Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease?
Abstract
1. Introduction
2. Neuronal Death in Alzheimer’s Disease
2.1. Molecular and Cellular Factors Leading to Neuronal Death in Alzheimer’s Disease
2.1.1. Accumulation of Amyloid and Tau Proteins
2.1.2. Oxidative Stress
2.2. The Impact of Epigenetics on Neuronal Survival
2.3. Microglia and Neuroinflammation in Disease Progression
3. Biomolecular Condensates and Protein Aggregation
3.1. Definition and Characteristics of Biomolecular Condensates
3.2. Role of Condensates in Protein Aggregation, Including Aβ42 and Tau, and Their Impact on Alzheimer’s Disease Pathogenesis
3.3. Mechanisms Through Which Condensates Both Promote and Inhibit Protein Aggregate Formation
3.4. Molecular Stress Makes Old Neurons Vulnerable to Neurodegenerative Diseases
3.5. Splicing Factor Mislocalization and RNA Dysregulation
3.6. Chronic Stress and Impaired Stress Response
3.7. Mechanistic Contribution to Neurodegeneration
3.8. Broader Context and Vulnerability Models
3.9. Therapeutic Implications
3.9.1. Splicing Protein Stabilisation
3.9.2. Stress-Response Enhancement
3.9.3. RNA-Targeted Interventions
4. Therapeutic Implications: Targeting Biomolecular Condensates
4.1. Modulating Phase Separation with Small Molecules: The Case of Melatonin
4.2. Altering Condensate Composition and Properties to Prevent Aggregation
4.3. Epigenetic Modulation: HDAC Inhibitors and Chromatin-Linked Condensates
4.4. Overview of Current Preclinical and Clinical Research
5. Novel Approaches to Treating Alzheimer’s Disease
5.1. NRTIs and Their Impact on Inflammasomes
5.2. Remternetug: Targeting Amyloid Deposition
5.3. Plant-Derived Compounds: Carnosic Acid
5.4. New Small Molecules: RI AG03 and DDL 920
- RI AG03 selectively inhibits NLRP3 inflammasome assembly and subsequent IL-1β release, reducing microglial activation, amyloid β deposition, and synaptic dysfunction in mouse and fruit-fly models of tauopathy [73]. For example, in Drosophila engineered to overexpress human tau, RI AG03 suppressed neuronal degeneration and extended lifespan by targeting dual tau aggregation hotspots [73].
- DDL 920 disrupts aberrant tau aggregation by interfering with tau–protein LLPS. It reduces tau oligomer formation and neurofibrillary tangle load and improves cognition in mouse tauopathy models. Pharmacokinetic studies report good brain penetration, metabolic stability, and no observable toxicity [74].
5.5. Peptide-Based Condensate “Killswitch”
5.6. Safety and Efficacy Evaluation
6. Clinical Trials
7. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Alzheimer’s Disease |
Aβ | amyloid β |
LLPS | liquid–liquid phase separation |
NRTIs | nucleotide reverse transcriptase inhibitors |
NFTs | neurofibrillary tangles |
PHFs | paired helical filaments |
ROS | reactive oxygen species |
NPCs | nuclear pore complexes |
ASOs | Antisense oligonucleotides |
HDAC | histone deacetylase |
FRAP | fluorescence recovery after photobleaching |
TIRF | total internal reflection fluorescence |
VHA | Veterans Health Administration |
References
- Kumar, A.; Sidhu, J.; Lui, F.; Tsao, J.W. Alzheimer Disease; StatPearls: Treasure Island, FL, USA, 2024; pp. 1–27. Available online: https://www.ncbi.nlm.nih.gov/books/NBK499922/ (accessed on 6 August 2025).
- World Health Organization. European Health Report 2024: Keeping Health High on the Agenda. Available online: https://iris.who.int/handle/10665/380381 (accessed on 6 August 2025).
