LRP5: A Multifaceted Co-Receptor in Development, Disease, and Therapeutic Target
Abstract
1. Introduction
2. LRP5 in Bone Formation and Skeletal Homeostasis
3. LRP5 in Retinal Morphology and Ocular Diseases
4. LRP5 in the Cardiovascular and Pulmonary Systems
5. LRP5 in Renal Physiology and Pathology
6. LRP5 in Nervous System Development and Diseases
7. LRP5 in Fat and Glucose Metabolism
8. LRP5 in Oncogenesis
9. LRP5 as a Pharmacological Target
10. Potential Challenges and Future Directions
11. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ATP | Adenosine Triphosphate |
ADAM | A Disintegrin And Metalloprotease |
BFR | Bone Formation Rate |
BPIFA2 | BPI Fold-Containing Family A Member 2 |
BS | Bone Survival |
CAD | Coronary Artery Disease |
DKK-1 | Dickkopf-1 |
FEVR | Familial Exudative Vitreoretinopathy |
Fzd receptor | Frizzled Receptor |
GSK-3 | Glycogen Synthase Kinase-3 |
HBM | High Bone Mass |
HNF-4 | Hepatocyte Nuclear Factor 4 |
Hsp90 | Heat Shock Protein 90 |
LRP5 | Low-Density Lipoprotein Receptor-Related Protein 5 |
MMP-7 | Matrix Metalloproteinase-7 |
mRNA | Messenger Ribonucleic Acid |
OPPG | Osteoporosis-Pseudoglioma Syndrome |
OPN | Osteopontin |
PCNA | Proliferating Cell Nuclear Antigen |
PGE2 | Prostaglandin-E2 |
PPAR | Peroxisome Proliferator-Activated Receptor |
sLRP5 | Soluble Low-Density Lipoprotein Receptor-Related Protein 5 |
TGF | Transforming Growth Factor |
VLDL | Very-Low-Density Lipoprotein |
WISP-1 | WNT1-Inducible-Signaling Pathway Protein 1 |
References
- Maurice, M.M.; Angers, S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat. Rev. Mol. Cell Biol. 2025, 26, 371–388. [Google Scholar] [CrossRef]
- Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017, 169, 985–999. [Google Scholar] [CrossRef] [PubMed]
- Alrefaei, A.F.; Münsterberg, A.E.; Wheeler, G.N. FZD10 regulates cell proliferation and mediates Wnt1 induced neurogenesis in the developing spinal cord. PLoS ONE 2020, 15, e0219721. [Google Scholar] [CrossRef]
- Alrefaei, A.F. Frizzled receptors (FZD) play multiple cellular roles in development, in diseases, and as potential therapeutic targets. J. King Saud Univ. Sci. 2021, 33, 101613. [Google Scholar] [CrossRef]
- Rao, T.P.; Kühl, M. An updated overview on Wnt signaling pathways: A prelude for more. Circ. Res. 2010, 106, 1798–1806. [Google Scholar] [CrossRef]
- MacDonald, B.T.; He, X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harb. Perspect. Biol. 2012, 4, a007880. [Google Scholar] [CrossRef]
- He, X.; Semenov, M.; Tamai, K.; Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: Arrows point the way. Dev. Camb. Engl. 2004, 131, 1663–1677. [Google Scholar] [CrossRef]
- Alrefaei, A.F.; Abu-Elmagd, M. LRP6 Receptor Plays Essential Functions in Development and Human Diseases. Genes 2022, 13, 120. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Chen, J.; Liu, Y. LRP5 and LRP6 in Wnt Signaling: Similarity and Divergence. Front. Cell Dev. Biol. 2021, 9, 670960. [Google Scholar] [CrossRef]
- Joiner, D.M.; Ke, J.; Zhong, Z.; Xu, H.E.; Williams, B.O. LRP5 and LRP6 in development and disease. Trends Endocrinol. Metab. TEM 2013, 24, 31–39. [Google Scholar] [CrossRef]
