Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer
Abstract
1. Introduction
2. Characteristics of Claudin-18.2
2.1. Claudins as a Tight Junction (TJ) Protein
2.2. Claudin Protein Family
3. Claudin-18.2 and Its Physiological Expression
4. Claudin-18.2 Expression in GC
4.1. CLDN18.2 Signaling Pathways
4.2. GC Therapies Targeting CLDN18.2 Based on mAB
4.3. GC Therapies Targeting CLDN18.2 Based on bsAbs
4.4. GC Therapies Targeting CLDN18.2 Based on CAR-T
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADCC | Antibody-dependent cellular cytotoxicity |
ADCP | Antibody-dependent cellular phagocytosis |
BsAb | Bispecific antibody |
CAR | Chimeric antigen receptor |
CDC | Complement-dependent cytotoxicity |
CEA | Carcinoembryonic antigen |
CLDN18.2 | Claudin 18.2 |
CR | Complete response |
CREB | cAMP response element-binding protein |
EGJA | Esophagogastric junction adenocarcinomas |
GC | Gastric cancer |
HER2 | Human epidermal growth factor receptor 2 |
ICPM | Immune checkpoint molecules |
mAB | Monoclonal antibody |
MAPK | Mitogen-activated protein kinase |
PKC | Protein kinase C |
PR | Partial response |
scFv | Single-chain variable fragment |
TJ | Tight junction |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hani, U.; Osmani, R.A.M.; Yasmin, S.; Gowda, B.H.J.; Ather, H.; Ansari, M.Y.; Siddiqua, A.; Ghazwani, M.; Fatease, A.A.; Alamri, A.H.; et al. Novel Drug Delivery Systems as an Emerging Platform for Stomach Cancer Therapy. Pharmaceutics 2022, 14, 1576. [Google Scholar] [CrossRef] [PubMed]
- Poniewierska-Baran, A.; Sobolak, K.; Niedźwiedzka-Rystwej, P.; Plewa, P.; Pawlik, A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review. Int. J. Mol. Sci. 2024, 25, 6471. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, X.; Wei, X.; Tang, C.; Zhang, W. HER2-targeted therapies in gastric cancer. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188549. [Google Scholar] [CrossRef]
- Shibata, C.; Nakano, T.; Yasumoto, A.; Mitamura, A.; Sawada, K.; Ogawa, H.; Miura, T.; Ise, I.; Takami, K.; Yamamoto, K.; et al. Comparison of CEA and CA19-9 as a predictive factor for recurrence after curative gastrectomy in gastric cancer. BMC Surg. 2022, 22, 213. [Google Scholar] [CrossRef] [PubMed]
- Giuppi, M.; La Salvia, A.; Evangelista, J.; Ghidini, M. The Role and Expression of Angiogenesis-Related miRNAs in Gastric Cancer. Biology 2021, 10, 146. [Google Scholar] [CrossRef]
- Ma, X.; Zhou, X.; Guo, J.; Feng, X.; Zhao, M.; Zhang, P.; Zhang, C.; Gong, S.; Wu, N.; Zhang, Y.; et al. CA19-9 is a significant prognostic factor in stage III gastric cancer patients undergoing radical gastrectomy. BMC Surg. 2024, 24, 31. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Lu, Z.; Lu, Q.; Chen, Y.H. The claudin family of proteins in human malignancy: A clinical perspective. Cancer Manag. Res. 2013, 5, 367–375. [Google Scholar] [CrossRef]
- Lal-Nag, M.; Morin, P.J. The claudins. Genome Biol. 2009, 10, 235. [Google Scholar] [CrossRef] [PubMed]
- González-Mariscal, L.; Domínguez-Calderón, A.; Raya-Sandino, A.; Ortega-Olvera, J.M.; Vargas-Sierra, O.; Martínez-Revollar, G. Tight junctions and the regulation of gene expression. Semin. Cell Dev. Biol. 2014, 36, 213–223. [Google Scholar] [CrossRef]
- Li, J. Dysregulated expression of claudins in cancer. Oncol. Lett. 2021, 22, 641. [Google Scholar] [CrossRef] [PubMed]
