Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Cloning and H. pylori Mutagenesis
2.3. Immunoblotting
2.4. Microscopy and Image Analysis
2.5. Single-Molecule Tracking
2.6. Fluorescent Signal Quantification
2.7. Cell Fractionation
3. Results
3.1. Generation of a Functional Csd2 Fluorescent Protein Fusion Representing a Valuable Analytical Tool for the Investigation of the Subcellular Localization and Dynamics of the Csd1:Csd2 Endopeptidase Complex
3.2. Csd2-mNG Localizes to Defined Sites with Constrained Movement
3.3. Csd2-mNG Is Observed to Assemble at Discrete Sites to Form Ring-Shaped Mobile Structures
3.4. Analyses of Csd2-mNG Dynamics Reveal a Minor Impact of CcmA and Csd5
3.5. Csd2-mNG Is Regulated During the Growth Phase
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Sycuro, L.K.; Pincus, Z.; Gutierrez, K.D.; Biboy, J.; Stern, C.A.; Vollmer, W.; Salama, N.R. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 2010, 141, 822–833. [Google Scholar] [CrossRef]
- Martínez, L.E.; Hardcastle, J.M.; Wang, J.; Pincus, Z.; Tsang, J.; Hoover, T.R.; Bansil, R.; Salama, N.R. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol. Microbiol. 2016, 99, 88–110. [Google Scholar] [CrossRef]
- Waidner, B.; Specht, M.; Dempwolff, F.; Haeberer, K.; Schaetzle, S.; Speth, V.; Kist, M.; Graumann, P.L. A novel system of cytoskeletal elements in the human pathogen Helicobacter pylori. PLoS Pathog. 2009, 5, e1000669. [Google Scholar] [CrossRef]
- Razew, A.; Schwarz, J.-N.; Mitkowski, P.; Sabala, I.; Kaus-Drobek, M. One fold, many functions-M23 family of peptidoglycan hydrolases. Front. Microbiol. 2022, 13, 1036964. [Google Scholar] [CrossRef]
- Sycuro, L.K.; Rule, C.S.; Petersen, T.W.; Wyckoff, T.J.; Sessler, T.; Nagarkar, D.B.; Khalid, F.; Pincus, Z.; Biboy, J.; Vollmer, W.; et al. Flow cytometry-based enrichment for cell shape mutants identifies multiple genes that influence Helicobacter pylori morphology. Mol. Microbiol. 2013, 90, 869–883. [Google Scholar] [CrossRef]
- Blair, K.M.; Mears, K.S.; Taylor, J.A.; Fero, J.; Jones, L.A.; Gafken, P.R.; Whitney, J.C.; Salama, N.R. The Helicobacter pylori cell shape promoting protein Csd5 interacts with the cell wall, MurF, and the bacterial cytoskeleton. Mol. Microbiol. 2018, 110, 114–127. [Google Scholar] [CrossRef]
- Yang, D.C.; Blair, K.M.; Taylor, J.A.; Petersen, T.W.; Sessler, T.; Tull, C.M.; Leverich, C.K.; Collar, A.L.; Wyckoff, T.J.; Biboy, J.; et al. A Genome-Wide Helicobacter pylori Morphology Screen Uncovers a Membrane-Spanning Helical Cell Shape Complex. J. Bacteriol. 2019, 201, 10–1128. [Google Scholar] [CrossRef]
- Holtrup, S.; Greger, M.; Mayer, B.; Specht, M.; Waidner, B. Insights Into the Helical Shape Complex of Helicobacter pylori. Front. Microbiol. 2022, 13, 929194. [Google Scholar] [CrossRef]
- Salama, N.R. Cell morphology as a virulence determinant: Lessons from Helicobacter pylori. Curr. Opin. Microbiol. 2020, 54, 11–17. [Google Scholar] [CrossRef]
- Singh, S.K.; SaiSree, L.; Amrutha, R.N.; Reddy, M. Three redundant murein endopeptidases catalyse an essential cleavage step in peptidoglycan synthesis of Escherichia coli K12. Mol. Microbiol. 2012, 86, 1036–1051. [Google Scholar] [CrossRef]
- Justice, S.S.; Hunstad, D.A.; Cegelski, L.; Hultgren, S.J. Morphological plasticity as a bacterial survival strategy. Nat. Rev. Microbiol. 2008, 6, 162–168. [Google Scholar] [CrossRef]