- Nie, X.; Wang, H.; Wei, X.; Li, L.; Xue, T.; Fan, L.; Ma, H.; Xia, Y.; Wang, Y.-D.; Chen, W.-D. LRP5 Promotes Gastric Cancer via Activating Canonical Wnt/β-Catenin and Glycolysis Pathways. Am. J. Pathol. 2022, 192, 503–517. [Google Scholar] [CrossRef]
- Guo, Y.; Zi, X.; Koontz, Z.; Kim, A.; Xie, J.; Gorlick, R.; Holcombe, R.F.; Hoang, B.H. Blocking Wnt/LRP5 signaling by a soluble receptor modulates the epithelial to mesenchymal transition and suppresses met and metalloproteinases in osteosarcoma Saos-2 cells. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2007, 25, 964–971. [Google Scholar] [CrossRef]
- Riddle, R.C.; Diegel, C.R.; Leslie, J.M.; Van Koevering, K.K.; Faugere, M.-C.; Clemens, T.L.; Williams, B.O. Lrp5 and Lrp6 exert overlapping functions in osteoblasts during postnatal bone acquisition. PLoS ONE 2013, 8, e63323. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Y.; Tischfield, M.; Williams, J.; Smallwood, P.M.; Rattner, A.; Taketo, M.M.; Nathans, J. Canonical WNT signaling components in vascular development and barrier formation. J. Clin. Investig. 2014, 124, 3825–3846. [Google Scholar] [CrossRef]
- Veerapathiran, S.; Teh, C.; Zhu, S.; Kartigayen, I.; Korzh, V.; Matsudaira, P.T.; Wohland, T. Wnt3 distribution in the zebrafish brain is determined by expression, diffusion and multiple molecular interactions. eLife 2020, 9, e59489. [Google Scholar] [CrossRef]
- Fujino, T.; Asaba, H.; Kang, M.-J.; Ikeda, Y.; Sone, H.; Takada, S.; Kim, D.-H.; Ioka, R.X.; Ono, M.; Tomoyori, H.; et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc. Natl. Acad. Sci. USA 2003, 100, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Karczewska-Kupczewska, M.; Stefanowicz, M.; Matulewicz, N.; Nikołajuk, A.; Strączkowski, M. Wnt Signaling Genes in Adipose Tissue and Skeletal Muscle of Humans With Different Degrees of Insulin Sensitivity. J. Clin. Endocrinol. Metab. 2016, 101, 3079–3087. [Google Scholar] [CrossRef] [PubMed]
- Kandula, A.; Schenker, K.; Averill, L. Osteoporosis-pseudoglioma syndrome. Pediatr. Radiol. 2024, 54, 1935. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Xu, N.; Li, J.; Li, H.; Qu, J.; Yin, H.; Liang, J.; Zhao, M.; Li, X.; Huang, L. Ocular Features and Mutation Spectrum of Patients With Familial Exudative Vitreoretinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 4. [Google Scholar] [CrossRef]
- Boyden, L.M.; Mao, J.; Belsky, J.; Mitzner, L.; Farhi, A.; Mitnick, M.A.; Wu, D.; Insogna, K.; Lifton, R.P. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 2002, 346, 1513–1521. [Google Scholar] [CrossRef]
- Borrell-Pagès, M.; Romero, J.C.; Juan-Babot, O.; Badimon, L. Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages. Eur. Heart J. 2011, 32, 2841–2850. [Google Scholar] [CrossRef]
- He, X.; Cheng, R.; Huang, C.; Takahashi, Y.; Yang, Y.; Benyajati, S.; Chen, Y.; Zhang, X.A.; Ma, J.-X. A novel role of LRP5 in tubulointerstitial fibrosis through activating TGF-β/Smad signaling. Signal Transduct. Target. Ther. 2020, 5, 45. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Miao, X.; Wang, Y.; Yang, G. Knockdown of LRP5 Promotes Proliferation and Invasion of Tongue Squamous Cell Carcinoma through Compensatory Activation of Akt Signaling. J. Cancer 2024, 15, 3215–3226. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Zhang, F.; Wu, Y.; Liu, H.; Duan, R.; Liu, Y.; Wang, Y.; He, X.; Zhang, Y.; Ma, X.; et al. LRP5 regulates cardiomyocyte proliferation and neonatal heart regeneration by the AKT/P21 pathway. J. Cell Mol. Med. 2022, 26, 2981–2994. [Google Scholar] [CrossRef]