- Krause, G.; Winkler, L.; Mueller, S.L.; Haseloff, R.F.; Piontek, J.; Blasig, I.E. Structure and function of claudins. Biochim. Biophys. Acta. 2008, 1778, 631–645. [Google Scholar] [CrossRef]
- Meoli, L.; Günzel, D. Channel functions of claudins in the organization of biological systems. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183344. [Google Scholar] [CrossRef]
- Fassan, M.; Kuwata, T.; Matkowskyj, K.A.; Röcken, C.; Rüschoff, J. Claudin-18.2 Immunohistochemical Evaluation in Gastric and Gastroesophageal Junction Adenocarcinomas to Direct Targeted Therapy: A Practical Approach. Mod. Pathol. 2024, 37, 100589. [Google Scholar] [CrossRef]
- Cao, W.; Xing, H.; Li, Y.; Tian, W.; Song, Y.; Jiang, Z.; Yu, J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022, 10, 38. [Google Scholar] [CrossRef]
- Niimi, T.; Nagashima, K.; Ward, J.M.; Minoo, P.; Zimonjic, D.B.; Popescu, N.C.; Kimura, S. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol. Cell Biol. 2001, 21, 7380–7390. [Google Scholar] [CrossRef]
- Türeci, O.; Koslowski, M.; Helftenbein, G.; Castle, J.; Rohde, C.; Dhaene, K.; Seitz, G.; Sahin, U. Claudin-18 gene structure, regulation, and expression is evolutionary conserved in mammals. Gene 2011, 481, 83–92. [Google Scholar] [CrossRef]
- Mathias-Machado, M.C.; de Jesus, V.H.F.; Jácome, A.; Donadio, M.D.; Aruquipa, M.P.S.; Fogacci, J.; Cunha, R.G.; da Silva, L.M.; Peixoto, R.D. Claudin 18.2 as a New Biomarker in Gastric Cancer-What Should We Know? Cancers 2024, 16, 679. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.Y.; An, J.Y.; Lee, J.; Park, S.H.; Park, J.O.; Park, Y.S.; Lim, H.Y.; Kim, K.M.; Kang, W.K.; Kim, S.T. Claudin 18.2 expression in various tumor types and its role as a potential target in advanced gastric cancer. Transl. Cancer Res. 2020, 9, 3367–3374. [Google Scholar] [CrossRef]
- Angerilli, V.; Ghelardi, F.; Nappo, F.; Grillo, F.; Parente, P.; Lonardi, S.; Luchini, C.; Pietrantonio, F.; Ugolini, C.; Vanoli, A.; et al. Claudin-18.2 testing and its impact in the therapeutic management of patients with gastric and gastroesophageal adenocarcinomas: A literature review with expert opinion. Pathol. Res. Pract. 2024, 254, 155145. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xu, Z.; Hu, C.; Zhang, S.; Zi, M.; Yuan, L.; Cheng, X. Targeting CLDN18.2 in cancers of the gastrointestinal tract: New drugs and new indications. Front. Oncol. 2023, 13, 1132319. [Google Scholar] [CrossRef]
- Park, G.; Park, S.J.; Kim, Y. Clinicopathological significance and prognostic values of claudin18.2 expression in solid tumors: A systematic review and meta-analysis. Front. Oncol. 2024, 14, 1453906. [Google Scholar] [CrossRef] [PubMed]
- Yano, K.; Imaeda, T.; Niimi, T. Transcriptional activation of the human claudin-18 gene promoter through two AP-1 motifs in PMA-stimulated MKN45 gastric cancer cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2008, 294, 336–343. [Google Scholar] [CrossRef]
- Ito, T.; Kojima, T.; Yamaguchi, H.; Kyuno, D.; Kimura, Y.; Imamura, M.; Takasawa, A.; Murata, M.; Tanaka, S.; Hirata, K.; et al. Transcriptional regulation of claudin-18 via specific protein kinase C signaling pathways and modification of DNA methylation in human pancreatic cancer cells. J. Cell Biochem. 2011, 112, 1761–1772. [Google Scholar] [CrossRef]
