Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications
Abstract
1. Introduction
2. Classification of Endometrial Cancer
2.1. Histologic Classification of Endometrial Cancer
2.2. TCGA-Based Four Molecular Subtypes
2.2.1. POLE Ultramutated (POLEmut)
2.2.2. Mismatch Repair Deficient (MMRd)/Microsatellite Instability-High (MSI-H)
2.2.3. Copy-Number High (CN-H)/p53-Abnormal (p53abn)
2.2.4. Copy-Number Low (CN-L)/No Specific Molecular Profile (NSMP)
2.3. Prognostic and Therapeutic Implications
3. Key Signaling Pathways and Therapeutic Targets Uncovered by Multi-Omics
3.1. PI3K/AKT/mTOR Pathway
3.2. Hormone Receptor Signaling: Estrogen Receptor and Progesterone Receptor
3.3. WNT/β-Catenin Signaling Pathway
3.4. DNA Damage Repair (DDR) Pathway
3.5. Cell Cycle Dysregulation and TP53 Axis
3.6. Chromatin Remodeling
3.7. HER2/Fibroblast Growth Factor Receptor (FGFR)
4. Current Applications of Multi-Omics: From Diagnosis to Therapy
4.1. Risk Stratfification
4.2. Precision Targeting of Pathway
4.3. Emerging Diagnostic and Monitoring Tools
5. Conclusion and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
4E-BP1 | Eukaryotic translation initiation factor 4E-binding protein 1 |
ADC | Antibody-Drug Conjugate |
AI | Artificial Intelligence |
APC | Adenomatous Polyposis Coli |
ARID1A | AT-rich interactive domain-containing protein 1A |
ATR | Ataxia Telangiectasia and Rad3-related protein |
CAFs | Cancer-associated fibroblasts |
CCND1 | Cyclin D1 |
CCNE1 | Cyclin E1 |
CDK4/6 | Cyclin-Dependent Kinase 4/6 |
CK1 | Casein Kinase 1 |
CN-H | Copy-Number High |
CN-L | Copy-Number Low |
CPTAC | Clinical Proteomic Tumor Analysis Consortium |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CSF | Cerebrospinal Fluid |
CTC | Circulating Tumor Cell |
CTNNB1 | Catenin Beta 1 |
CTx | Chemotherapy |
ctDNA | Circulating tumor DNA |
DDR | DNA Damage Repair |
DKK1 | Dickkopf-related protein 1 |
DLC1 | Dynein light chain 1 |
E2 | Estradiol |
EC | Endometrial Cancer |
ECM | Extracellular matrix |
EEC | Endometrioid Carcinoma |
EGF | Epidermal Growth Factor |
EIN | Endometrial intraepithelial neoplasia |
ER | Estrogen Receptor |
ERα | Estrogen Receptor Alpha |
ERβ | Estrogen Receptor Beta |
ESGO | European Society of Gynecological Oncology |
ESP | European Society of Pathology |
ESTRO | European Society for Therapeutic Radiotherapy and Oncology |
EZH2 | Enhancer of Zeste Homolog 2 |
FGFR | Fibroblast Growth Factor Receptor |
FIGO | The International Federation of Gynecology and Obstetrics |
GSK3β | Glycogen Synthase Kinase 3 Beta |
HER2 | Human Epidermal Growth Factor Receptor 2 |
HR | Hormone receptor |
IGF | Insulin-like Growth Factor |
IGF1 | Insulin-like Growth Factor 1 |
IL-10 | Interleukin-10 |
IHC | Immunohistochemistry |
JAK/STAT | Janus Kinase/Signal Transducer and Activator of Transcription |
L1CAM | L1 cell adhesion molecule |
LN | Lymph Node |
LVSI | Lymphovascular Space Involvement |
MAPK | Mitogen-activated Protein Kinase |
MDK | Midkine |
MMP2 | Matrix Metallopeptidase 2 |
MMP7 | Matrix Metallopeptidase 7 |
MMP9 | Matrix metalloproteinase 9 |
MMR | Mismatch Repair |
MMRd | Mismatch Repair Deficient |
MRI | Magnetic Resonance Imaging |
MSI-H | Microsatellite Instability-High |
MYC | MYC Proto-Oncogene |
NCL | Nucleolin |
NGS | Next-Generation Sequencing |
NSMP | No Specific Molecular Profile |
p53abn | p53-abnormal |
PARP | Poly(ADP-ribose) polymerase |
PCR-MSI | Polymerase Chain Reaction-based Microsatellite Instability |
PD-1 | Programmed cell death protein 1 |
PD-L1 | Programmed death-ligand 1 |
PET | Positron Emission Tomography |
PIK3CA | Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha |
PIK3R1 | Phosphatidylinositol 3-kinase regulatory subunit alpha |
PIP2 | Phosphatidylinositol 4,5-bisphosphate |
PIP3 | Phosphatidylinositol (3,4,5)-trisphosphate |
POLEmut | POLE ultramutated |
PORCN | Porcupine O-acyltransferase |
PR | Progesterone Receptor |
PRC2 | Polycomb Repressive Complex 2 |
PTEN | Phosphatase and tensin homolog |
RTK | Receptor Tyrosine Kinase |
RTx | Radiotherapy |
S6K1 | Ribosomal protein S6 kinase beta-1 |
SERD | Selective Estrogen Receptor Degrader |
SERMs | Selective Estrogen Receptor Modulators |
SFRP1 | Secreted Frizzled-related protein 1 |
SMARCA4 | SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily A, Member 4 |
TAMs | Tumor-associated macrophages |
TCGA | The Cancer Genome Atlas |
TCF/LEF | T-cell factor/lymphoid enhancer factor |
T-DXd | Trastuzumab deruxtecan |
TGF-β | Transforming growth factor beta |
TSC2 | Tuberous Sclerosis Complex 2 |
UCEC | Uterine Corpus Endometrial Carcinoma |
USC | Uterine Serous Carcinoma |
VEGF | Vascular endothelial growth factor |
VUS | Variants of uncertain significance |
WEE1 | WEE1-like protein kinase |
WHO | World Health Organization |
WNT4 | Wnt Family Member 4 |
Appendix A
Stage | Description |
---|---|
Stage I | Tumor confined to the uterus and/or ovary |
IA1 | Non-aggressive histology * (e.g., low-grade endometrioid) confined to a polyp or endometrium only |
IA2 | Non-aggressive histology invading <50% of myometrium, with no or focal LVSI |
IA3 | Low-grade endometrioid carcinoma involving uterus and unilateral ovary, with superficial myometrial invasion, no substantial LVSI, and no other metastasis |
IB | Non-aggressive histology invading ≥50% of myometrium, with no or focal LVSI |
IC | Aggressive histology † (e.g., serous, clear cell, carcinosarcoma) limited to a polyp or confined to endometrium only |
Stage II | Cervical or vascular involvement or aggressive histology with myometrial invasion |
IIA | Non-aggressive histology invading cervical stroma |
IIB | Substantial LVSI (≥5 vessels) in non-aggressive histology |
IIC | Aggressive histology with any myometrial invasion |