- Alapati, D.; Rong, M.; Chen, S.; Lin, C.; Li, Y.; Wu, S. Inhibition of LRP5/6-mediated Wnt/β-catenin signaling by Mesd attenuates hyperoxia-induced pulmonary hypertension in neonatal rats. Pediatr. Res. 2013, 73, 719–725. [Google Scholar] [CrossRef]
- Ren, N.; Lv, S.; Li, X.; Shao, C.; Wang, Z.; Mei, Y.; Yang, W.; Fu, W.; Hu, Y.; Sha, L.; et al. Clinical features, treatment, and follow-up of OPPG and high-bone-mass disorders: LRP5 is a key regulator of bone mass. Osteoporos. Int. J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2024, 35, 1395–1406. [Google Scholar] [CrossRef]
- Sawakami, K.; Robling, A.G.; Ai, M.; Pitner, N.D.; Liu, D.; Warden, S.J.; Li, J.; Maye, P.; Rowe, D.W.; Duncan, R.L.; et al. The Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J. Biol. Chem. 2006, 281, 23698–23711. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Kobayashi, Y.; Koide, M.; Uehara, S.; Okamoto, M.; Ishihara, A.; Kayama, T.; Saito, M.; Marumo, K. The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int. J. Mol. Sci. 2019, 20, 5525. [Google Scholar] [CrossRef] [PubMed]
- Suen, P.K.; Qin, L. Sclerostin, an emerging therapeutic target for treating osteoporosis and osteoporotic fracture: A general review. J. Orthop. Transl. 2016, 4, 1–13. [Google Scholar] [CrossRef]
- Mehta, P.; Sharma, A.; Goswami, A.; Gupta, S.K.; Singhal, V.; Srivastava, K.R.; Chattopadhyay, N.; Singh, R. Case report: Exome sequencing identified mutations in the LRP5 and LGR4 genes in a case of osteoporosis with recurrent fractures and extraskeletal manifestations. Front. Endocrinol. 2024, 15, 1475446. [Google Scholar] [CrossRef]
- Chen, J.; Stahl, A.; Krah, N.M.; Seaward, M.R.; Dennison, R.J.; Sapieha, P.; Hua, J.; Hatton, C.J.; Juan, A.M.; Aderman, C.M.; et al. Wnt signaling mediates pathological vascular growth in proliferative retinopathy. Circulation 2011, 124, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- Ubels, J.L.; Lin, C.-M.; Antonetti, D.A.; Diaz-Coranguez, M.; Diegel, C.R.; Williams, B.O. Structure and function of the retina of low-density lipoprotein receptor-related protein 5 (Lrp5)-deficient rats. Exp. Eye Res. 2022, 217, 108977. [Google Scholar] [CrossRef] [PubMed]
- Ubels, J.L.; Diegel, C.R.; Foxa, G.E.; Ethen, N.J.; Lensing, J.N.; Madaj, Z.B.; Williams, B.O. Low-Density Lipoprotein Receptor-Related Protein 5-Deficient Rats Have Reduced Bone Mass and Abnormal Development of the Retinal Vasculature. CRISPR J. 2020, 3, 284–298. [Google Scholar] [CrossRef]
- Gowda, V.K.; Vegda, H.; Shivappa, S.K.; Benakappa, N. Osteoporosis Pseudoglioma Syndrome. J. Pediatr. Neurosci. 2020, 15, 334–335. [Google Scholar] [CrossRef] [PubMed]
- Cen, C.; He, L.; Hu, K.; Tao, X.; Liu, Y.; Li, Q.; Zhou, W. An analysis of LRP5 gene frequencies in infants with familial exudative vitreoretinopathy in Chongqing and Urumqi. Medicine 2025, 104, e42702. [Google Scholar] [CrossRef]
- Luvisi, J.R.; Blair, K. Familial Exudative Vitreoretinopathy (FEVR). In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK614159/ (accessed on 2 September 2025).