- Huang, W.-C.; Dwija, I.B.N.P.; Hashimoto, M.; Wu, J.-J.; Wang, M.-C.; Kao, C.-Y.; Lin, W.-H.; Wang, S.; Teng, C.-H. Peptidoglycan endopeptidase MepM of uropathogenic Escherichia coli contributes to competitive fitness during urinary tract infections. BMC Microbiol. 2024, 24, 190. [Google Scholar] [CrossRef]
- Kho, K.; Cheng, T.; Buddelmeijer, N.; Boneca, I.G. When the Host Encounters the Cell Wall and Vice Versa. Annu. Rev. Microbiol. 2024, 78, 233–253. [Google Scholar] [CrossRef]
- Sycuro, L.K.; Wyckoff, T.J.; Biboy, J.; Born, P.; Pincus, Z.; Vollmer, W.; Salama, N.R. Multiple pepti-doglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization po-tential. PLoS Pathog. 2012, 8, e1002603. [Google Scholar] [CrossRef]
- Schätzle, S.; Specht, M.; Waidner, B. Coiled coil rich proteins (Ccrp) influence molecular pathogenicity of Helicobacter pylori. PLoS ONE 2015, 10, e0121463. [Google Scholar] [CrossRef]
- Baltrus, D.A.; Amieva, M.R.; Covacci, A.; Lowe, T.M.; Merrell, D.S.; Ottemann, K.M.; Stein, M.; Salama, N.R.; Guillemin, K. The complete genome sequence of Helicobacter pylori strain G27. J. Bacteriol. 2009, 191, 447–448. [Google Scholar] [CrossRef]
- Holtrup, S.; Heimerl, T.; Linne, U.; Altegoer, F.; Noll, F.; Waidner, B. Biochemical characterization of the Helicobacter pylori bactofilin-homolog HP1542. PLoS ONE 2019, 14, e0218474. [Google Scholar] [CrossRef]
- Smeets, L.C.; Bijlsma, J.J.; Boomkens, S.Y.; Vandenbroucke-Grauls, C.M.; Kusters, J.G. comH, a novel gene essential for natural transformation of Helicobacter pylori. J. Bacteriol. 2000, 182, 3948–3954. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef]
- Tinevez, J.-Y.; Perry, N.; Schindelin, J.; Hoopes, G.M.; Reynolds, G.D.; Laplantine, E.; Bednarek, S.Y.; Shorte, S.L.; Eliceiri, K.W. TrackMate: An open and extensible platform for single-particle tracking. Methods 2017, 115, 80–90. [Google Scholar] [CrossRef]
- Jaqaman, K.; Loerke, D.; Mettlen, M.; Kuwata, H.; Grinstein, S.; Schmid, S.L.; Danuser, G. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 2008, 5, 695–702. [Google Scholar] [CrossRef]
- Paintdakhi, A.; Parry, B.; Campos, M.; Irnov, I.; Elf, J.; Surovtsev, I.; Jacobs-Wagner, C. Oufti: An integrated software package for high-accuracy, high-throughput quantitative microscopy analysis. Mol. Microbiol. 2016, 99, 767–777. [Google Scholar] [CrossRef]
- Oviedo-Bocanegra, L.M.; Hinrichs, R.; Rotter, D.A.O.; Dersch, S.; Graumann, P.L. Single molecule/particle tracking analysis program SMTracker 2.0 reveals different dynamics of proteins within the RNA degradosome complex in Bacillus subtilis. Nucleic Acids Res. 2021, 49, e112. [Google Scholar] [CrossRef]
- Rösch, T.C.; Oviedo-Bocanegra, L.M.; Fritz, G.; Graumann, P.L. SMTracker: A tool for quantitative anal-ysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome. Sci. Rep. 2018, 8, 15747. [Google Scholar] [CrossRef]
- Hartmann, R.; van Teeseling, M.C.F.; Thanbichler, M.; Drescher, K. BacStalk: A comprehensive and interactive image analysis software tool for bacterial cell biology. Mol. Microbiol. 2020, 114, 140–150. [Google Scholar] [CrossRef]
- Postma, M.; Goedhart, J. PlotsOfData-A web app for visualizing data together with their summaries. PLoS Biol. 2019, 17, e3000202. [Google Scholar] [CrossRef]
- An, D.R.; Im, H.N.; Jang, J.Y.; Kim, H.S.; Kim, J.; Yoon, H.J.; Hesek, D.; Lee, M.; Mobashery, S.; Kim, S.-J.; et al. Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori. PLoS ONE 2016, 11, e0164243. [Google Scholar] [CrossRef]