Stage III | Local or regional spread |
IIIA1 | Adnexal (ovary or fallopian tube) involvement (not meeting IA3 criteria) |
IIIA2 | Invasion of uterine serosa or subserosa |
IIIB1 | Vaginal and/or parametrial involvement |
IIIB2 | Pelvic peritoneal carcinomatosis |
IIIC1i/1ii | Pelvic lymph node metastasis (micrometastasis/macrometastasis) |
IIIC2i/2ii | Para-aortic LN metastasis up to renal vessels (±pelvic LN); micro/macro |
Stage IV | Distant or locally advanced disease |
IVA | Invasion of bladder and/or bowel mucosa |
IVB | Abdominal peritoneal metastasis beyond the pelvis |
IVC | Distant metastases (e.g., liver, lung, bone, brain, suprarenal lymph nodes) |
Modified Stage | Molecular Type | Description |
---|---|---|
IAmPOLEmut | POLE-mutated | Confined to uterus or cervix, regardless of LVSI or histology |
IICmp53abn | p53 abnormal | Confined to uterus, any myometrial invasion, ±cervical, regardless of LVSI |
IIIm, IVm | All molecular types | Record subtypes for data or trial purpose (e.g., MMRd, p53abn, or NSMP) |
References
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Ploner, A.; Elfstrom, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundstrom, K.; Dillner, J.; Sparen, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef] [PubMed]
- Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.; Tsilidis, K.K.; et al. Risk factors for endometrial cancer: An umbrella review of the literature. Int. J. Cancer 2019, 145, 1719–1730. [Google Scholar] [CrossRef]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N.; Endometrial Cancer Staging Subcommittee, F.W.s.C.C. FIGO staging of endometrial cancer: 2023. J. Gynecol. Oncol. 2023, 34, e85. [Google Scholar] [CrossRef]
- Lu, K.H.; Broaddus, R.R. Endometrial Cancer. N. Engl. J. Med. 2020, 383, 2053–2064. [Google Scholar] [CrossRef]
- Zheng, W. Molecular classification of endometrial cancer and the 2023 FIGO staging: Exploring the challenges and opportunities for pathologists. Cancers 2023, 15, 4101. [Google Scholar] [CrossRef]
- Galant, N.; Krawczyk, P.; Monist, M.; Obara, A.; Gajek, Ł.; Grenda, A.; Nicoś, M.; Kalinka, E.; Milanowski, J. Molecular classification of endometrial cancer and its impact on therapy selection. Int. J. Mol. Sci. 2024, 25, 5893. [Google Scholar] [CrossRef]
- Rodriguez, A.C.; Blanchard, Z.; Maurer, K.A.; Gertz, J. Estrogen Signaling in Endometrial Cancer: A Key Oncogenic Pathway with Several Open Questions. Horm. Cancer 2019, 10, 51–63. [Google Scholar] [CrossRef]
- van der Meer, A.C.; Hanna, L.S. Development of endometrioid adenocarcinoma despite Levonorgestrel-releasing intrauterine system: A case report with discussion and review of the RCOG/BSGE Guideline on the Management of Endometrial Hyperplasia. Clin. Obes. 2017, 7, 54–57. [Google Scholar] [CrossRef]
- Johnson, J.E.; Daley, D.; Tarta, C.; Stanciu, P.I. Risk of endometrial cancer in patients with polycystic ovarian syndrome: A meta-analysis. Oncol. Lett. 2023, 25, 168. [Google Scholar] [CrossRef]
- Gong, T.T.; Wang, Y.L.; Ma, X.X. Age at menarche and endometrial cancer risk: A dose-response meta-analysis of prospective studies. Sci. Rep. 2015, 5, 14051. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, W.; Liu, H.; Zhang, D. Age at Menopause and Risk of Developing Endometrial Cancer: A Meta-Analysis. Biomed. Res. Int. 2019, 2019, 8584130. [Google Scholar] [CrossRef]
- Katagiri, R.; Iwasaki, M.; Abe, S.K.; Islam, M.R.; Rahman, M.S.; Saito, E.; Merritt, M.A.; Choi, J.Y.; Shin, A.; Sawada, N.; et al. Reproductive Factors and Endometrial Cancer Risk Among Women. JAMA Netw. Open 2023, 6, e2332296. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, K.S.; Tham, S.T.; Mohamed, Z.; Woo, Y.L.; Mat Adenan, N.A.; Chung, I. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells. PLoS ONE 2013, 8, e68923. [Google Scholar] [CrossRef] [PubMed]
- Villegas-Pineda, J.C.; Ramirez-de-Arellano, A.; Bueno-Urquiza, L.J.; Lizarazo-Taborda, M.D.R.; Pereira-Suarez, A.L. Cancer-associated fibroblasts in gynecological malignancies: Are they really allies of the enemy? Front. Oncol. 2023, 13, 1106757. [Google Scholar] [CrossRef] [PubMed]
- Michalczyk, K.; Cymbaluk-Ploska, A. Metalloproteinases in Endometrial Cancer-Are They Worth Measuring? Int. J. Mol. Sci. 2021, 22, 12472. [Google Scholar] [CrossRef]
- Sun, Y.; Jiang, G.; Wu, Q.; Ye, L.; Li, B. The role of tumor-associated macrophages in the progression, prognosis and treatment of endometrial cancer. Front. Oncol. 2023, 13, 1213347. [Google Scholar] [CrossRef]
- Willvonseder, B.; Stogbauer, F.; Steiger, K.; Jesinghaus, M.; Kuhn, P.H.; Brambs, C.; Engel, J.; Bronger, H.; Schmidt, G.P.; Haller, B.; et al. The immunologic tumor microenvironment in endometrioid endometrial cancer in the morphomolecular context: Mutual correlations and prognostic impact depending on molecular alterations. Cancer Immunol. Immunother. 2021, 70, 1679–1689. [Google Scholar] [CrossRef]
- Yu, X.; Xie, L.; Ge, J.; Li, H.; Zhong, S.; Liu, X. Integrating single-cell RNA-seq and spatial transcriptomics reveals MDK-NCL dependent immunosuppressive environment in endometrial carcinoma. Front Immunol. 2023, 14, 1145300. [Google Scholar] [CrossRef]
- Corr, B.; Cosgrove, C.M.; Spinosa, D.; Guntupalli, S.R. Endometrial cancer: Molecular classification and future treatments. BMJ Med. 2022, 1, e000152. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N.; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Dou, Y.; Kawaler, E.A.; Cui Zhou, D.; Gritsenko, M.A.; Huang, C.; Blumenberg, L.; Karpova, A.; Petyuk, V.A.; Savage, S.R.; Satpathy, S.; et al. Proteogenomic Characterization of Endometrial Carcinoma. Cell 2020, 180, 729–748.e26. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Lin, C.; Zhu, Z.; Hu, L.; Wang, F.; Wang, X.; Ruan, J.; Zhao, X.; Huang, S. The IFN-γ-related long non-coding RNA signature predicts prognosis and indicates immune microenvironment infiltration in uterine corpus endometrial carcinoma. Front. Oncol. 2022, 12, 955979. [Google Scholar] [CrossRef]