- Šneiderienė, G.; Díaz, A.G.; Adhikari, S.D.; Wei, J.; Michaels, T.; Šneideris, T.; Linse, S.; Vendruscolo, M.; Garai, K.; Knowles, T.P.J. Lipid-induced condensate formation from the Alzheimer’s Aβ peptide triggers amyloid aggregation. Proc. Natl. Acad. Sci. USA 2025, 122, e2401307122. [Google Scholar] [CrossRef]
- Cras, P.; Kawai, M.; Lowery, D.; Gonzalez-DeWhitt, P.; Greenberg, B.; Perry, G. Senile plaque neurites in Alzheimer disease accumulate amyloid precursor protein. Proc. Natl. Acad. Sci. USA 1991, 88, 7552–7556. [Google Scholar] [CrossRef] [PubMed]
- Mawuenyega, K.G.; Kasten, T.; Sigurdson, W.; Bateman, R.J. Amyloid-beta isoform metabolism quantitation by stable isotope labeled kinetics. Anal. Biochem. 2013, 440, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef] [PubMed]
- Buccellato, F.R.; D’Anca, M.; Tartaglia, G.M.; Del Fabbro, M.; Scarpini, E.; Galimberti, D. Treatment of Alzheimer’s Disease: Beyond Symptomatic Therapies. Int. J. Mol. Sci. 2023, 24, 13781. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Jeon, Y.; Lim, J.Y.; Kim, Y.; Cha, B.; Kim, W. Emerging regulatory mechanisms and functions of biomolecular condensates: Implications for therapeutic targets. Signal Transduct. Target. Ther. 2025, 10, 4. [Google Scholar] [CrossRef]
- Cereghetti, G.; Saad, S.; Dechant, R.; Peter, M. Reversible, functional amyloids: Towards an understanding of their regulation in yeast and humans. Cell Cycle 2018, 17, 1545–1555. [Google Scholar] [CrossRef]
- Ziaunys, M.; Sulskis, D.; Veiveris, D.; Kopustas, A.; Snieckute, R.; Mikalauskaite, K.; Sakalauskas, A.; Tutkus, M.; Smirnovas, V. Liquid–liquid phase separation of alpha-synuclein increases the structural variability of fibrils formed during amyloid aggregation. FEBS J. 2024, 291, 4522–4538. [Google Scholar] [CrossRef]
- Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med. 2004, 10 (Suppl. 7), S10–S17. [Google Scholar] [CrossRef]
- Visser, B.S.; Lipiński, W.P.; Spruijt, E. The role of biomolecular condensates in protein aggregation. Nat. Rev. Chem. 2024, 8, 686–700. [Google Scholar] [CrossRef]
- Stancu, I.C.; Ferraiolo, M.; Terwel, D.; Dewachter, I. Tau Interacting Proteins: Gaining Insight into the Roles of Tau in Health and Disease. Adv. Exp. Med. Biol. 2019, 1184, 145–166. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Narlikar, G.J.; Kutateladze, T.G. Enzymatic Reactions inside Biological Condensates. J. Mol. Biol. 2021, 433, 166796. [Google Scholar] [CrossRef] [PubMed]
- Banani, S.F.; Lee, H.O.; Hyman, A.A.; Rosen, M.K. Biomolecular condensates: Organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017, 18, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Levine, H. Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 2010, 19, 311–323. [Google Scholar] [CrossRef]
- Natural Modulators of Amyloid-Beta Precursor Protein Processing. Available online: https://pubmed.ncbi.nlm.nih.gov/22998566/ (accessed on 24 July 2025).