- Magnelli, L.; Schiavone, N.; Staderini, F.; Biagioni, A.; Papucci, L. MAP Kinases Pathways in Gastric Cancer. Int. J. Mol. Sci. 2020, 21, 2893. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Q.; Song, S.Y.; Su, W.J. Activation of JNK by TPA promotes apoptosis via PKC pathway in gastric cancer cells. World J. Gastroenterol. 2002, 8, 1014. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Zhu, X. The Wnt/β-catenin pathway regulates self-renewal of cancer stem-like cells in human gastric cancer. Mol. Med. Rep. 2012, 5, 1191–1196. [Google Scholar]
- Hagen, S.J.; Ang, L.H.; Zheng, Y.; Karahan, S.N.; Wu, J.; Wang, Y.E.; Caron, T.J.; Gad, A.P.; Muthupalani, S.; Fox, J.G. Loss of Tight Junction Protein Claudin 18 Promotes Progressive Neoplasia Development in Mouse Stomach. Gastroenterology 2018, 155, 1852–1867. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Chen, B.; Chan, W.N.; Mui, C.W.; Cheung, A.H.K.; Zhang, J.; Wong, K.Y.; Yu, J.; Kang, W.; et al. Targeting the Hippo Pathway in Gastric Cancer and Other Malignancies in the Digestive System: From Bench to Bedside. Biomedicines 2022, 10, 2512. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, D.; Tamura, A.; Tanaka, H.; Yamazaki, Y.; Watanabe, S.; Suzuki, K.; Yasui, W.; Rakugi, H.; Isaka, Y.; Tsukita, S. Deficiency of claudin-18 causes paracellular H+ leakage, up-regulation of interleukin-1β, and atrophic gastritis in mice. Gastroenterology 2012, 142, 292–304. [Google Scholar] [CrossRef]
- Matsuoka, T.; Yashiro, M. The Role of PI3K/Akt/mTOR Signaling in Gastric Carcinoma. Cancers 2014, 6, 1441–1463. [Google Scholar] [CrossRef]
- Liu, J.F.; Zhou, X.K.; Chen, J.H.; Yi, G.; Chen, H.G.; Ba, M.C.; Lin, S.Q.; Qi, Y.C. Up-regulation of PIK3CA promotes metastasis in gastric carcinoma. World J. Gastroenterol. 2010, 16, 4986–4991. [Google Scholar] [CrossRef]
- Zhou, X.D.; Chen, H.X.; Guan, R.N.; Lei, Y.P.; Shu, X.; Zhu, Y.; Lv, N.H. Protein kinase B phosphorylation correlates with vascular endothelial growth factor A and microvessel density in gastric adenocarcinoma. Int. J. Med. Res. 2012, 40, 2124–2134. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Wu, K.; Shen, H.; Li, C.; Han, S.; Hong, L.; Shi, Y.; Liu, N.; Guo, C.; Xue, Y.; et al. Akt1/protein kinase B alpha is involved in gastric cancer progression and cell proliferation. Dig. Dis. Sci. 2008, 53, 1801–1810. [Google Scholar] [CrossRef]
- Ma, X.; Yu, X.; Zhou, Q. The IL1β-HER2-CLDN18/CLDN4 axis mediates lung barrier damage in ARDS. Aging 2020, 12, 3249–3265. [Google Scholar] [CrossRef]
- Hou, F.; Shi, D.B.; Chen, Y.Q.; Gao, P. Human Epidermal Growth Factor Receptor-2 Promotes Invasion and Metastasis in Gastric Cancer by Activating Mitogen-activated Protein Kinase Signaling. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 529–534. [Google Scholar] [CrossRef]
- Lei, Z.N.; Teng, Q.X.; Tian, Q.; Chen, W.; Xie, Y.; Wu, K.; Zeng, Q.; Zeng, L.; Pan, Y.; Chen, Z.S.; et al. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct. Target. Ther. 2022, 7, 358. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Feng, J.F.; Wang, L.; Guo, W.; Du, U.W.; Zhao, G.Q. miR-1303 Targets Claudin-18 Gene to Modulate Proliferation and Invasion of Gastric Cancer Cells. Dig. Dis. Sci. 2014, 59, 1754–1763. [Google Scholar] [CrossRef]
- Wan, Y.L.; Dai, H.J.; Liu, W.; Ma, H.T. miR-767-3p inhibits growth and migration of lung adenocarcinoma cells by regulating CLDN18. Oncol. Res. 2018, 26, 637–644. [Google Scholar] [CrossRef]
