement activation pathway. Nat. Med. 2006, 12, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.; Weymann, A.; Hartman, E.; Turmelle, Y.; Carroll, M.; Thurman, J.M.; Holers, V.M.; Hourcade, D.E.; Rudnick, D.A. Evidence for non-traditional activation of complement factor C3 during murine liver regeneration. Mol. Immunol. 2008, 45, 3125–3132. [Google Scholar] [CrossRef]
- Amara, U.; Rittirsch, D.; Flierl, M.; Bruckner, U.; Klos, A.; Gebhard, F.; Lambris, J.D.; Huber-Lang, M. Interaction between the coagulation and complement system. Curr. Top. Complement II 2008, 632, 68–76. [Google Scholar]
- Kishimoto, T.K.; Viswanathan, K.; Ganguly, T.; Elankumaran, S.; Smith, S.; Pelzer, K.; Lansing, J.C.; Sriranganathan, N.; Zhao, G.; Galcheva-Gargova, Z.; et al. Contaminated heparin associated with adverse clinical events and activation of the contact system. N. Engl. J. Med. 2008, 358, 2457–2467. [Google Scholar] [CrossRef]
- Chen, B.; Cheng, Q.; Yang, K.; Lyden, P.D. Thrombin mediates severe neurovascular injury during ischemia. Stroke 2010, 41, 2348–2352. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Garton, H.J.L.; Hua, Y.; Keep, R.F.; Xi, G. The role of thrombin in brain injury after hemorrhagic and ischemic stroke. Transl. Stroke Res. 2021, 12, 496–511. [Google Scholar] [CrossRef]
- Chevilley, A.; Lesept, F.; Lenoir, S.; Ali, C.; Parcq, J.; Vivien, D. Impacts of tissue-type plasminogen activator (tPA) on neuronal survival. Front Cell Neurosci. 2015, 9, 415. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Tsirka, S.E.; Strickland, S.; Stieg, P.E.; Soriano, S.G.; Lipton, S.A. Tissue plasminogen activator (tPA) increase neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat. Med. 1998, 4, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Wang, X.; Kline, A.E.; Siao, C.-J.; Dixon, C.E.; Tsirka, S.E.; Lo, E.H. Reduced cortical injury and edema in tissue plasminogen activator knockout mice after brain trauma. Neuroreport 2001, 12, 4117–4120. [Google Scholar] [CrossRef]
- Yepes, M.; Roussel, B.D.; Ali, C.; Vivien, D. Tissue-type plasminogen activator in the ischemic brain: More than a thrombolytic. Trends Neurosci. 2009, 32, 48–55. [Google Scholar] [CrossRef]
- Amara, U.; Flierl, M.A.; Rittirsch, D.; Klos, A.; Chen, H.; Acker, B.; Brückner, U.B.; Nilsson, B.; Gebhard, F.; Lambris, J.D.; et al. Molecular intercommunication between the complement and coagulation systems. J. Immunol. 2010, 185, 5628–5636. [Google Scholar] [CrossRef]
- Yang, X.-S.; Liu, M.-Y.; Zhang, H.-M.; Xue, B.-Z.; Shi, H.; Liu, D.-X. Protein kinase C-δ mediates sepsis-induced activation of complement 5a and urokinase-type plasminogen activator signaling in macrophages. Inflamm. Res. 2014, 63, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-J.; Larkin, T.M.; Lauver, M.A.; Ahmad, S.; Ducruet, A.F.; Ahmad, M. Tissue plasminogen activator mediates deleterious complement cascade activation in stroke. PLoS ONE 2017, 12, e0180822. [Google Scholar] [CrossRef] [PubMed]
- Ducruet, A.F.; Sosunov, S.A.; Zacharia, B.E.; Gorski, J.; Yeh, M.L.; DeRosa, P.; Cohen, G.; Gigante, P.R.; Connolly, E.S. The neuroprotective effect of genetic mannose-binding lectin deficiency is not sustained in the subacute phase of stroke. Transl. Stroke Res. 2011, 2, 588–599. [Google Scholar] [CrossRef]
- Lacroix, R.; Sabatier, F.; Mialhe, A.; Basire, A.; Pannell, R.; Borghi, H.; Robert, S.; Lamy, E.; Plawinski, L.; Camoin-Jau, L.; et al. Activation of plasminogen into plasmin at the surface of endothelial microparticles: A mechanism that modulates angiogenic properties of endothelial progenitor cells in vitro. Blood J. Am. Soc. Hematol. 2007, 110, 2432–2439. [Google Scholar] [CrossRef] [PubMed]
- Elvington, A.; Atkinson, C.; Zhu, H.; Yu, J.; Takahashi, K.; Stahl, G.L.; Kindy, M.S.; Tomlinson, S. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. J. Immunol. 2012, 189, 4640–4647. [Google Scholar] [CrossRef]
- Atkinson, C.; Song, H.; Lu, B.; Qiao, F.; Burns, T.A.; Holers, V.M.; Tsokos, G.C.; Tomlinson, S. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J. Clin. Investig. 2005, 115, 2444–2453. [Google Scholar] [CrossRef]
- Kilic, E.; Hermann, D.M.; Hossmann, K. Recombinant tissue plasminogen activator reduces infarct size after reversible thread occlusion of middle cerebral artery in mice. Neuroreport 1999, 10, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, W.; Zhang, W.; Libal, N.; Murphy, S.J.; Offner, H.; Alkayed, N.J. A novel mouse model of thromboembolic stroke. J. Neurosci. Methods 2015, 256, 203–211. [Google Scholar] [CrossRef]