- Jasielski, P.; Zawlik, I.; Bogaczyk, A.; Potocka, N.; Paszek, S.; Maźniak, M.; Witkoś, A.; Korzystka, A.; Kmieć, A.; Kluz, T. The Promotive and Inhibitory Role of Long Non-Coding RNAs in Endometrial Cancer Course—A Review. Cancers 2024, 16, 2125. [Google Scholar] [CrossRef]
- Albertí-Valls, M.; Megino-Luque, C.; Macià, A.; Gatius, S.; Matias-Guiu, X.; Eritja, N. Metabolomic-Based Approaches for Endometrial Cancer Diagnosis and Prognosis: A Review. Cancers 2023, 16, 185. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Radiother. Oncol. 2021, 154, 327–353. [Google Scholar] [CrossRef]
- Ledinek, Z.; Sobocan, M.; Knez, J. The Role of CTNNB1 in Endometrial Cancer. Dis. Markers 2022, 2022, 1442441. [Google Scholar] [CrossRef]
- Ruz-Caracuel, I.; López-Janeiro, Á.; Heredia-Soto, V.; Ramón-Patino, J.L.; Yébenes, L.; Berjón, A.; Hernández, A.; Gallego, A.; Ruiz, P.; Redondo, A.; et al. Clinicopathological features and prognostic significance of CTNNB1 exon 3 mutations in endometrial carcinoma. Cancers 2021, 13, 6138. [Google Scholar] [CrossRef]
- Deng, L.; Gao, Y.; Li, X.; Cai, M.; Wang, H.; Zhuang, H.; Tan, M.; Liu, S.; Hao, Y.; Lin, B. Expression and clinical significance of annexin A2 and human epididymis protein 4 in endometrial carcinoma. J. Exp. Clin. Cancer Res. 2015, 34, 96. [Google Scholar] [CrossRef]
- Alonso-Alconada, L.; Santacana, M.; Garcia-Sanz, P.; Muinelo-Romay, L.; Colas, E.; Mirantes, C.; Monge, M.; Cueva, J.; Oliva, E.; Soslow, R.A.; et al. Annexin-A2 as predictor biomarker of recurrent disease in endometrioid endometrial carcinoma. Int. J. Cancer 2015, 136, 1863–1873. [Google Scholar] [CrossRef] [PubMed]
- Heidari, F.; Rabizadeh, S.; Sadat Salehi, S.; Akhavan, S.; Khaloo, P.; Alemi, H.; Mirmiranpour, H.; Esteghamati, A.; Nakhjavani, M. Serum HSP70 level in patients with endometrial cancer and type 2 diabetes mellitus. J. Obstet. Gynaecol. Res. 2020, 46, 2621–2628. [Google Scholar] [CrossRef]
- Bokhman, J.V. Two pathogenetic types of endometrial carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Murali, R.; Soslow, R.A.; Weigelt, B. Classification of endometrial carcinoma: More than two types. Lancet Oncol. 2014, 15, e268–e278. [Google Scholar] [CrossRef]
- Alexa, M.; Hasenburg, A.; Battista, M.J. The TCGA Molecular Classification of Endometrial Cancer and Its Possible Impact on Adjuvant Treatment Decisions. Cancers 2021, 13, 1478. [Google Scholar] [CrossRef]
- Szpirer, J.; Pedeutour, F.; Kesti, T.; Riviere, M.; Syvaoja, J.E.; Turc-Carel, C.; Szpirer, C. Localization of the gene for DNA polymerase epsilon (POLE) to human chromosome 12q24.3 and rat chromosome 12 by somatic cell hybrid panels and fluorescence in situ hybridization. Genomics 1994, 20, 223–226. [Google Scholar] [CrossRef]
- Leon-Castillo, A. Update in the molecular classification of endometrial carcinoma. Int. J. Gynecol. Cancer 2023, 33, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Leon-Castillo, A.; Gilvazquez, E.; Nout, R.; Smit, V.T.; McAlpine, J.N.; McConechy, M.; Kommoss, S.; Brucker, S.Y.; Carlson, J.W.; Epstein, E.; et al. Clinicopathological and molecular characterisation of ‘multiple-classifier’ endometrial carcinomas. J. Pathol. 2020, 250, 312–322. [Google Scholar] [CrossRef]
- Marchetti, M.; Ferrari, J.; Vezzaro, T.; Masatti, L.; Tasca, G.; Maggino, T.; Tozzi, R.; Saccardi, C.; Noventa, M.; Spagnol, G. The Role of Immunotherapy in MMR-Deficient Endometrial Carcinoma: State of the Art and Future Perspectives. J. Clin. Med. 2024, 13, 7041. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H., Jr.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability-High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef]
- Oaknin, A.; Gilbert, L.; Tinker, A.V.; Brown, J.; Mathews, C.; Press, J.; Sabatier, R.; O’Malley, D.M.; Samouelian, V.; Boni, V.; et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: Interim results from GARNET-a phase I, single-arm study. J. Immunother. Cancer 2022, 10. [Google Scholar] [CrossRef]
- Jamieson, A.; Thompson, E.F.; Huvila, J.; Gilks, C.B.; McAlpine, J.N. p53abn Endometrial Cancer: Understanding the most aggressive endometrial cancers in the era of molecular classification. Int. J. Gynecol. Cancer 2021, 31, 907–913. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, S.F.; Bao, W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int. J. Gynaecol. Obs. 2024, 164, 436–459. [Google Scholar] [CrossRef]
- Fader, A.N.; Roque, D.M.; Siegel, E.; Buza, N.; Hui, P.; Abdelghany, O.; Chambers, S.K.; Secord, A.A.; Havrilesky, L.; O’Malley, D.M.; et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Versus Carboplatin-Paclitaxel-Trastuzumab in Uterine Serous Carcinomas That Overexpress Human Epidermal Growth Factor Receptor 2/neu. J. Clin. Oncol. 2018, 36, 2044–2051. [Google Scholar] [CrossRef]
- Dasari, S.K.; Joseph, R.; Umamaheswaran, S.; Mangala, L.S.; Bayraktar, E.; Rodriguez-Aguayo, C.; Wu, Y.; Nguyen, N.; Powell, R.T.; Sobieski, M.; et al. Combination of EphA2- and Wee1-Targeted Therapies in Endometrial Cancer. Int. J. Mol. Sci. 2023, 24, 3915. [Google Scholar] [CrossRef]
- Xu, H.; George, E.; Kinose, Y.; Kim, H.; Shah, J.B.; Peake, J.D.; Ferman, B.; Medvedev, S.; Murtha, T.; Barger, C.J.; et al. CCNE1 copy number is a biomarker for response to combination WEE1-ATR inhibition in ovarian and endometrial cancer models. Cell Rep. Med. 2021, 2, 100394. [Google Scholar] [CrossRef]