- Kondo, H.; Kusaka, S.; Yoshinaga, A.; Uchio, E.; Tawara, A.; Tahira, T. Genetic variants of FZD4 and LRP5 genes in patients with advanced retinopathy of prematurity. Mol. Vis. 2013, 19, 476–485. [Google Scholar]
- Chang, H.-H.; Wang, A.-G.; Niu, D.-M.; Chen, Y.-R.; Weng, C.-C. Unveiling novel LRP5 pathogenic variant in familial exudative vitreoretinopathy: Diverse phenotypic expressions in a mother-daughter duo. Eur. J. Ophthalmol. 2024, 34, NP8–NP12. [Google Scholar] [CrossRef]
- Borrell, M.; Vilahur, G.; Romero, J.; Casani, L.; Badimon, L. LRP5 modulates the Wnt signalling pathway to protect cardiac cells. Eur. Heart J. 2013, 34, 3413. [Google Scholar] [CrossRef]
- Borrell-Pages, M.; Romero, J.C.; Badimon, L. Cholesterol modulates LRP5 expression in the vessel wall. Atherosclerosis 2014, 235, 363–370. [Google Scholar] [CrossRef]
- Liang, D.; Wu, Y.; Zhou, L.; Chen, Y.; Liu, H.; Xie, D.; Huang, J.; Zhang, Y.; Liu, Y.; Zhu, W.; et al. LRP5 controls cardiac QT interval by modulating the metabolic homeostasis of L-type calcium channel. Int. J. Cardiol. 2019, 275, 120–128. [Google Scholar] [CrossRef]
- Mammoto, T.; Chen, Z.; Jiang, A.; Jiang, E.; Ingber, D.E.; Mammoto, A. Acceleration of Lung Regeneration by Platelet-Rich Plasma Extract through the Low-Density Lipoprotein Receptor-Related Protein 5-Tie2 Pathway. Am. J. Respir. Cell Mol. Biol. 2016, 54, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Ren, S.; Duffield, J.S. Wnt signalling in kidney diseases: Dual roles in renal injury and repair. J. Pathol. 2013, 229, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Niu, J.; Min, W.; Ai, J.; Lin, X.; Miao, J.; Zhou, S.; Liang, Y.; Chen, S.; Ren, Q.; et al. B7-1 mediates podocyte injury and glomerulosclerosis through communication with Hsp90ab1-LRP5-β-catenin pathway. Cell Death Differ. 2022, 29, 2399–2416. [Google Scholar] [CrossRef]
- Cnossen, W.R.; te Morsche, R.H.M.; Hoischen, A.; Gilissen, C.; Venselaar, H.; Mehdi, S.; Bergmann, C.; Losekoot, M.; Breuning, M.H.; Peters, D.J.M.; et al. LRP5 variants may contribute to ADPKD. Eur. J. Hum. Genet. EJHG 2016, 24, 237–242. [Google Scholar] [CrossRef]
- Liu, Y.; Tian, Y.; Wang, H.; Li, N.; Zhuo, R.; Cui, H.; Miao, X.; Liu, J.; Liu, Q.; Zhang, W.; et al. The BPIFA2-LRP5 axis orchestrates mitochondrial dysfunction to mediate kidney injury in lupus nephritis. Int. Immunopharmacol. 2025, 162, 115114. [Google Scholar] [CrossRef] [PubMed]
- HE, X.; ZENG, R.; LI, H.; WEN, S.; LI, S.; CHEN, Y. 3-OR: LRP5 Promotes Fatty Acid Oxidation to Reduce Lipid Deposition in the Proximal Tubules of DKD Kidneys. Diabetes 2025, 74, 3-OR. [Google Scholar] [CrossRef]
- Grünblatt, E.; Nemoda, Z.; Werling, A.M.; Roth, A.; Angyal, N.; Tarnok, Z.; Thomsen, H.; Peters, T.; Hinney, A.; Hebebrand, J.; et al. The involvement of the canonical Wnt-signaling receptor LRP5 and LRP6 gene variants with ADHD and sexual dimorphism: Association study and meta-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2019, 180, 365–376. [Google Scholar] [CrossRef]
- Borrell-Pages, M.; Luquero, A.; Vilahur, G.; Padró, T.; Badimon, L. Canonical Wnt pathway and the LDL receptor superfamily in neuronal cholesterol homeostasis and function. Cardiovasc. Res. 2024, 120, 140–151. [Google Scholar] [CrossRef]
- Luquero, A.; Pimentel, N.; Vilahur, G.; Badimon, L.; Borrell-Pages, M. Unique Splicing of Lrp5 in the Brain: A New Player in Neurodevelopment and Brain Maturation. Int. J. Mol. Sci. 2024, 25, 6763. [Google Scholar] [CrossRef]