- O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci. 2011, 34, 185–204. [Google Scholar] [CrossRef]
- Lee, V.M.Y.; Goedert, M.; Trojanowski, J.Q. Neurodegenerative tauopathies. Annu. Rev. Neurosci. 2001, 24, 1121–1159. [Google Scholar] [CrossRef]
- Gao, Y.L.; Wang, N.; Sun, F.R.; Cao, X.P.; Zhang, W.; Yu, J.T. Tau in neurodegenerative disease. Ann. Transl. Med. 2018, 6, 175. [Google Scholar] [CrossRef]
- Espíndola, S.L.; Damianich, A.; Alvarez, R.J.; Sartor, M.; Belforte, J.E.; Ferrario, J.E.; Gallo, J.M.; Avale, M.E. Modulation of Tau Isoforms Imbalance Precludes Tau Pathology and Cognitive Decline in a Mouse Model of Tauopathy. Cell Rep. 2018, 23, 709–715. [Google Scholar] [CrossRef]
- Kang, Y.J.; Diep, Y.N.; Tran, M.; Cho, H. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 9591. [Google Scholar] [CrossRef]
- Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; Del Tredici, K.; et al. Correlation of Alzheimer Disease Neuropathologic Changes with Cognitive Status: A Review of the Literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362–381. [Google Scholar] [CrossRef]
- Bennett, D.A.; Cochran, E.J.; Saper, C.B.; Leverenz, J.B.; Gilley, D.W.; Wilson, R.S. Pathological Changes in Frontal Cortex from Biopsy to Autopsy in Alzheimer’s Disease. Neurobiol. Aging 1993, 14, 589–596. [Google Scholar] [CrossRef]
- Malpetti, M.; Kievit, R.A.; Passamonti, L.; Jones, P.S.; Tsvetanov, K.A.; Rittman, T.; Mak, E.; Nicastro, N.; Bevan-Jones, W.R.; Su, L.; et al. Microglial Activation and Tau Burden Predict Cognitive Decline in Alzheimer’s Disease. Brain 2020, 143, 1588–1602. [Google Scholar] [CrossRef]
- Kametani, F.; Hasegawa, M. Reconsideration of Amyloid Hypothesis and Tau Hypothesis in Alzheimer’s Disease. Front. Neurosci. 2018, 12, 25. [Google Scholar] [CrossRef]
- Markesbery, W.R. Oxidative Stress Hypothesis in Alzheimer’s Disease. Free Radic. Biol. Med. 1997, 23, 134–147. [Google Scholar] [CrossRef]
- Gella, A.; Durany, N. Oxidative Stress in Alzheimer Disease. Cell Adh. Migr. 2009, 3, 88–93. [Google Scholar] [CrossRef]
- Huang, W.J.; Zhang, X.; Chen, W.W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Houldsworth, A. Role of Oxidative Stress in Neurodegenerative Disorders: A Review of Reactive Oxygen Species and Prevention by Antioxidants. Brain Commun. 2024, 6, fcad001. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, B. Oxidative Stress and the Pathogenesis of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, Y.; Picciano, M.; La Francois, J.; Duff, K. Fibrillar Beta-Amyloid Evokes Oxidative Damage in a Transgenic Mouse Model of Alzheimer’s Disease. Neuroscience 2001, 104, 609–613. [Google Scholar] [CrossRef]
- Guglielmotto, M.; Giliberto, L.; Tamagno, E.; Tabaton, M. Oxidative Stress Mediates the Pathogenic Effect of Different Alzheimer’s Disease Risk Factors. Front. Aging Neurosci. 2010, 2, 3. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, Q.; Ren, N.; Zhao, H.; Zheng, X. Progress in Mitochondrial and Omics Studies in Alzheimer’s Disease Research: From Molecular Mechanisms to Therapeutic Interventions. Front. Immunol. 2024, 15, 1418939. [Google Scholar] [CrossRef]
- Llanos-González, E.; Henares-Chavarino, Á.A.; Pedrero-Prieto, C.M.; García-Carpintero, S.; Frontiñán-Rubio, J.; Sancho-Bielsa, F.J.; Alcain, F.J.; Peinado, J.R.; Rabanal-Ruíz, Y.; Durán-Prado, M. Interplay Between Mitochondrial Oxidative Disorders and Proteostasis in Alzheimer’s Disease. Front. Neurosci. 2020, 13, 1444. [Google Scholar] [CrossRef]
- Goel, P.; Chakrabarti, S.; Goel, K.; Bhutani, K.; Chopra, T.; Bali, S. Neuronal Cell Death Mechanisms in Alzheimer’s Disease: An Insight. Front. Mol. Neurosci. 2022, 15, 937133. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Marshall, L.; Oh, G.; Jakubowski, J.L.; Groot, D.; He, Y.; Wang, T.; Petronis, A.; Labrie, V. Epigenetic Dysregulation of Enhancers in Neurons Is Associated with Alzheimer’s Disease Pathology and Cognitive Symptoms. Nat. Commun. 2019, 10, 2246. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, X.; Hu, L.; Cheng, Q.; Zhang, Z.; Zhang, H.; Zhuoran, X.; Gao, Y.; Cao, D.; Chen, S.; et al. Consistent Genes Associated with Structural Changes in Clinical Alzheimer’s Disease Spectrum. Front. Neurosci. 2024, 18, 1376288. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a Biological Hydrotrope. Science 2017, 356, 753–756. [Google Scholar] [CrossRef]