- Bell, D.W.; Ellenson, L.H. Molecular Genetics of Endometrial Carcinoma. Annu. Rev. Pathol. 2019, 14, 339–367. [Google Scholar] [CrossRef] [PubMed]
- Talhouk, A.; McConechy, M.K.; Leung, S.; Yang, W.; Lum, A.; Senz, J.; Boyd, N.; Pike, J.; Anglesio, M.; Kwon, J.S.; et al. Confirmation of ProMisE: A simple, genomics-based clinical classifier for endometrial cancer. Cancer 2017, 123, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Travaglino, A.; Raffone, A.; Raimondo, D.; Reppuccia, S.; Ruggiero, A.; Arena, A.; Casadio, P.; Zullo, F.; Insabato, L.; Seracchioli, R.; et al. Prognostic significance of CTNNB1 mutation in early stage endometrial carcinoma: A systematic review and meta-analysis. Arch. Gynecol. Obs. 2022, 306, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Kommoss, F.K.; Karnezis, A.N.; Kommoss, F.; Talhouk, A.; Taran, F.A.; Staebler, A.; Gilks, C.B.; Huntsman, D.G.; Kramer, B.; Brucker, S.Y.; et al. L1CAM further stratifies endometrial carcinoma patients with no specific molecular risk profile. Br. J. Cancer 2018, 119, 480–486. [Google Scholar] [CrossRef]
- Vermij, L.; Jobsen, J.J.; Leon-Castillo, A.; Brinkhuis, M.; Roothaan, S.; Powell, M.E.; de Boer, S.M.; Khaw, P.; Mileshkin, L.R.; Fyles, A.; et al. Prognostic refinement of NSMP high-risk endometrial cancers using oestrogen receptor immunohistochemistry. Br. J. Cancer 2023, 128, 1360–1368. [Google Scholar] [CrossRef]
- Mirza, M.R.; Chase, D.M.; Slomovitz, B.M.; dePont Christensen, R.; Novak, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.M.; et al. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer. N. Engl. J. Med. 2023, 388, 2145–2158. [Google Scholar] [CrossRef]
- Kommoss, S.; McConechy, M.K.; Kommoss, F.; Leung, S.; Bunz, A.; Magrill, J.; Britton, H.; Kommoss, F.; Grevenkamp, F.; Karnezis, A.; et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 2018, 29, 1180–1188. [Google Scholar] [CrossRef]
- Leon-Castillo, A.; de Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P.; et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit from Adjuvant Therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef]
- Horeweg, N.; Nout, R.A.; Jurgenliemk-Schulz, I.M.; Lutgens, L.; Jobsen, J.J.; Haverkort, M.A.D.; Mens, J.W.M.; Slot, A.; Wortman, B.G.; de Boer, S.M.; et al. Molecular Classification Predicts Response to Radiotherapy in the Randomized PORTEC-1 and PORTEC-2 Trials for Early-Stage Endometrioid Endometrial Cancer. J. Clin. Oncol. 2023, 41, 4369–4380. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.C.; Lam, H.Y.; Yap, K.C.H.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef] [PubMed]
- Yen, T.T.; Wang, T.L.; Fader, A.N.; Shih, I.M.; Gaillard, S. Molecular Classification and Emerging Targeted Therapy in Endometrial Cancer. Int. J. Gynecol. Pathol. 2020, 39, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Markowska, A.; Pawalowska, M.; Lubin, J.; Markowska, J. Signalling pathways in endometrial cancer. Contemp. Oncol. 2014, 18, 143–148. [Google Scholar] [CrossRef]
- Makker, V.; MacKay, H.; Ray-Coquard, I.; Levine, D.A.; Westin, S.N.; Aoki, D.; Oaknin, A. Endometrial cancer. Nat. Rev. Dis. Primers 2021, 7, 88. [Google Scholar] [CrossRef]
- Slomovitz, B.M.; Filiaci, V.L.; Walker, J.L.; Taub, M.C.; Finkelstein, K.A.; Moroney, J.W.; Fleury, A.C.; Muller, C.Y.; Holmanm, L.L.; Copeland, L.J.; et al. A Randomized Phase II Trial of Everolimus and Letrozole or Hormonal Therapy (Tamoxifen/Medroxyprogesterone Acetate) in Women With Advanced, Recurrent, or Persistent Endometrial Carcinoma: A GOG Foundation study. Gynecol. Oncol. 2022, 164, 481–491. [Google Scholar] [CrossRef]
- Oza, A.M.; Elit, L.; Tsao, M.S.; Kamel-Reid, S.; Biagi, J.; Provencher, D.M.; Gotlieb, W.H.; Hoskins, P.J.; Ghatage, P.; Tonkin, K.S.; et al. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: A trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011, 29, 3278–3285. [Google Scholar] [CrossRef] [PubMed]
- Slomovitz, B.M.; Jiang, Y.; Yates, M.S.; Soliman, P.T.; Johnston, T.; Nowakowski, M.; Levenback, C.; Zhang, Q.; Ring, K.; Munsell, M.F.; et al. Phase II study of everolimus and letrozole in patients with recurrent endometrial carcinoma. J. Clin. Oncol. 2015, 33, 930–936. [Google Scholar] [CrossRef]
- Juric, D.; Janku, F.; Rodon, J.; Burris, H.A.; Mayer, I.A.; Schuler, M.; Seggewiss-Bernhardt, R.; Gil-Martin, M.; Middleton, M.R.; Baselga, J.; et al. Alpelisib Plus Fulvestrant in PIK3CA-Altered and PIK3CA-Wild-Type Estrogen Receptor-Positive Advanced Breast Cancer: A Phase 1b Clinical Trial. JAMA Oncol. 2019, 5, e184475. [Google Scholar] [CrossRef]
- Fleming, G.F. Second-Line Therapy for Endometrial Cancer: The Need for Better Options. J. Clin. Oncol. 2015, 33, 3535–3540. [Google Scholar] [CrossRef]
- Nakayama, K.; Nakayama, N.; Ishikawa, M.; Miyazaki, K. Endometrial serous carcinoma: Its molecular characteristics and histology-specific treatment strategies. Cancers 2012, 4, 799–807. [Google Scholar] [CrossRef]
- Reid-Nicholson, M.; Iyengar, P.; Hummer, A.J.; Linkov, I.; Asher, M.; Soslow, R.A. Immunophenotypic diversity of endometrial adenocarcinomas: Implications for differential diagnosis. Mod. Pathol. 2006, 19, 1091–1100. [Google Scholar] [CrossRef]
- van Weelden, W.J.; Reijnen, C.; Küsters-Vandevelde, H.V.N.; Bulten, J.; Bult, P.; Leung, S.; Visser, N.C.M.; Santacana, M.; Bronsert, P.; Hirschfeld, M.; et al. The cutoff for estrogen and progesterone receptor expression in endometrial cancer revisited: A European Network for Individualized Treatment of Endometrial Cancer collaboration study. Hum. Pathol. 2021, 109, 80–91. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, D.; Gong, C.; Zhang, F.; He, J.; Zhang, W.; Zhao, Y.; Sun, J. Prognostic role of hormone receptors in endometrial cancer: A systematic review and meta-analysis. World J. Surg. Oncol. 2015, 13, 208. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Ni, X.; Li, J.; Ye, M.; Jin, X. Roles of estrogen receptor alpha in endometrial carcinoma (Review). Oncol. Lett. 2023, 26, 530. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Zhang, J.; Zhou, X.; Liu, J.; Wang, Q.; Zhang, B. Roles of estrogen receptor alpha and beta in the regulation of proliferation in endometrial carcinoma. Pathol.-Res. Pract. 2020, 216, 153149. [Google Scholar] [CrossRef]