- Queiroz, M.P.; da Lima, M.S.; Barbosa, M.Q.; de Melo, M.F.F.T.; de Bertozzo, C.C.M.S.; de Oliveira, M.E.G.; Bessa, R.J.B.; Alves, S.P.A.; Souza, M.I.A.; de do Queiroga, R.C.R.E.; et al. Effect of Conjugated Linoleic Acid on Memory and Reflex Maturation in Rats Treated During Early Life. Front. Neurosci. 2019, 13, 370. [Google Scholar] [CrossRef]
- Willems, B.; Tao, S.; Yu, T.; Huysseune, A.; Witten, P.E.; Winkler, C. The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish. PLoS ONE 2015, 10, e0131768. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Q.; Song, N.-N.; Zhang, L.; Sun, Y.-L.; Hu, L.; Chen, J.-Y.; Zhu, W.; Li, J.; Ding, Y.-Q. Lrp5/6 are required for cerebellar development and for suppressing TH expression in Purkinje cells via β-catenin. Mol. Brain 2016, 9, 7. [Google Scholar] [CrossRef]
- Geng, S.; Paul, F.; Kowalczyk, I.; Raimundo, S.; Sporbert, A.; Mamo, T.M.; Hammes, A. Balancing WNT signalling in early forebrain development: The role of LRP4 as a modulator of LRP6 function. Front. Cell Dev. Biol. 2023, 11, 1173688. [Google Scholar] [CrossRef]
- Loh, N.Y.; Vasan, S.K.; Rosoff, D.B.; Roberts, E.; van Dam, A.D.; Verma, M.; Phillips, D.; Wesolowska-Andersen, A.; Neville, M.J.; Noordam, R.; et al. LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity. Commun. Med. 2025, 5, 51. [Google Scholar] [CrossRef]
- Loh, N.Y.; Neville, M.J.; Marinou, K.; Hardcastle, S.A.; Fielding, B.A.; Duncan, E.L.; McCarthy, M.I.; Tobias, J.H.; Gregson, C.L.; Karpe, F.; et al. LRP5 regulates human body fat distribution by modulating adipose progenitor biology in a dose- and depot-specific fashion. Cell Metab. 2015, 21, 262–273. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Lu, Y.; Li, S.; Zhu, Y.; Sun, C.; Rai, P.; Jia, X. The Relationship Between LRP-5 and LRP-6 Gene Mutations and Postmenopausal Type 2 Diabetes and Obesity. Clin. Med. Insights Endocrinol. Diabetes 2025, 18, 11795514241307180. [Google Scholar] [CrossRef]
- Dharavath, B.; Butle, A.; Chaudhary, A.; Pal, A.; Desai, S.; Chowdhury, A.; Thorat, R.; Upadhyay, P.; Nair, S.; Dutt, A. Recurrent UBE3C-LRP5 translocations in head and neck cancer with therapeutic implications. NPJ Precis. Oncol. 2024, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Björklund, P.; Svedlund, J.; Olsson, A.-K.; Akerström, G.; Westin, G. The internally truncated LRP5 receptor presents a therapeutic target in breast cancer. PLoS ONE 2009, 4, e4243. [Google Scholar] [CrossRef]
- Maubant, S.; Tahtouh, T.; Brisson, A.; Maire, V.; Némati, F.; Tesson, B.; Ye, M.; Rigaill, G.; Noizet, M.; Dumont, A.; et al. LRP5 regulates the expression of STK40, a new potential target in triple-negative breast cancers. Oncotarget 2018, 9, 22586–22604. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, F.; Liu, X.; Yu, Z.; Xie, L.; Liu, L.; Chen, C.; Jiang, H.; Hao, X.; He, X.; et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/β-catenin/CCND1 signaling. J. Clin. Investig. 2018, 128, 1737–1751. [Google Scholar] [CrossRef] [PubMed]
- Björklund, P.; Akerström, G.; Westin, G. An LRP5 receptor with internal deletion in hyperparathyroid tumors with implications for deregulated WNT/beta-catenin signaling. PLoS Med. 2007, 4, e328. [Google Scholar] [CrossRef]