- Pincus, Z.; Theriot, J.A. Comparison of quantitative methods for cell-shape analysis. J. Microsc. 2007, 227, 140–156. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining; Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. ISBN 978-3-642-37455-5. [Google Scholar]
- Sichel, S.R.; Bratton, B.P.; Salama, N.R. Distinct regions of H. pylori’s bactofilin CcmA regulate protein-protein interactions to control helical cell shape. eLife 2022, 11, e80111. [Google Scholar] [CrossRef]
- Lerner, T.R.; Lovering, A.L.; Bui, N.K.; Uchida, K.; Aizawa, S.; Vollmer, W.; Sockett, R.E. Specialized peptidoglycan hydrolases sculpt the intra-bacterial niche of predatory Bdellovibrio and increase population fitness. PLoS Pathog. 2012, 8, e1002524. [Google Scholar] [CrossRef]
- Becker, S.C.; Dong, S.; Baker, J.R.; Foster-Frey, J.; Pritchard, D.G.; Donovan, D.M. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol. Lett. 2009, 294, 52–60. [Google Scholar] [CrossRef]
- Dörr, T.; Cava, F.; Lam, H.; Davis, B.M.; Waldor, M.K. Substrate specificity of an elongation-specific peptidoglycan endopeptidase and its implications for cell wall architecture and growth of Vibrio cholerae. Mol. Microbiol. 2013, 89, 949–962. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-H.; Sulpizio, A.G.; Kelley, A.; Alvarez, L.; Murphy, S.G.; Fan, L.; Cava, F.; Mao, Y.; Saper, M.A.; Dörr, T. Structural basis of peptidoglycan endopeptidase regulation. Proc. Natl. Acad. Sci. USA 2020, 117, 11692–11702. [Google Scholar] [CrossRef]
- Kim, Y.J.; Choi, B.J.; Park, S.H.; Lee, H.B.; Son, J.E.; Choi, U.; Chi, W.-J.; Lee, C.-R. Distinct Amino Acid Availability-Dependent Regulatory Mechanisms of MepS and MepM Levels in Escherichia coli. Front. Microbiol. 2021, 12, 677739. [Google Scholar] [CrossRef]
- Lai, G.C.; Cho, H.; Bernhardt, T.G. The mecillinam resistome reveals a role for peptidoglycan endopeptidases in stimulating cell wall synthesis in Escherichia coli. PLoS Genet. 2017, 13, e1006934. [Google Scholar] [CrossRef]
- Kühn, J.; Briegel, A.; Mörschel, E.; Kahnt, J.; Leser, K.; Wick, S.; Jensen, G.J.; Thanbichler, M. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus. EMBO J. 2010, 29, 327–339. [Google Scholar] [CrossRef] [PubMed]
- El Andari, J.; Altegoer, F.; Bange, G.; Graumann, P.L. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane. PLoS ONE 2015, 10, e0141546. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.K.; McHugh, C.A.; Hoiczyk, E. BacM, an N-terminally processed bactofilin of Myxococcus xanthus, is crucial for proper cell shape. Mol. Microbiol. 2011, 80, 1031–1051. [Google Scholar] [CrossRef] [PubMed]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2011, 10, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Whitley, K.D.; Grimshaw, J.; Roberts, D.M.; Karinou, E.; Stansfeld, P.J.; Holden, S. Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis. Nat. Microbiol. 2024, 9, 1064–1074. [Google Scholar] [CrossRef]
- Ierardi, E.; Losurdo, G.; Mileti, A.; Paolillo, R.; Giorgio, F.; Principi, M.; Di Leo, A. The Puzzle of Coccoid Forms of Helicobacter pylori: Beyond Basic Science. Antibiotics 2020, 9, 293. [Google Scholar] [CrossRef]
- Wang, S.; Huang, C.-H.; Lin, T.-S.; Yeh, Y.-Q.; Fan, Y.-S.; Wang, S.-W.; Tseng, H.-C.; Huang, S.-J.; Chang, Y.-Y.; Jeng, U.-S.; et al. Structural basis for recruitment of peptidoglycan endopeptidase MepS by lipoprotein NlpI. Nat. Commun. 2024, 15, 5461. [Google Scholar] [CrossRef] [PubMed]