- Makker, V.; Colombo, N.; Casado Herraez, A.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef]
- Nusse, R.; Clevers, H. Wnt/beta-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef]
- Kim, G.; Kurnit, K.C.; Djordjevic, B.; Singh, C.; Munsell, M.F.; Wang, W.L.; Lazar, A.J.; Zhang, W.; Broaddus, R. Nuclear beta-catenin localization and mutation of the CTNNB1 gene: A context-dependent association. Mod. Pathol. 2018, 31, 1553–1559. [Google Scholar] [CrossRef]
- Costigan, D.C.; Dong, F.; Nucci, M.R.; Howitt, B.E. Clinicopathologic and Immunohistochemical Correlates of CTNNB1 Mutated Endometrial Endometrioid Carcinoma. Int. J. Gynecol. Pathol. 2020, 39, 119–127. [Google Scholar] [CrossRef]
- Gao, C.; Wang, Y.; Broaddus, R.; Sun, L.; Xue, F.; Zhang, W. Exon 3 mutations of CTNNB1 drive tumorigenesis: A review. Oncotarget 2018, 9, 5492–5508. [Google Scholar] [CrossRef]
- Fatima, I.; Barman, S.; Rai, R.; Thiel, K.W.W.; Chandra, V. Targeting Wnt Signaling in Endometrial Cancer. Cancers 2021, 13, 2351. [Google Scholar] [CrossRef]
- Stelloo, E.; Bosse, T.; Nout, R.A.; MacKay, H.J.; Church, D.N.; Nijman, H.W.; Leary, A.; Edmondson, R.J.; Powell, M.E.; Crosbie, E.J.; et al. Refining prognosis and identifying targetable pathways for high-risk endometrial cancer; a TransPORTEC initiative. Mod. Pathol. 2015, 28, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Ferri, M.; Liscio, P.; Carotti, A.; Asciutti, S.; Sardella, R.; Macchiarulo, A.; Camaioni, E. Targeting Wnt-driven cancers: Discovery of novel tankyrase inhibitors. Eur. J. Med. Chem. 2017, 142, 506–522. [Google Scholar] [CrossRef] [PubMed]
- Goswami, V.G.; Patel, B.D. Recent updates on Wnt signaling modulators: A patent review (2014–2020). Expert Opin. Ther. Pat. 2021, 31, 1009–1043. [Google Scholar] [CrossRef] [PubMed]
- Rodon, J.; Argiles, G.; Connolly, R.M.; Vaishampayan, U.; de Jonge, M.; Garralda, E.; Giannakis, M.; Smith, D.C.; Dobson, J.R.; McLaughlin, M.E.; et al. Phase 1 study of single-agent WNT974, a first-in-class Porcupine inhibitor, in patients with advanced solid tumours. Br. J. Cancer 2021, 125, 28–37. [Google Scholar] [CrossRef]
- Liu, J.F.; Xiong, N.; Campos, S.M.; Wright, A.A.; Krasner, C.; Schumer, S.; Horowitz, N.; Veneris, J.; Tayob, N.; Morrissey, S.; et al. Phase II Study of the WEE1 Inhibitor Adavosertib in Recurrent Uterine Serous Carcinoma. J. Clin. Oncol. 2021, 39, 1531–1539. [Google Scholar] [CrossRef]
- Kuhn, E.; Bahadirli-Talbott, A.; Shih Ie, M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod. Pathol. 2014, 27, 1014–1019. [Google Scholar] [CrossRef]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2015. [Google Scholar]
- Wilson, B.G.; Roberts, C.W. SWI/SNF nucleosome remodellers and cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.N.; Roberts, C.W. ARID1A mutations in cancer: Another epigenetic tumor suppressor? Cancer Discov. 2013, 3, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Toumpeki, C.; Liberis, A.; Tsirkas, I.; Tsirka, T.; Kalagasidou, S.; Inagamova, L.; Anthoulaki, X.; Tsatsaris, G.; Kontomanolis, E.N. The Role of ARID1A in Endometrial Cancer and the Molecular Pathways Associated with Pathogenesis and Cancer Progression. In Vivo 2019, 33, 659–667. [Google Scholar] [CrossRef]
- Guan, B.; Mao, T.L.; Panuganti, P.K.; Kuhn, E.; Kurman, R.J.; Maeda, D.; Chen, E.; Jeng, Y.M.; Wang, T.L.; Shih Ie, M. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am. J. Surg. Pathol. 2011, 35, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Strehl, J.D.; Wachter, D.L.; Fiedler, J.; Heimerl, E.; Beckmann, M.W.; Hartmann, A.; Agaimy, A. Pattern of SMARCB1 (INI1) and SMARCA4 (BRG1) in poorly differentiated endometrioid adenocarcinoma of the uterus: Analysis of a series with emphasis on a novel SMARCA4-deficient dedifferentiated rhabdoid variant. Ann. Diagn. Pathol. 2015, 19, 198–202. [Google Scholar] [CrossRef]
- Tessier-Cloutier, B.; Coatham, M.; Carey, M.; Nelson, G.S.; Hamilton, S.; Lum, A.; Soslow, R.A.; Stewart, C.J.; Postovit, L.M.; Kobel, M.; et al. SWI/SNF-deficiency defines highly aggressive undifferentiated endometrial carcinoma. J. Pathol. Clin. Res. 2021, 7, 144–153. [Google Scholar] [CrossRef]
- Yang, F.; Fu, H.; Zheng, X.; Yang, Y.; Zhou, Q.; Liang, Y.; Zheng, J.; Lin, J. SMARCA4-deficient undifferentiated carcinoma co-existing with primary endometrial gastric (or gastrointestinal) -type carcinoma: A case report. Front. Oncol. 2025, 15, 1510930. [Google Scholar] [CrossRef]
- Bitler, B.G.; Aird, K.M.; Garipov, A.; Li, H.; Amatangelo, M.; Kossenkov, A.V.; Schultz, D.C.; Liu, Q.; Shih Ie, M.; Conejo-Garcia, J.R.; et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 2015, 21, 231–238. [Google Scholar] [CrossRef]
- Alldredge, J.K.; Eskander, R.N. EZH2 inhibition in ARID1A mutated clear cell and endometrioid ovarian and endometrioid endometrial cancers. Gynecol. Oncol. Res. Pract. 2017, 4, 17. [Google Scholar] [CrossRef]
- O’Neil, N.J.; Bailey, M.L.; Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 2017, 18, 613–623. [Google Scholar] [CrossRef]
- National Cancer Institute. A Study of Tulmimetostat DZR123 (CPI-0209) in Patients with Advanced Solid Tumors and Lymphomas. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04104776 (accessed on 1 September 2025).