- Wang, H.; Deng, G.; Ai, M.; Xu, Z.; Mou, T.; Yu, J.; Liu, H.; Wang, S.; Li, G. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene 2019, 38, 1489–1507. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, S.A.; Arakelian, A.; Farookhi, R. LRP5 knockdown: Effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo. Cancer Med. 2013, 2, 625–635. [Google Scholar] [CrossRef]
- Horne, L.; Avilucea, F.R.; Jin, H.; Barrott, J.J.; Smith-Fry, K.; Wang, Y.; Hoang, B.H.; Jones, K.B. LRP5 Signaling in Osteosarcomagenesis: A Cautionary Tale of Translation from Cell Lines to Tumors. Transl. Oncol. 2016, 9, 438–444. [Google Scholar] [CrossRef]
- Feng, Y.-Y.; Jin, X.; Pan, M.-X.; Liao, J.-M.; Huang, X.-Z.; Kang, C.-M. LRP5 enhances glioma cell proliferation by modulating the MAPK/p53/cdc2 pathway. Int. J. Med. Sci. 2025, 22, 990–1001. [Google Scholar] [CrossRef]
- Hu, J.; Shi, J.; Wang, J.; Xiao, Y.; Kong, D.; Gao, M.; Luo, T.; Xu, S.; Yuan, Z.; Ma, X.; et al. A novel polypeptide encoded by circSPIRE1 promotes prostate cancer proliferation and migration by restraining the ubiquitin-dependent degradation of LRP5. J. Exp. Clin. Cancer Res. CR 2025, 44, 218. [Google Scholar] [CrossRef]
- Le, Y.; Zhou, L.; He, Y.; Zhou, J.; Zhan, J.; Zhang, H.; Chen, X.; Xiong, J.; Fang, Z.; Xiang, X. SNX5 facilitates the progression of gastric cancer by increasing the membrane localization of LRP5. Oncogene 2025, 44, 1182–1196. [Google Scholar] [CrossRef] [PubMed]
- Correa-Arzate, L.; Portilla-Robertson, J.; Ramírez-Jarquín, J.O.; Jacinto-Alemán, L.F.; Mejía-Velázquez, C.P.; Villanueva-Sánchez, F.G.; Rodríguez-Vázquez, M. LRP5, SLC6A3, and SOX10 Expression in Conventional Ameloblastoma. Genes 2023, 14, 1524. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Wang, S.; Duan, G.; Wu, J.; Feng, F.; Chen, L.; Li, A.; Xu, K.; Wang, C.; Fan, S. Natural Product Daidzin Inhibits Glioma Development via Suppressing the LRP5-Mediated GSK-3β/c-Myc Signaling Pathway. BioFactors Oxf. Engl. 2025, 51, e70025. [Google Scholar] [CrossRef]
- Yaccoby, S.; Ling, W.; Zhan, F.; Walker, R.; Barlogie, B.; Shaughnessy, J.D. Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007, 109, 2106–2111. [Google Scholar] [CrossRef]
- Heath, D.J.; Chantry, A.D.; Buckle, C.H.; Coulton, L.; Shaughnessy, J.D.; Evans, H.R.; Snowden, J.A.; Stover, D.R.; Vanderkerken, K.; Croucher, P.I. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2009, 24, 425–436. [Google Scholar] [CrossRef]
- Fulciniti, M.; Tassone, P.; Hideshima, T.; Vallet, S.; Nanjappa, P.; Ettenberg, S.A.; Shen, Z.; Patel, N.; Tai, Y.-T.; Chauhan, D.; et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009, 114, 371–379. [Google Scholar] [CrossRef]
- Glantschnig, H.; Scott, K.; Hampton, R.; Wei, N.; McCracken, P.; Nantermet, P.; Zhao, J.Z.; Vitelli, S.; Huang, L.; Haytko, P.; et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J. Pharmacol. Exp. Ther. 2011, 338, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Liu, X.; Wang, J.; Chen, X.; Zhang, H.; Kim, S.H.; Cui, J.; Li, R.; Zhang, W.; Kong, Y.; et al. Wnt signaling in bone formation and its therapeutic potential for bone diseases. Ther. Adv. Musculoskelet. Dis. 2013, 5, 13–31. [Google Scholar] [CrossRef] [PubMed]
- Yadav, V.K.; Balaji, S.; Suresh, P.S.; Liu, X.S.; Lu, X.; Li, Z.; Guo, X.E.; Mann, J.J.; Balapure, A.K.; Gershon, M.D.; et al. Pharmacological inhibition of gut-derived serotonin synthesis is a potential bone anabolic treatment for osteoporosis. Nat. Med. 2010, 16, 308–312. [Google Scholar] [CrossRef]