- Shin, Y.; Brangwynne, C.P. Liquid Phase Condensation in Cell Physiology and Disease. Science 2017, 357, eaaf4382. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Lin, N.; Gao, M.; Huang, Y. Rational Modulation of Liquid–Liquid Phase Separation Offers Novel Ways to Combat Tauopathies. Int. J. Mol. Sci. 2025, 26, 6709. [Google Scholar] [CrossRef]
- Šneiderienė, G.; Díaz, A.G.; Das Adhikari, S.; Wei, J.; Michaels, T.; Šneideris, T.; Linse, S.; Vendruscolo, M.; Garai, K.; Knowles, T.P.J. The Alzheimer’s Aβ Peptide Forms Biomolecular Condensates That Trigger Amyloid Aggregation. bioRxiv, 2024; preprint. [Google Scholar] [CrossRef]
- Wegmann, S.; Eftekharzadeh, B.; Tepper, K.; Zoltowska, K.M.; Bennett, R.E.; Dujardin, S.; Laskowski, P.R.; MacKenzie, D.; Kamath, T.; Commins, C.; et al. Tau Protein Liquid–Liquid Phase Separation Can Initiate Tau Aggregation. EMBO J. 2018, 37, e98049. [Google Scholar] [CrossRef]
- Coghill, R.C. The Distributed Nociceptive System: A Framework for Understanding Pain. Trends Neurosci. 2020, 43, 780–794. [Google Scholar] [CrossRef]
- Nam, J.; Gwon, Y. Neuronal Biomolecular Condensates and Their Implications in Neurodegenerative Diseases. Front. Aging Neurosci. 2023, 15, 1145420. [Google Scholar] [CrossRef]
- Vendruscolo, M.; Fuxreiter, M. Protein Condensation Diseases: Therapeutic Opportunities. Nat. Commun. 2022, 13, 5663. [Google Scholar] [CrossRef] [PubMed]
- Willbold, D.; Strodel, B.; Schröder, G.F.; Hoyer, W.; Heise, H. Amyloid-Type Protein Aggregation and Prion-Like Properties of Amyloids. Chem. Rev. 2021, 121, 8285–8307. [Google Scholar] [CrossRef] [PubMed]
- Rhine, K.; Li, R.; Kopalle, H.M.; Rothamel, K.; Ge, X.; Epstein, E.; Mizrahi, O.; Madrigal, A.A.; Her, H.L.; Gomberg, T.A.; et al. Neuronal Aging Causes Mislocalization of Splicing Proteins and Unchecked Cellular Stress. Nat. Neurosci. 2025, 28, 1174–1184. [Google Scholar] [CrossRef]
- Ziff, O.J.; Harley, J.; Wang, Y.; Neeves, J.; Tyzack, G.; Ibrahim, F.; Skehel, M.; Chakrabarti, A.M.; Kelly, G.; Patani, R. Nucleocytoplasmic mRNA Redistribution Accompanies RNA-Binding Protein Mislocalization in ALS Motor Neurons and Is Restored by VCP ATPase Inhibition. Neuron 2023, 111, 3011–3027.e7. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Pastor, R.; Burchfiel, E.T.; Neef, D.W.; Jaeger, A.M.; Cabiscol, E.; McKinstry, S.U.; Doss, A.; Aballay, A.; Lo, D.C.; Akimov, S.S.; et al. Abnormal Degradation of the Neuronal Stress-Protective Transcription Factor HSF1 in Huntington’s Disease. Nat. Commun. 2017, 8, 14405. [Google Scholar] [CrossRef]
- Maiti, S.; Bhattacharya, K.; Wider, D.; Hany, D.; Panasenko, O.; Bernasconi, L.; Hulo, N.; Picard, D. Hsf1 and the Molecular Chaperone Hsp90 Support a “Rewiring Stress Response” Leading to an Adaptive Cell Size Increase in Chronic Stress. eLife 2023, 12, e91334. [Google Scholar] [CrossRef]
- Mediani, L.; Antoniani, F.; Galli, V.; Vinet, J.; Carrà, A.D.; Bigi, I.; Tripathy, V.; Tiago, T.; Cimino, M.; Leo, G.; et al. Hsp90-Mediated Regulation of DYRK3 Couples Stress Granule Disassembly and Growth via mTORC1 Signaling. EMBO Rep. 2021, 22, e51740. [Google Scholar] [CrossRef]
- Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1723–1732. [Google Scholar] [CrossRef]
- Mattson, M.P.; Magnus, T. Aging and Neuronal Vulnerability. Nat. Rev. Neurosci. 2006, 7, 278–294. [Google Scholar] [CrossRef]
- Sun, N.; Youle, R.J.; Finkel, T. The Mitochondrial Basis of Aging. Mol. Cell 2016, 61, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Michaelis, E.K. Selective Neuronal Vulnerability to Oxidative Stress in the Brain. Front. Aging Neurosci. 2010, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- National Institute on Aging. What Is Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE)? Available online: https://www.nia.nih.gov/health/alzheimers-and-dementia/what-limbic-predominant-age-related-tdp-43-encephalopathy-late (accessed on 24 July 2025).