Name | Description | Construction | Reference |
---|---|---|---|
G27 | Wt | [17] | |
G27 ∆ccmA | G27 ccmA::Pneo | [18] | |
G27 Csd2-mNG | G27 wild-type with mNeonGreen fused c-terminally to Csd2 and a cat resistance cassette at original locus | Natural transformation of wt with the plasmid pRDX-c Csd2-mNG (CM) | This study |
G27 Csd2-mNG ∆ccmA | G27 Csd2-mNG strain containing ccmA replaced by a Kanamycin resistance cassette | Natural transformation of G27 Csd2-mNG with PCR-product csd1-1480::kanR-1479 | This study |
G27 Csd2-mNG ∆csd5 | G27 Csd2-mNG strain containing csd5 replaced by a Kanamycin resistance cassette | Natural transformation of G27 Csd2-mNG with the crossover PCR-product aroE_KanR_HP1251 | This study |
G27 Csd2-mNG ∆csd1 | G27 Csd2-mNG strain containing csd1 replaced by a Kanamycin resistance cassette | Natural transformation of G27 Csd2-mNG with crossover PCR-product 1482-KanR-PccmA-ccmA | This study |
G27 Csd2-mNG ∆csd7 | G27 Csd2-mNG strain containing csd7 replaced by a Kanamycin resistance cassette | Natural transformation of G27 Csd2-mNG with the crossover PCR-product csd7-3&apos_KanR_csd7-5&apos | This study |
G27 CcmA-mNG Csd2-mCherry | G27 wild-type strain containing a c-terminal CcmA-mNG and Csd2-mCherry fusion at the native locus | This study |
Name | Description | Reference |
---|---|---|
pRDX-c | pBC-SK containing a chloramphenicol resistance cassette flanked 5′ and 3′ by rdxA sequences | [19] |
pRDX-k | based on pRDX-c with an exchanged resistance cassette | [16,19] |
pRDXc Csd2-mNG catR | Plasmid for the integration of csd2-mNG with a chloramphenicol resistance cassette into the original locus | This study |
pRDXc Csd2-mNG catR-1480 | Plasmid for the integration of csd2-mNG in the ∆csd1 background at the original locus | This study |
pRDXc Csd2-mCh kanR | Plasmid for the integration of csd2-mNG with a kanamycin resistance cassette into the original locus | This study |
Name | Sequence 5′-3′ | Usage | Reference |
---|---|---|---|
Csd2_XbaI_for | ACAAGCTGGTTTTGCGGCATTCTAGAACTTTATAAGACTC | Amplification of Csd2 | This study |
Csd2_Linker_mNG_rev | CTC CTC CTC CTC CTC CCA GGC CAG ATA GGC CCT GGC TTA TGA GTG CGT C | This study | |
Linker_mNG_for | CCT GGG AGG AGG AGG AGG AGG GCC CTC ACT GAT GGT GAG CAA GGG CGA G | Amplification of mNG or mCherry | This study |
mNG_rev | TTACTTGTACAGCTCGTCCA | [10] | |
pRDX-c_KpnI_for | GGTACCCAGCTTTTGTTCCC | Vektor-PCR for integration of csd1 | |
pRDX-c_SalI_rev * | GTCGACGGTATCGATAAGCTTG | This study | |
Csd1_SalI_for | CAT GTC GAC ATG GTT ACG GAC TCT AAA GGG | Amplification of csd1 | This study |
Csd1_KpnI_rev | CAT GGT ACC CGT TAT TTT TGT GCC TTG AGC GAT GA | This study | |
pRDX-c_XbaI_rev | TCTAGAACTTTATAAGACTCCGGATAGAG | Vector-PCR for integration of csd2 and mNG or mCherry | This study |
mNeoVenChe_pRDX-c_for * | TGGACGAGCTGTACAAGTAAGGATCCCCCGGGCTGCA | [10] | |
pRDX-c_ SalI_PccmA_for | AGCTTATCCATACCGTCGACGTCGTAAAAACCGGCGAATT | Amplification of ccmA with promoter for integration between KpnI/SalI and pRDX-c Csd2-mNG plasmid | This study |
CcmA_kpnI_rev | GGGAACAAAGCTGGGTACCTTATTTATTTTCAATTTTCTT | This study |
Reagent Type (Species) or Resource | Designation | Source or Reference | Identifiers | Additional Information |
---|---|---|---|---|
Antibody | anti-mNeongreen (Mouse monoclonal) | Chromotek | Cat. #: 32f6 | 1:1000 |
Antibody | α-mouse- HRP (polyclonal) | Millipore | Cat. #: AP181P | 1:4000 |