- Inose, H.; Zhou, B.; Yadav, V.K.; Guo, X.E.; Karsenty, G.; Ducy, P. Efficacy of serotonin inhibition in mouse models of bone loss. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011, 26, 2002–2011. [Google Scholar] [CrossRef]
- Cui, Y.; Niziolek, P.J.; MacDonald, B.T.; Zylstra, C.R.; Alenina, N.; Robinson, D.R.; Zhong, Z.; Matthes, S.; Jacobsen, C.M.; Conlon, R.A.; et al. Lrp5 functions in bone to regulate bone mass. Nat. Med. 2011, 17, 684–691. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Kang, H.; Liu, W.; Liu, P.; Zhang, J.; Harris, S.E.; Wu, D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem. 2005, 280, 19883–19887. [Google Scholar] [CrossRef]
- Su, Y.; Wang, W.; Liu, F.; Cai, Y.; Li, N.; Li, H.; Li, G.; Ma, L. Blosozumab in the treatment of postmenopausal women with osteoporosis: A systematic review and meta-analysis. Ann. Palliat. Med. 2022, 11, 3203–3212. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Adanty, C. Romosozumab (sclerostin monoclonal antibody) for the treatment of osteoporosis in postmenopausal women: A review. J. Popul. Ther. Clin. Pharmacol. 2020, 27, e25–e31. [Google Scholar] [CrossRef]
- Glorieux, F.H.; Devogelaer, J.-P.; Durigova, M.; Goemaere, S.; Hemsley, S.; Jakob, F.; Junker, U.; Ruckle, J.; Seefried, L.; Winkle, P.J. BPS804 Anti-Sclerostin Antibody in Adults With Moderate Osteogenesis Imperfecta: Results of a Randomized Phase 2a Trial. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2017, 32, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Liu, H.; Bao, X.; Li, Y. Semaglutide promotes the proliferation and osteogenic differentiation of bone-derived mesenchymal stem cells through activation of the Wnt/LRP5/β-catenin signaling pathway. Front. Pharmacol. 2025, 16, 1539411. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Xi, Y.; Jiang, Q.; Dai, W.; Qin, X.; Zhang, J.; Jiang, Z.; Yang, G.; Chen, Q. LRP5 Down-Regulation Exacerbates Inflam-mation and Alveolar Bone Loss in Periodontitis by Inhibiting PI3K/c-FOS Signalling. J. Clin. Periodontol. 2025, 52, 637–650. [Google Scholar] [CrossRef]
- Nguyen, H.; Chen, H.; Vuppalapaty, M.; Whisler, E.; Logas, K.R.; Sampathkumar, P.; Fletcher, R.B.; Sura, A.; Suen, N.; Gupta, S.; et al. SZN-413, a FZD4 Agonist, as a Potential Novel Therapeutic for the Treatment of Diabetic Retinopathy. Transl. Vis. Sci. Technol. 2022, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Levey, J.; Douglas, K.; Jo, H.-N.; Zhang, L.; Seshagiri, S.; Angers, S.; Junge, H.J. A Frizzled4/LRP5 agonist restores retinal pericyte coverage and reduces hemorrhage in a genetic model of pericyte loss. Investig. Ophthalmol. Vis. Sci. 2024, 65, 311. [Google Scholar]
- Ubertini, G.; Fintini, D.; d’Aniello, F.; Urbano, F.; Chiarito, M.; Angelelli, A.; Di Iorgi, N.; Faienza, M.F. Clinical, Biochemical and Radiological Features of LRP5 Gene Variants in Children. Calcif. Tissue Int. 2025, 116, 108. [Google Scholar] [CrossRef]
- Gorges, D.M.; Filippin-Monteiro, F.B. Genetic variants in the LRP5 gene associated with gain and loss of bone mineral density. In Silico Pharmacol. 2025, 13, 61. [Google Scholar] [CrossRef]
Therapeutic Agent/Tools | Stage of Development | Mechanism | System/Disease | Action | Study |
---|---|---|---|---|---|