- Shen, J.; Peng, Y.; Wei, L.; Zhang, W.; Yang, L.; Lan, L.; Kapoor, P.; Ju, Z.; Mo, Q.; Shih Ie, M.; et al. ARID1A Deficiency Impairs the DNA Damage Checkpoint and Sensitizes Cells to PARP Inhibitors. Cancer Discov. 2015, 5, 752–767. [Google Scholar] [CrossRef] [PubMed]
- Williamson, C.T.; Miller, R.; Pemberton, H.N.; Jones, S.E.; Campbell, J.; Konde, A.; Badham, N.; Rafiq, R.; Brough, R.; Gulati, A.; et al. ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat. Commun. 2016, 7, 13837. [Google Scholar] [CrossRef] [PubMed]
- Fader, A.N.; Roque, D.M.; Siegel, E.; Buza, N.; Hui, P.; Abdelghany, O.; Chambers, S.; Secord, A.A.; Havrilesky, L.; O’Malley, D.M.; et al. Randomized Phase II Trial of Carboplatin-Paclitaxel Compared with Carboplatin-Paclitaxel-Trastuzumab in Advanced (Stage III-IV) or Recurrent Uterine Serous Carcinomas that Overexpress Her2/Neu (NCT01367002): Updated Overall Survival Analysis. Clin. Cancer. Res. 2020, 26, 3928–3935. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.S.; Devereaux, K.A.; Jin, C.; Lin, D.Y.; Zhang, Y.; Marra, A.; Makker, V.; Weigelt, B.; Ellenson, L.H.; Chui, M.H. Histopathologic features and molecular genetic landscape of HER2-amplified endometrial carcinomas. Mod. Pathol. 2022, 35, 962–971. [Google Scholar] [CrossRef]
- Buza, N. HER2 Testing in Endometrial Serous Carcinoma: Time for Standardized Pathology Practice to Meet the Clinical Demand. Arch. Pathol. Lab. Med. 2021, 145, 687–691. [Google Scholar] [CrossRef]
- National Cancer Institute. A Phase 2 Study of T-DXd in Patients with Selected HER2 Expressing Tumors (DPT02). ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04482309 (accessed on 1 September 2025).
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; Gonzalez-Martin, A.; Jung, K.H.; Lugowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Oaknin, A.; Lee, J.Y.; Makker, V.; Oh, D.Y.; Banerjee, S.; Gonzalez-Martin, A.; Jung, K.H.; Lugowska, I.; Manso, L.; Manzano, A.; et al. Efficacy of Trastuzumab Deruxtecan in HER2-Expressing Solid Tumors by Enrollment HER2 IHC Status: Post Hoc Analysis of DESTINY-PanTumor02. Adv. Ther. 2024, 41, 4125–4139. [Google Scholar] [CrossRef]
- National Cancer Institute. A Study of Erdafitinib in Participants with Advanced Solid Tumors and FGFR Gene Alterations (RAGNAR). ClinicalTrials.gov. Identifier: NCT04083976. Available online: https://clinicaltrials.gov/study/NCT04083976 (accessed on 1 September 2025).
- Tateo, V.; Marchese, P.V.; Mollica, V.; Massari, F.; Kurzrock, R.; Adashek, J.J. Agnostic Approvals in Oncology: Getting the Right Drug to the Right Patient with the Right Genomics. Pharmaceuticals 2023, 16, 614. [Google Scholar] [CrossRef]
- National Cancer Institute. A Phase II Evaluation of the Potent, Highly Selective PARP Inhibitor Veliparib in the Treatment of Persistent or Recurrent Epithelial Ovarian,... ClinicalTrials.gov. Identifier: NCT01775474. Available online: https://clinicaltrials.gov/study/NCT01775474 (accessed on 1 September 2025).
- National Cancer Institute. Letrozole and RAD001 (Everolimus) with Advanced or Recurrent Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT01068249. Available online: https://clinicaltrials.gov/study/NCT01068249 (accessed on 1 September 2025).
- National Cancer Institute. Everolimus and Letrozole or Hormonal Therapy to Treat Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT02228681. Available online: https://clinicaltrials.gov/study/NCT02228681 (accessed on 1 September 2025).
- National Cancer Institute. A Phase I Study of YY-20394 in Patients with Advanced Solid Tumors. ClinicalTrials.gov. Identifier: NCT04049929. Available online: https://clinicaltrials.gov/study/NCT04049929 (accessed on 1 September 2025).
- National Cancer Institute. Phase 2 Study of PI3K Inhibitor Copanlisib in Combination with Fulvestrant in Selected ER+/PR+ Cancers with PI3K/PTEN Alterations. ClinicalTrials.gov. Identifier: NCT05082025. Available online: https://clinicaltrials.gov/study/NCT05082025 (accessed on 1 September 2025).
- National Cancer Institute. BKM120 as Second-Line Therapy for Advanced Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT01289041. Available online: https://clinicaltrials.gov/study/NCT01289041 (accessed on 1 September 2025).
- National Cancer Institute. Study of LY3023414 for the Treatment of Recurrent or Persistent Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT02549989. Available online: https://clinicaltrials.gov/study/NCT02549989 (accessed on 1 September 2025).
- National Cancer Institute. Trial of Letrozole Plus Palbociclib/Placebo in Metastatic Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT02730429. Available online: https://clinicaltrials.gov/study/NCT02730429 (accessed on 1 September 2025).
- National Cancer Institute. Evaluating Cancer Response to Treatment with Abemaciclib and Fulvestrant in Women with Recurrent Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT03643510. Available online: https://clinicaltrials.gov/study/NCT03643510 (accessed on 1 September 2025).
- National Cancer Institute. A Study of DKN-01 as a Monotherapy or in Combination with Paclitaxel in Patients with Recurrent Epithelial Endometrial or Epithelial Ovarian Cancer or Carcinosarcoma. ClinicalTrials.gov. Identifier: NCT03395080. Available online: https://clinicaltrials.gov/study/NCT03395080 (accessed on 1 September 2025).
- National Cancer Institute. A Study to Evaluate the Safety and Tolerability of ETC-1922159 as a Single Agent and in Combination with Pembrolizumab in Advanced Solid Tumours. ClinicalTrials.gov. Identifier: NCT02521844. Available online: https://clinicaltrials.gov/study/NCT02521844 (accessed on 1 September 2025).
- National Cancer Institute. AZD1775 in Women with Recurrent or Persistent Uterine Serous Carcinoma or Uterine Carcinosarcoma. ClinicalTrials.gov. Identifier: NCT03668340. Available online: https://clinicaltrials.gov/study/NCT03668340 (accessed on 1 September 2025).
- National Cancer Institute. AZD1775 Combined with Olaparib in Patients with Refractory Solid Tumors. ClinicalTrials.gov. Identifier: NCT02511795. Available online: https://www.clinicaltrials.gov/study/NCT02511795 (accessed on 1 September 2025).