- Luo, J.; Chimge, N.O.; Zhou, B.; Flodby, P.; Castaldi, A.; Firth, A.L.; Liu, Y.; Wang, H.; Yang, C.; Marconett, C.N.; et al. CLDN18. 1 attenuates malignancy and related signaling pathways of lung adenocarcinoma in vivo and in vitro. Int. J. Cancer 2018, 143, 3169–3180. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, O. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef]
- Tojjari, A.; Idrissi, Y.A.; Saeed, A. Emerging targets in gastric and pancreatic cancer: Focus on claudin 18. Cancer Lett. 2024, 611, 217362. [Google Scholar] [CrossRef]
- Sahin, U.; Schuler, M.; Richly, H.; Bauer, S.; Krilova, A.; Dechow, T.; Jerling, M.; Utsch, M.; Rohde, C.; Dhaene, K.; et al. A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. Eur. J. Cancer 2018, 100, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Cao, S.; Liu, S.; Yao, Z.; Sun, T.; Li, Y.; Li, J.; Zhang, D.; Zhou, Y. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget 2016, 7, 46158–46172. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Toom, S.; Huang, Y. Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer. J. Hematol. Oncol. 2017, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Konno, H.; Lin, T.; Wu, R.; Dai, X.; Li, S.; Wang, G.; Chen, M.; Li, W.; Wang, L.; Sun, B.C.; et al. ZL-1211 Exhibits Robust Antitumor Activity by Enhancing ADCC and Activating NK Cell-mediated Inflammation in CLDN18.2-High and -Low Expressing Gastric Cancer Models. Cancer Res. Commun. 2022, 2, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, J.; Li, J.; Qin, R.; Lu, N.; Goltzman, D.; Miao, D.; Yang, R. 1,25-Dihydroxyvitamin D Deficiency Accelerates Aging-related Osteoarthritis via Downregulation of Sirt1 in Mice. Int. J. Biol. Sci. 2023, 19, 610–624. [Google Scholar] [CrossRef]
- Ho, S.Y.; Chang, C.M.; Liao, H.N.; Chou, W.H.; Guo, C.L.; Yen, Y.; Nakamura, Y.; Chang, W.C. Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals 2023, 16, 392. [Google Scholar] [CrossRef]
- Esfandiari, A.; Cassidy, S.; Webster, R.M. Bispecific antibodies in oncology. Nat. Rev. Drug Discov. 2022, 21, 411–412. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, Z.; Wang, P.; Wang, C.; Yang, L.; Du, G.; Zhang, H.; Shi, B.; Jia, J.; Li, Q.; et al. Claudin18.2-specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. JNCI J. Natl. Cancer Inst. 2019, 111, 409–418. [Google Scholar] [CrossRef]
- Ma, R.; Wang, P.; Xu, J.; Xu, J.; Fricke, D.R.; Xue, Y. Development of oridonin-based proteolysis-targeting chimera (PROTAC) degraders as effective breast cancer therapeutics. Cancer Res. 2022, 82, 426. [Google Scholar] [CrossRef]
- Yk, W.; Gong, J.; Sun, Y.; Zhang, J.; Ni, S.; Hou, J. Interim results of a first-in-human phase 1 study of Q-1802, a CLDN18. 2/PD-L1 bsABs, in patients with relapsed or refractory solid tumors. J. Clin. Oncol. 2023, 41, 382. [Google Scholar] [CrossRef]
- Yue, J.; Shao, S.; Zhou, J.; Luo, W.; Xu, Y.; Zhang, Q.; Jiang, J.; Zhu, M.M. A bispecific antibody targeting HER2 and CLDN18.2 eliminates gastric cancer cells expressing dual antigens by enhancing the immune effector function. Investig. New Drugs. 2024, 42, 106–115. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wang, H. Use of immunotherapy in the treatment of gastric cancer. Oncol. Lett. 2019, 18, 5681–5690. [Google Scholar] [CrossRef] [PubMed]