CRISPR/Cas9 knockout | Preclinic | Downregulate LRP5 activity | Gastric cancer | Reduces the proliferation of cancer cells in vitro and in vivo by inhibiting the cell cycle-associated genes | [11] |
Anti-LRP5 polyclonal antibody | Preclinic | Prevents LRP5 from interacting with key Wnt ligands and coreceptors, leading to attenuation of β-catenin activity | Breast cancer | Reduces tumor growth | [59] |
Daidzin | Preclinic | Inhibitor of LRP5 | glioblastoma | Reduced LRP5 activity, lowered p-GSK-3β levels, and facilitated the degradation of c-Myc | [70] |
BHQ880 (anti-Dkk1 antibody) | Clinic | Activation of Wnt signaling by inhibiting DKK-1 antagonism of LRP5/β-catenin pathway | Osteoporosis in myeloma | Stimulates bone formation and inhibits bone resorption | [71,72] |
RH2-18 (monoclonal anti-DKK1 antibody) | Preclinic | Activation of Wnt signaling by inhibiting DKK-1 antagonism of LRP5/β-catenin pathway | Osteoporosis | Promotes bone mineralization and rebuilds the structure of spongy bone | [74] |
Blosozumab | Clinic | Binds specifically to sclerostin, preventing it from interacting with LRP5/6 | Osteoporosis | Stimulates bone formation and decreases bone resorption | [80] |
Romozosumab | Clinic | Binds specifically to sclerostin, preventing it from interacting with LRP5/6, Wnt pathway is subsequently activated | Osteoporosis | Stimulates bone mineralization and reduces bone resorption | [81] |
BPS804 (anti-sclerostin antibody) | Clinic | binds specifically to sclerostin, preventing it from interacting with LRP5/6 | Osteoporosis | Stimulates bone formation and inhibits bone resorption | [82] |
Semaglutide | Preclinic | Increased activation of Wnt/LRP5/β-catenin signaling | Osteoporosis | Osteogenic differentiation of bone marrow stem cells | [83] |
Pyrvinium pamoate | Preclinic | Could inhibit LRP5/Wnt/ β-catenin signaling | Head and neck cancers | Reduced tumor cell proliferation | [58] |
Platelet-rich plasma extraction | Preclinic | Activation of Ang1–LRP5–Tie2 pathway | Chronic lung disease | Accelerates lung regeneration | [42] |
Plant sterol esters | Preclinic | Prevent high cholesterol-induced LRP5 overexpression | Atherosclerosis | Downregulate pro-atherogenic genes and reduce vascular inflammation | [40] |
SZN-413 | Preclinic | FZD4/LRP5 agonist | Diabetic retinopathy | Angiogenesis and tightening of the blood–retinal barrier | [85] |
F4L5.13 | Preclinic | FZD4/LRP5 agonist | Diabetic retinopathy | Improves the integrity of retinal capillaries | [86] |
Parthenolide and vorinostat | Preclinic | Downregulate LRP5 expression | Cancer | Possibly reduce cancer invasion and proliferation | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrefaei, A.F. LRP5: A Multifaceted Co-Receptor in Development, Disease, and Therapeutic Target. Cells 2025, 14, 1391. https://doi.org/10.3390/cells14171391
Alrefaei AF. LRP5: A Multifaceted Co-Receptor in Development, Disease, and Therapeutic Target. Cells. 2025; 14(17):1391. https://doi.org/10.3390/cells14171391
Chicago/Turabian StyleAlrefaei, Abdulmajeed F. 2025. "LRP5: A Multifaceted Co-Receptor in Development, Disease, and Therapeutic Target" Cells 14, no. 17: 1391. https://doi.org/10.3390/cells14171391
APA StyleAlrefaei, A. F. (2025). LRP5: A Multifaceted Co-Receptor in Development, Disease, and Therapeutic Target. Cells, 14(17), 1391. https://doi.org/10.3390/cells14171391