- National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N. Engl. J. Med. 1995, 333, 1581–1588. [Google Scholar] [CrossRef]
- Schraufstatter, I.U.; Trieu, K.; Sikora, L.; Sriramarao, P.; DiScipio, R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J. Immunol. 2002, 169, 2102–2110. [Google Scholar] [CrossRef]
- Del Zoppo, G.J.; Von Kummer, R.; Hamann, G.F. Ischaemic damage of brain microvessels: Inherent risks for thrombolytic treatment in stroke. J. Neurol. Neurosurg. Psychiatry 1998, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Xu, Y.; He, X.; Yuan, Q.; Luo, P.; Fan, W.; Zhu, J.; Zhang, X.; Cheng, X.; et al. Revealing the signaling of complement receptors C3aR and C5aR1 by anaphylatoxins. Nat. Chem. Biol. 2023, 19, 1351–1360. [Google Scholar] [CrossRef]
- Lyden, P.D.; Diniz, M.A.; Bosetti, F.; Lamb, J.; Nagarkatti, K.A.; Rogatko, A.; Kim, S.; Cabeen, R.P.; Koenig, J.I.; Akhter, K.; et al. A multi-laboratory preclinical trial in rodents to assess treatment candidates for acute ischemic stroke. Sci. Transl. Med. 2023, 15, eadg8656. [Google Scholar] [CrossRef]
- Jackson, S.J.; Andrews, N.; Ball, D.; Bellantuono, I.; Gray, J.; Hachoumi, L.; Holmes, A.; Latcham, J.; Petrie, A.; Potter, P.; et al. Does age matter? The impact of rodent age on study outcomes. Lab. Anim. 2017, 51, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Kumar, V.; Clark, R.J.; Lee, J.D.; Woodruff, T.M. The “C3aR antagonist” SB290157 is a partial C5aR2 agonist. Front. Pharmacol. 2021, 11, 591398. [Google Scholar] [CrossRef] [PubMed]
Cell Type/Tissue | Cre Line (KO Model) | Hypothesized Role of C3 | Relevant Stroke Pathology |
---|---|---|---|
Astrocytes [39] | GFAP-Cre | Drives formation of neurotoxic A1 astrocytes; contributes to neuronal damage | Astrogliosis, neurotoxicity |
Microglia [40] | CX3CR1-Cre | Mediates synaptic loss, inflammation, and neurotoxicity (via C3aR and CR3 pathways) | Microgliosis, inflammation |
Neurons [41] | CamKIIα-Cre | Modulates neuronal vulnerability and autocrine signaling during injury | Neurodegeneration, synaptic remodeling |
Endothelial Cells [42] | Tie2-Cre/Cdh5-Cre | Regulates BBB integrity, leukocyte adhesion, and vascular inflammation | BBB breakdown, vascular inflammation |
Peripheral Macrophages [43] | Lyz2-Cre | Shapes CNS immune responses and contributes to antigen presentation | Peripheral immune infiltration |
Dendritic Cells [43] | CD11c-Cre | Modulates CNS immune surveillance and inflammation | Immune modulation and antigen presentation |
Phase | Timing | C3aR Activation Effects | Key Mechanisms and Outcomes | References |
---|---|---|---|---|
Acute (injurious) | Minutes to hours post-ischemia | Exacerbates BBB disruption, promotes endothelial inflammation and microvascular thrombosis | Endothelial C3aR triggers VCAM-1 upregulation, Ca2+ influx, junction disruption and leukocyte infiltration, driving edema and injury | [20,21,24,76,84,114,125,126] |
Subacute/early reparative | Hours to days post-ischemia | Supports clearance of cellular debris, reduces glial inflammation, limits necrosis | Microglial/astrocyte C3 signaling via C3aR enhances efferocytosis and curtails reactive gliosis in developing cerebellum | [125,126,127] |
Chronic (reparative) | Days to weeks post-ischemia | Promotes neurogenesis, synaptic remodeling, and functional recovery | C3aR signaling stimulates neurogenesis in adult brain post-stroke, neural progenitor proliferation and plasticity | [24,76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhter, N.; Lambay, A.; Almotairi, R.; Hamadi, A.; Bhatia, K.; Ahmad, S.; Ducruet, A.F. The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke. Cells 2025, 14, 1440. https://doi.org/10.3390/cells14181440
Akhter N, Lambay A, Almotairi R, Hamadi A, Bhatia K, Ahmad S, Ducruet AF. The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke. Cells. 2025; 14(18):1440. https://doi.org/10.3390/cells14181440
Chicago/Turabian StyleAkhter, Naseem, Ateeq Lambay, Reema Almotairi, Abdullah Hamadi, Kanchan Bhatia, Saif Ahmad, and Andrew F. Ducruet. 2025. "The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke" Cells 14, no. 18: 1440. https://doi.org/10.3390/cells14181440
APA StyleAkhter, N., Lambay, A., Almotairi, R., Hamadi, A., Bhatia, K., Ahmad, S., & Ducruet, A. F. (2025). The Complex Role of the Complement C3a Receptor (C3aR) in Cerebral Injury and Recovery Following Ischemic Stroke. Cells, 14(18), 1440. https://doi.org/10.3390/cells14181440