- National Cancer Institute. Testing the Sequential Combination of the Anti-Cancer Drugs Olaparib Followed by Adavosertib (AZD1775) in Patients with Advanced Solid Tumors with Selected Mutations and PARP Resistance, STAR Study. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/study/NCT04197713 (accessed on 1 September 2025).
- National Cancer Institute. A Study of ZN-c3 in Participants with Solid Tumors. ClinicalTrials.gov. Identifier: NCT04158336. Available online: https://clinicaltrials.gov/study/NCT04158336 (accessed on 1 September 2025).
- National Cancer Institute. Camrelizumab Plus Fluzoparib for TP-53 Mutated Endometrial Cancer. ClinicalTrials.gov. Identifier: NCT06413992. Available online: https://clinicaltrials.gov/study/NCT06413992 (accessed on 1 September 2025).
- National Cancer Institute. Translational Study of MSS, TP53 Mutation and Chromosome Instability Relationship in Endometrial Carcinoma. ClinicalTrials.gov. Identifier: NCT06521684. Available online: https://clinicaltrials.gov/study/NCT06521684 (accessed on 1 September 2025).
- National Cancer Institute. A Study of Various Treatments in Serous or p53 Abnormal Endometrial Cancer (CAN-STAMP). ClinicalTrials.gov. Identifier: NCT04159155. Available online: https://clinicaltrials.gov/study/NCT04159155 (accessed on 1 September 2025).
- Van Gool, I.C.; Rayner, E.; Osse, E.M.; Nout, R.A.; Creutzberg, C.L.; Tomlinson, I.P.M.; Church, D.N.; Smit, V.; de Wind, N.; Bosse, T.; et al. Adjuvant Treatment for POLE Proofreading Domain-Mutant Cancers: Sensitivity to Radiotherapy, Chemotherapy, and Nucleoside Analogues. Clin. Cancer Res. 2018, 24, 3197–3203. [Google Scholar] [CrossRef] [PubMed]
- Reijnen, C.; Kusters-Vandevelde, H.V.N.; Prinsen, C.F.; Massuger, L.; Snijders, M.; Kommoss, S.; Brucker, S.Y.; Kwon, J.S.; McAlpine, J.N.; Pijnenborg, J.M.A. Mismatch repair deficiency as a predictive marker for response to adjuvant radiotherapy in endometrial cancer. Gynecol. Oncol. 2019, 154, 124–130. [Google Scholar] [CrossRef]
- Siravegna, G.; Marsoni, S.; Siena, S.; Bardelli, A. Integrating Liquid Biopsies into the Management of Cancer. Nat. Rev. Clin. Oncol. 2017, 14, 531–548. [Google Scholar] [CrossRef]
- Shen, Y.; Shi, R.; Zhao, R.; Wang, H. Clinical Application of Liquid Biopsy in Endometrial Carcinoma. Med. Oncol. 2023, 40, 92. [Google Scholar] [CrossRef]
- Muinelo-Romay, L.; Casas-Arozamena, C.; Abal, M. Liquid Biopsy in Endometrial Cancer: New Opportunities for Personalized Oncology. Int. J. Mol. Sci. 2018, 19, 2311. [Google Scholar] [CrossRef]
- Casas-Arozamena, C.; Vilar, A.; Cueva, J.; Arias, E.; Sampayo, V.; Diaz, E.; Oltra, S.S.; Moiola, C.P.; Cabrera, S.; Cortegoso, A.; et al. Role of cfDNA and ctDNA to Improve the Risk Stratification and the Disease Follow-Up in Patients with Endometrial Cancer: Towards the Clinical Application. J. Pers. Med. 2024, 14, 112. [Google Scholar] [CrossRef]
- Jamieson, A.; McConechy, M.; Lum, A.; Senz, J.; Dowhy, T.; Huntsman, D.; McAlpine, J. Selective Utilization of Circulating Tumor DNA Testing Enables Disease Monitoring in Endometrial and Ovarian Carcinomas. Gynecol. Oncol. 2025, 176, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, C.; Ercoli, A.; Vizzielli, G.; Burk, S.R.; Cuomo, M.; Satasiya, V.; Kacem, H.; Braccia, S.; Mazzarotti, G.; Miriello, I.; et al. Liquid Biopsy in Gynecological Cancers: A Translational Framework from Molecular Insights to Precision Oncology and Clinical Practice. J. Exp. Clin. Cancer Res. 2025, 44, 56. [Google Scholar] [CrossRef] [PubMed]
- Hoivik, E.A.-O.X.; Hodneland, E.; Dybvik, J.A.-O.; Wagner-Larsen, K.S.; Fasmer, K.E.; Berg, H.A.-O.; Halle, M.K.; Haldorsen, I.A.-O.; Krakstad, C.A.-O. A radiogenomics application for prognostic profiling of endometrial cancer. Commun. Biol. 2021, 4, 135. [Google Scholar] [CrossRef]
- Fremond, S.; Andani, S.; Barkey Wolf, J.; Dijkstra, J.; Melsbach, S.; Jobsen, J.J.; Brinkhuis, M.; Roothaan, S.; Jurgenliemk-Schulz, I.; Lutgens, L.; et al. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: A combined analysis of the PORTEC randomised trials and clinical cohorts. Lancet. Digit. Health 2022, 4, e692–e702. [Google Scholar] [CrossRef]
- Boron, D.; Zmarzly, N.; Wierzbik-Stronska, M.; Rosinczuk, J.; Mieszczanski, P.; Grabarek, B.O. Recent Multiomics Approaches in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 1237. [Google Scholar] [CrossRef]
- Liu, X.; Wang, W.; Zhang, X.; Liang, J.; Feng, D.; Li, Y.; Xue, M.; Ling, B. Metabolism pathway-based subtyping in endometrial cancer: An integrated study by multi-omics analysis and machine learning algorithms. Mol. Ther. Nucleic Acids 2024, 35, 102155. [Google Scholar] [CrossRef]
- Hong, R.; Liu, W.; DeLair, D.; Razavian, N.; Fenyo, D. Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep. Med. 2021, 2, 100400. [Google Scholar] [CrossRef] [PubMed]
- Volinsky-Fremond, S.; Horeweg, N.; Andani, S.; Barkey Wolf, J.; Lafarge, M.W.; de Kroon, C.D.; Ortoft, G.; Hogdall, E.; Dijkstra, J.; Jobsen, J.J.; et al. Prediction of recurrence risk in endometrial cancer with multimodal deep learning. Nat. Med. 2024, 30, 1962–1973. [Google Scholar] [CrossRef] [PubMed]
- Darbandsari, A.; Farahani, H.; Asadi, M.; Wiens, M.; Cochrane, D.; Khajegili Mirabadi, A.; Jamieson, A.; Farnell, D.; Ahmadvand, P.; Douglas, M.; et al. AI-based histopathology image analysis reveals a distinct subset of endometrial cancers. Nat. Commun. 2024, 15, 4973. [Google Scholar] [CrossRef] [PubMed]
- Butt, S.R.; Soulat, A.; Lal, P.M.; Fakhor, H.; Patel, S.K.; Ali, M.B.; Arwani, S.; Mohan, A.; Majumder, K.; Kumar, V.; et al. Impact of artificial intelligence on the diagnosis, treatment and prognosis of endometrial cancer. Ann. Med. Surg. 2024, 86, 1531–1539. [Google Scholar] [CrossRef]
Gene/Protein | Alteration | Clinical implication |
---|---|---|