- Araki, S.; Dairiki, R.; Nakayama, Y.; Murai, A.; Miyashita, R.; Iwatani, M.; Nomura, T.; Nakanishi, O. Inhibitors of CLK Protein Kinases Suppress Cell Growth and Induce Apoptosis by Modulating Pre-mRNA Splicing. PLoS ONE 2015, 10, e0116921. [Google Scholar] [CrossRef] [PubMed]
- Iwai, K.; Yaguchi, M.; Nishimura, K.; Yamamoto, Y.; Tamura, T.; Nakata, D.; Dariki, R.; Kawakita, Y.; Mizojiri, R.; Ito, Y.; et al. Anti-Tumor Efficacy of a Novel CLK Inhibitor via Targeting RNA Splicing and MYC-Dependent Vulnerability. EMBO Mol. Med. 2018, 10, e8289. [Google Scholar] [CrossRef]
- Delcuve, G.P.; Khan, D.H.; Davie, J.R. Roles of Histone Deacetylases in Epigenetic Regulation: Emerging Paradigms from Studies with Inhibitors. Clin. Epigenet. 2012, 4, 5. [Google Scholar] [CrossRef]
- Hassell, K.N. Histone Deacetylases and Their Inhibitors in Cancer Epigenetics. Diseases 2019, 7, 57. [Google Scholar] [CrossRef]
- Zhou, C.; Zhao, D.; Wu, C.; Wu, Z.; Zhang, W.; Chen, S.; Zhao, X.; Wu, S. Role of Histone Deacetylase Inhibitors in Non-Neoplastic Diseases. Heliyon 2024, 10, e33997. [Google Scholar] [CrossRef]
- Luteijn, M.J.; Bhaskar, V.; Trojer, D.; Schürz, M.; Mahboubi, H.; Handl, C.; Pizzato, N.; Pfeifer, M.; Dafinca, R.; Voshol, H.; et al. High-Throughput Screen of 100 000 Small Molecules in C9ORF72 ALS Neurons Identifies Spliceosome Modulators That Mobilize G4C2 Repeat RNA into Nuclear Export and Repeat-Associated Non-Canonical Translation. Nucleic Acids Res. 2025, 53, gkaf253. [Google Scholar] [CrossRef]
- MacDonald, M.E.; Ambrose, C.M.; Duyao, M.P.; Myers, R.H.; Lin, C.; Srinidhi, L.; Barnes, G.; Taylor, S.A.; James, M.; Groot, N.; et al. A Novel Gene Containing a Trinucleotide Repeat That Is Expanded and Unstable on Huntington’s Disease Chromosomes. Cell 1993, 72, 971–983. [Google Scholar] [CrossRef]
- Magagnoli, J.; Ambati, M.; Cummings, T.H.; Nguyen, J.; Thomas, C.C.; Ambati, V.L.; Sutton, S.S.; Gelfand, B.D.; Ambati, J. Association of Nucleoside Reverse Transcriptase Inhibitor Use with Reduced Risk of Alzheimer’s Disease. Alzheimers Dement. 2025, 21, e70180. [Google Scholar] [CrossRef]
- Chow, T.W.; Raupp, M.; Reynolds, M.W.; Li, S.; Kaeser, G.E.; Chun, J. Nucleoside Reverse Transcriptase Inhibitor Exposure Is Associated with Lower Alzheimer’s Disease Risk: A Retrospective Cohort Proof-of-Concept Study. Pharmaceuticals 2024, 17, 408. [Google Scholar] [CrossRef]
- Mustafa, M.; Musselman, D.; Jayaweera, D.; da Fonseca Ferreira, A.; Marzouka, G.; Dong, C. HIV-Associated Neurocognitive Disorder (HAND) and Alzheimer’s Disease Pathogenesis: Future Directions for Diagnosis and Treatment. Int. J. Mol. Sci. 2024, 25, 11170. [Google Scholar] [CrossRef] [PubMed]
- Tobeh, N.S.; Bruce, K.D. Emerging Alzheimer’s disease therapeutics: Promising insights from lipid metabolism and microglia-focused interventions. Front. Aging Neurosci. 2023, 15, 1259012. [Google Scholar] [CrossRef] [PubMed]
- Study Details|A Study of Remternetug (LY3372993) in Participants with Alzheimer’s Disease (TRAILRUNNER-ALZ 1)|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT05463731 (accessed on 24 July 2025).