Antibody | α-Urease B (rabbit polyclonal) | Sigma-Aldrich | Cat. #: SAB56000329 | 1:1000 |
Antibody | α-CcmA GGA (rabbit polyclonal) | Davids-bio.com | 1:1000 | |
Antibody | α-rabbit- HRP (polyclonal) | Sigma-Aldrich | Cat. #: A9169 | 1:10,000 |
Chemical compound | Sodium carbonite (NaCO3) | Carl Roth | Cat. #: 8563.1 | Used for fractionation |
Chemical compound | ampicillin | Carl Roth | Cat. #: K029.3 | |
Chemical compound | kanamycin | Carl Roth | Cat. #: T832.1 | |
Chemical compound | chloramphenicol | Carl Roth | Cat. #: 3886.2 | |
Chemical compound | DnaseI | PanReac AppliChem | Cat. #: A3778 | |
Chemical compound | cOmplete Protease Inhibitor Cocktail | Roche | Cat. #: 11836170001 | |
Software, algorithm | ImageJ (Fiji) | [20] | https://imagej.net/ij/download.html | Plug-in: JACoP [20] TrackMate (v 6.0.1, [21]) |
Software, algorithm | Celltool | https://github.com/zpincus/celltool | ||
Software, algorithm | BPROM Promoter Prediction Tool | http://www.softberry.com. | ||
Software, algorithm | u-track | [23] | https://github.com/DanuserLab/u-track | |
Software, algorithm | Oufti | [24] | https://oufti.org/download.html | |
Software, algorithm | SMTracker | [25] | https://sourceforge.net/projects/singlemoleculetracker/ | |
Software, algorithm | BacStalk | [27] | https://drescherlab.org/data/bacstalk/ | |
Software, algorithm | SuperPlotsOfData | [28] | https://huygens.science.uva.nl/SuperPlotsOfData/ | |
Software, algorithm | GelAnalzyer | http://www.gelanalyzer.com/?i=1 | Version 23.1, Authors: Istvan Lazar Jr., PhD and Istvan Lazar Sr., PhD, CSc | |
Software, algorithm | Signal_quantification | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Software, algorithm | Signal_visualization | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Software, algorithm | Curvature_Visualization | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Software, algorithm | Track_quantification | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Software, algorithm | Track_Visualization | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Software, algorithm | Signal_pattern_profiling | This study | https://github.com/magreger/SQUAD | Custom written script in Python 3.13 |
Strain | G27 Csd2-mNG | G27 Csd2-mNG ∆ccmA | G27 Csd2-mNG ∆csd5 |
---|---|---|---|
MSD | |||
#Tracks | 930 | 970 | 845 |
D xy (µm2 s−1) | 0.03 | 0.02 | 0.02 |
R | 0.967 | 0.954 | 0.978 |
SQD | |||
Mobile fraction (%) | 26.3 ± 0.002 | 22 ± 0.002 | 23.3 ± 0.002 |
Slow-mobile fraction (%) | 46.4 ± 0.002 | 48.6 ± 0.002 | 48.1 ± 0.002 |
Static fraction (%) | 27.3 ± 0.002 | 29.3 ± 0.002 | 28.6 ± 0.002 |
Mobile D (µm2 s−1) | 0.29 ± 0.002 | 0.29 ± 0.002 | 0.29 ± 0.002 |
Slow-mobile D (µm2 s−1) | 0.02 ± 0 | 0.02 ± 0 | 0.02 ± 0 |
Static D (µm2 s−1) | 0.003 ± 0 | 0.003 ± 0 | 0.003 ± 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greger, M.; Waidner, B. Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori. Cells 2025, 14, 1420. https://doi.org/10.3390/cells14181420
Greger M, Waidner B. Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori. Cells. 2025; 14(18):1420. https://doi.org/10.3390/cells14181420
Chicago/Turabian StyleGreger, Maximilian, and Barbara Waidner. 2025. "Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori" Cells 14, no. 18: 1420. https://doi.org/10.3390/cells14181420
APA StyleGreger, M., & Waidner, B. (2025). Localization and Dynamics of the Cell Shape-Determining Csd2 Protein Complex in H. pylori. Cells, 14(18), 1420. https://doi.org/10.3390/cells14181420