PTEN | Loss-of-function mutation | Early molecular alteration, tumor suppressor [22] |
PIK3CA | Activating mutation | Pathway activation, potential therapeutic target [22,23] |
TP53 | Mutation/overexpression | Poor prognosis, Type II EC [22,27] |
ARID1A | Mutation | Chromatin remodeling defect [22] |
POLE | Exonuclease domain mutation | Ultra-mutated, good prognosis [22,27] |
MSI genes | MSI-H phenotype | Lynch syndrome, prognostic marker [27] |
CTNNB1 (β-catenin) | Mutation, nuclear accumulation | Tumor progression, some prognostic value [28,29] |
KRAS | Mutation | MAPK pathway activation [22] |
Annexin A2, HSPs | Protein overexpression | Candidate circulating biomarkers [30,31,32] |
System | Key Criteria | Subtypes | Prognostic value |
---|---|---|---|
Bokhman (1983) [33] | Hormone-dependence | Type 1: estrogen-dependent Type 2: estrogen-independent | Simple model; Limited prognostic accuracy |
WHO/FIGO (Histology) [5,27] | Morphology (microscopy), depth of invasion, grade | Endometrioid, serous, clear cell, mucinous, undifferentiated, etc. | Widely used; Inter-observer variability; cannot capture molecular heterogeneity |
TCGA (2013) [22] | Molecular profiling | POLEmut, MMRd, p53abn, NSMP | High prognostic accuracy; guides targeted therapy and immunotherapy; Limited by cost and availability |
Pathway | Identifier | Drug | Mechanism | Status | Relevance to EC | Reference |
---|---|---|---|---|---|---|
PI3K/AKT/mTOR | GOG-229E | Temsirolimus | mTOR inhibitor | Completed | Modest activity in recurrent EC | [105] |
PI3K/AKT/mTOR + Hormone | NCT01068249 | Everolimus Letrozole | mTOR inhibitor + aromatase inhibitor | Completed | Clinical benefit in HR+ recurrent EC | [106] |
PI3K/AKT/mTOR + Hormone | NCT02228681 (GOG-3007) | Everolimus Letrozole | mTOR inhibitor + aromatase inhibitor | Completed | Confirmed benefit in HR+ recurrent EC | [107] |
PI3K/AKT/mTOR | NCT04049929 | YY-20394 (Linperlisib) | Selectively inhibits PI3Kδ isoform | Unknown | Primarily for follicular lymphoma; potential expansion to other solid tumors with PI3K alterations | [108] |
PI3K/AKT/mTOR + Hormone | NCT05082025 | Copanlisib Fulvestrant | PI3K inhibitor + estrogen receptor | Active, not recruiting | Direct EC application; combinational strategy for hormone-sensitive tumors | [109] |
PI3K/AKT/mTOR | NCT01289041 | BKM120 (Buparlisib) | Pan-PI3 inhibitor | Completed | Single-agent trial in advanced EC | [110] |
PI3K/AKT/mTOR | NCT02549989 | LY3023414 | Dual PI3K/mTOR inhibitor | Completed | EC-specific study; relevant to recurrent disease | [111] |
Hormone pathway | NCT02730429 | Letrozole Palbociclib | Aromatase inhibitor + CDK4/6 inhibitor | Completed | Tests a combination of hormone + CDK4/6i for HR+ metastatic EC | [112] |
Hormone pathway | NCT03643510 | Fulvestrant Abemaciclib | SERD + CDK4/6 inhibitor | Active, not recruiting | Determines the effectiveness of this combination to recurrent EC | [113] |
WNT/β-Catenin | NCT03395080 | DKN-01 Paclitaxel | DKK1 neutralizing antibody (WNT antagonist) | Completed | Directly included EC | [114] |
WNT/β-catenin | NCT02521844 | ETC-1922159 Pembrolizumab | PORCN inhibitor + anti-PD-1 | Active, not recruiting | Potential synergy in WNT-activated tumors | [115] |
DDR/cell cycle | NCT03668340 | Adavosertib | WEE1 inhibitor | Active, not recruiting | Single-agent study in recurrent USC | [116] |
DDR/cell cycle | NCT02511795 | Adavosertib Olaparib | WEE1 inhibitor + PARP inhibitor | Completed | Use of combination of adavosertib and olaparib in refractory solid tumors, Promising results in USC cohort | [117] |
DDR/cell cycle | NCT04197713 | Adavosertib Olaparib | WEE1 inhibitor + PARP inhibitor | Active, not recruiting | Treats PARP inhibitor resistance solid tumors, including EC | [118] |
DDR/cell cycle | NCT04158336 | ZN-c3 | WEE1 inhibitor | Unknown | For advanced solid tumors, includes a cohort for USC | [119] |
TP53 pathway | NCT06413992 | Camrelizumab Fluzoparib | Leverages vulnerabilities created by a dysfunctional TP53 axis | Recruiting | Specifically targeting TP53-mutated recurrent or metastatic EC | [120] |
TP53 pathway | NCT06521684 | None (observational study) | Directly investigates the biological relationship between TP53 mutation and chromosomal instability | Not yet recruiting | To identify new biomarkers and therapeutic targets by analyzing TP53 axis itself | [121] |
TP53 pathway | NCT04159155 | Combination of chemotherapy and radiotherapy | Compares standard cytotoxic regimens to find the optimal adjuvant therapy for p53abn ECs | Recruiting | To establish the best standard care for high-risk, p53abn EC | [122] |
Chromatin remodeling | NCT04104776 | Tulmimetostat | EZH2 inhibitor | Completed | Targeted tumors with ARID1A or SMARCA4 mutations, including ECs | [94] |
HER2 pathway | NCT04482309 | Trastuzumab Deruxtecan | ADC targeting HER2 | Recruiting | Major basket trial showing significant activity in various HER2+ solid tumors, including ECs | [100] |
FGFR pathway | NCT04083976 | Erdafitinib | Pan-FGFR inhibitor | Active, not recruiting | For tumors with FGFR alterations, with a cohort for EC | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.K.; Kim, T. Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications. Cells 2025, 14, 1404. https://doi.org/10.3390/cells14171404
Kim HK, Kim T. Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications. Cells. 2025; 14(17):1404. https://doi.org/10.3390/cells14171404
Chicago/Turabian StyleKim, Hye Kyeong, and Taejin Kim. 2025. "Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications" Cells 14, no. 17: 1404. https://doi.org/10.3390/cells14171404
APA StyleKim, H. K., & Kim, T. (2025). Integrating Multi-Omics in Endometrial Cancer: From Molecular Insights to Clinical Applications. Cells, 14(17), 1404. https://doi.org/10.3390/cells14171404