- Study Details|A Study of Remternetug (LY3372993) in Early Alzheimer’s Disease (TRAILRUNNER-ALZ 3)|ClinicalTrials.gov [Internet]. Available online: https://clinicaltrials.gov/study/NCT06653153 (accessed on 24 July 2025).
- Mirza, F.J.; Zahid, S.; Holsinger, R.M.D. Neuroprotective Effects of Carnosic Acid: Insight into Its Mechanisms of Action. Molecules 2023, 28, 2306. [Google Scholar] [CrossRef] [PubMed]
- Satoh, T.; Trudler, D.; Oh, C.-K.; Lipton, S.A. Potential Therapeutic Use of the Rosemary Diterpene Carnosic Acid for Alzheimer’s Disease, Parkinson’s Disease, and Long-COVID through NRF2 Activation to Counteract the NLRP3 Inflammasome. Antioxidants 2022, 11, 124. [Google Scholar] [CrossRef]
- Aggidis, A.; Devitt, G.; Zhang, Y.; Chatterjee, S.; Townsend, D.; Fullwood, N.J.; Ortega, E.R.; Tarutani, A.; Hasegawa, M.; Cooper, A.; et al. A Novel Peptide-Based Tau Aggregation Inhibitor as a Potential Therapeutic for Alzheimer’s Disease and Other Tauopathies. Alzheimer’s Dement. 2024, 20, 7788–7804. [Google Scholar] [CrossRef]
- Boyko, S.; Surewicz, W.K. Tau Liquid–Liquid Phase Separation in Neurodegenerative Diseases. Trends Cell Biol. 2022, 32, 611–623. [Google Scholar] [CrossRef]
- Zhang, Y.; Stöppelkamp, I.; Fernandez-Pernas, P.; Allram, M.; Charman, M.; Magalhaes, A.P.; Piedavent-Salomon, M.; Sommer, G.; Sung, Y.C.; Meyer, K.; et al. Probing Condensate Microenvironments with a Micropeptide Killswitch. Nature 2025, 643, 1107–1116. [Google Scholar] [CrossRef]
- Lecanemab Confirmatory Phase 3 Clarity Ad Study Met Primary Endpoint, Showing Highly Statistically Significant Reduction of Clinical Decline in Large Global Clinical Study of 1795 Participants with Early Alzheimer’s Disease|Biogen [Internet]. Available online: https://investors.biogen.com/news-releases/news-release-details/lecanemab-confirmatory-phase-3-clarity-ad-study-met-primary (accessed on 25 August 2025).
- Yadollahikhales, G.; Rojas, J.C. Anti-Amyloid Immunotherapies for Alzheimer’s Disease: A 2023 Clinical Update. Neurotherapeutics 2023, 20, 914. [Google Scholar] [CrossRef]
- FDA Advisory Committee Votes Unanimously to Confirm the Clinical Benefit of LEQEMBI® (lecanemab-irmb) for the Treatment of Alzheimer’s Disease|News Release: 2023|Eisai Co., Ltd. [Internet]. Available online: https://www.eisai.com/news/2023/news202343.html (accessed on 25 August 2025).
- Eisai Presents Full Results of Lecanemab Phase 3 Confirmatory Clarity Ad Study for Early Alzheimer’s Disease at Clinical Trials on Alzheimer’s Disease (CTAD) Conference|News Release: 2022|Eisai Co., Ltd. [Internet]. Available online: https://www.eisai.com/news/2022/news202285.html (accessed on 25 August 2025).
- Park, K.W. Anti-amyloid Antibody Therapies for Alzheimer’s Disease. Nucl. Med. Mol. Imaging 2024, 58, 227–236. [Google Scholar] [CrossRef]
- FDA Approves LEQEMBITM (LECANEMAB-IRMB) Under the Accelerated Approval Pathway for the Treatment of Alzheimer’s Disease|News Release: 2023|Eisai Co., Ltd. [Internet]. Available online: https://www.eisai.com/news/2023/news202301.html/index.html (accessed on 25 August 2025).
- Mintun, M.A.; Lo, A.C.; Evans, C.D.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2021, 384, 1691–1704. [Google Scholar] [CrossRef]
- Monteiro, C.; Toth, B.; Brunstein, F.; Bobbala, A.; Datta, S.; Ceniceros, R.; Sanabria Bohorquez, S.M.; Anania, V.G.; Wildsmith, K.R.; Schauer, S.P.; et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants with Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology 2023, 101, E1391–E1401. [Google Scholar] [CrossRef] [PubMed]
- Röntgen, A.; Toprakcioglu, Z.; Morris, O.M.; Vendruscolo, M. Amyloid-β modulates the phase separation and aggregation of α-synuclein. Proc. Natl. Acad. Sci. USA 2025, 122, e2501987122. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, H.; Kamala, N.; Ramesh, M.; Govindaraju, T. Biphasic Modulation of Tau Liquid–Liquid Phase Separation by Polyphenols. Chem. Commun. 2024, 60, 4334–4337. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, H.; Maeda, S.; Sano, E.; Sakai, N.; Endoh-Yamagami, S.; Okano, H. Tau Aggregation Induces Cell Death in iPSC-Derived Neurons. Aging Brain 2025, 7, 100136. [Google Scholar] [CrossRef]
- Coll, R.C.; Robertson, A.A.B.; Chae, J.J.; Higgins, S.C.; Muñoz-Planillo, R.; Inserra, M.C.; Vetter, I.; Dungan, L.S.; Monks, B.G.; Stutz, A.; et al. A Small-Molecule Inhibitor of the NLRP3 Inflammasome for the Treatment of Inflammatory Diseases. Nat. Med. 2015, 21, 248–257. [Google Scholar] [CrossRef]
- Daniels, M.J.D.; Rivers-Auty, J.; Schilling, T.; Spencer, N.G.; Watremez, W.; Fasolino, V.; Booth, S.J.; White, C.S.; Baldwin, A.G.; Freeman, S.; et al. Fenamate NSAIDs Inhibit the NLRP3 Inflammasome and Protect Against Alzheimer’s Disease in Rodent Models. Nat. Commun. 2016, 7, 12504. [Google Scholar] [CrossRef]
- Alberti, S.; Hyman, A.A. Biomolecular Condensates at the Nexus of Cellular Stress, Protein Aggregation Disease and Ageing. Nat. Rev. Mol. Cell Biol. 2021, 22, 196–213. [Google Scholar] [CrossRef]
- Riverol, M.; López, O.L. Biomarkers in Alzheimer’s Disease. Front. Neurol. 2011, 2, 1. [Google Scholar] [CrossRef]
- Noor Eddin, A.; Hamsho, K.; Adi, G.; Al-Rimawi, M.; Alfuwais, M.; Abdul Rab, S.; Alkattan, K.; Yaqinuddin, A. Cerebrospinal Fluid MicroRNAs as Potential Biomarkers in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1210191. [Google Scholar] [CrossRef]
Strategy | Mechanism of Action | Target Molecules/Processes | Supporting Evidence | Reference |
---|---|---|---|---|
Small molecule modulation (e.g., melatonin) | Modulates LLPS; stabilises monomeric forms and reduces pathological condensation | Aβ42, tau | Neuroprotective potential; indirect support from LLPS-related studies | [63] |
Condensate disruption (e.g., 1,6-hexanediol) | Disrupts hydrophobic interactions to dissolve condensates | Aβ42-lipid condensates | In vitro and cellular dissolution of Aβ42 condensates | [48] |
Condensate composition alteration (e.g., tau mutant co-condensation) | Dilutes aggregation-prone proteins within condensates by inert co-localising species | Tau, Aβ42 | Delay of fibril formation in dense phase via co-condensation | [64] |
Epigenetic modulation (e.g., HDAC inhibitors) | Alters chromatin condensates and transcriptional states; may reduce phase separation of aggregation-prone proteins | Tau, chromatin proteins | Reduced tau aggregation, improved cognitive outcomes in AD models | [63] |
Chaperone localization to condensates | Enhances local folding capacity, counteracts aggregation inside condensates | TDP-43, tau, Aβ42 | Conceptual and experimental support from host–guest systems | [50] |
Interface-targeted aggregation inhibition | Prevents nucleation at condensate interfaces by altering interfacial chemistry | Aβ42, hnRNPA1, tau | Interfaces shown to enhance aggregation; strategy under investigation | [50] |
Compound | Mechanism of Action | Effects in Preclinical Models | Pharmacokinetics | Development Status |
---|---|---|---|---|
RI AG03 | Selectively inhibits NLRP3 inflammasome assembly and IL-1β release | Reduces microglial activation, amyloid β deposition, and synaptic dysfunction in mouse and Drosophila tauopathy models; suppresses neuronal degeneration and extends lifespan | Ongoing pharmacodynamic profiling; preclinical safety encouraging | Preclinical stage; under optimisation for safety, efficacy, and first-in-human trials [71] |
DDL 920 | Disrupts tau–protein liquid–liquid phase separation | Decreases tau oligomerization and neurofibrillary tangle burden; improves cognitive performance in mouse models of tauopathy | Demonstrates good brain penetration, metabolic stability, and no observable toxicity | Preclinical stage; progressing toward clinical readiness [72] |
Trial Name | Drug (Target) | Phase/Population | Key Outcomes | Safety/Limitations |
---|---|---|---|---|
Clarity AD | Lecanemab (anti-Aβ protofibril mAb) | Phase III, early AD (MCI and mild dementia) | 27% slowing of decline on CDR-SB; significant amyloid clearance (−59 centiloids); improved ADAS-Cog14, ADCOMS, ADCS-MCI-ADL | ARIA-E (~12.5%), ARIA-H (~17%), infusion reactions (~26%) |
TRAILBLAZER-ALZ 2 | Donanemab (anti-Aβ plaque mAb) | Phase III, early AD | Reduction in amyloid burden; slowed progression of clinical decline | ARIA (dose-dependent), infusion reactions |
Lauriet | Semorinemab (anti-tau mAb) | Phase II, mild to moderate AD | Modest benefit on ADAS-Cog11 (memory domain); reduced CSF tau markers; no significant functional/global benefit | Limited efficacy, no ADCS-ADL or CDR-SB improvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochman, U.; Sitka, H.; Kuźniar, J.; Czaja, M.; Kozubek, P.; Beszłej, J.A.; Leszek, J. Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease? Cells 2025, 14, 1356. https://doi.org/10.3390/cells14171356
Kochman U, Sitka H, Kuźniar J, Czaja M, Kozubek P, Beszłej JA, Leszek J. Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease? Cells. 2025; 14(17):1356. https://doi.org/10.3390/cells14171356
Chicago/Turabian StyleKochman, Urszula, Hanna Sitka, Julia Kuźniar, Magdalena Czaja, Patrycja Kozubek, Jan Aleksander Beszłej, and Jerzy Leszek. 2025. "Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease?" Cells 14, no. 17: 1356. https://doi.org/10.3390/cells14171356
APA StyleKochman, U., Sitka, H., Kuźniar, J., Czaja, M., Kozubek, P., Beszłej, J. A., & Leszek, J. (2025). Neuronal Death and Biomolecular Condensates: Are There Any New Treatment Options for Alzheimer’s Disease? Cells, 14(17), 1356. https://doi.org/10.3390/cells14171356