- Kyuno, D.; Takasawa, A.; Takasawa, K.; Ono, Y.; Aoyama, T.; Magara, K.; Nakamori, Y.; Takemasa, I.; Osanai, M. Claudin-18.2 as a therapeutic target in cancers: Cumulative findings from basic research and clinical trials. Tissue Barriers 2022, 10, 1967080. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhao, R.; Wu, D.; Zheng, D.; Wu, Z.; Shi, J.; Wei, X.; Wu, Q.; Long, Y.; Lin, S.; et al. Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J. Hematol. Oncol. 2019, 12, 18. [Google Scholar] [CrossRef]
- Caruso, H.G.; Heimberger, A.B.; Cooper, L.J.N. Steering CAR T cells to distinguish friend from foe. Oncoimmunology 2018, 8, e1271857. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, K.; Birtwistle, L.; Micklethwaite, K. Manipulating the tumor microenvironment by adoptive cell transfer of CAR T-cells. Mamm. Genome 2018, 29, 739–756. [Google Scholar] [CrossRef]
- Xu, G.; Qian, N.; Liu, Y.; Li, H.; Yang, C.; Wang, J.; Wang, F.; Chen, L.; Bai, G.; Xu, Q.; et al. Preclinical characterization of a Fab-like CD3/CLDN18.2 XFab® bispecific antibody against solid tumors. Immunobiology 2022, 227, 152283. [Google Scholar] [CrossRef]
Trial Number | Conditions | Status/Phase | Age | Locations |
---|---|---|---|---|
NCT06962137 | Gastric cancer adenocarcinoma metastatic | Not yet recruiting | ≥18 | Belgium |
NCT06881017 | Gastric cancer | Not yet recruiting | ≥18 | - |
NCT01630083 | Gastric cancer adenocarcinoma | Completed | ≥18 | Bulgaria, Czechia, Germany, Latvia, Russian Federation, Ukraine, |
NCT01671774 | Gastric cancer adenocarcinoma | Completed | ≥18 | Germany, Latvia |
NCT06048081 | Locally advanced unresectable gastric cancer adenocarcinoma; metastatic gastric adenocarcinoma cancer | Available | ≥18 | USA, Brazil, France, Germany, Republic of Korea, Singapore |
NCT03505320 | Gastric cancer | Active, not recruiting | ≥18 | USA, France, Italy, Republic of Korea, Taiwan |
NCT03653507 | Locally advanced unresectable gastric cancer adenocarcinoma; metastatic gastric adenocarcinoma cancer | Active, not recruiting | ≥18 | USA, Argentina, Canada, China, Croatia, Greece, Ireland, Japan, Republic of Korea, Malaysia, Netherlands, Portugal, Romania, Spain, Taiwan, Thailand, Turkey, UK |
NCT03504397 | Locally advanced unresectable gastric cancer adenocarcinoma; metastatic gastric adenocarcinoma cancer | Active, not recruiting | ≥18 | USA, Belgium, Brazil, Canada, Chile, China, Colombia, France, Germany, Israel, Italy, Japan, Republic of Korea, Mexico, Peru, Poland, Spain, Taiwan, UK |
NCT06901531 | Locally advanced unresectable gastric cancer adenocarcinoma; metastatic gastric adenocarcinoma cancer | Not yet recruiting | ≥18 | - |
Trial Number | Conditions | Status/Phase | Cells | Age (Years) | Locations |
---|---|---|---|---|---|
NCT03159819 | Gastric adenocarcinoma | Unknown | - | 18–70 | China |
NCT03874897 | Advanced gastric cancer | Completed | CT041 | 18–75 | China |
NCT05472857 | Gastric cancer | Recruiting | IMC002 | 18–70 | China |
NCT04404595 | Gastric cancer | Active, not recruiting | CT041 | 18–76 | USA and Canada |
NCT04977193 | Advanced gastric adenocarcinoma | Unknown | LY011 | 18–70 | China |
NCT05583201 | Gastric cancer | Recruiting | KD-496 | 18–75 | China |
NCT05393986 | Gastric adenocarcinoma | Unknown | CT048 | 18–75 | China |
NCT05620732 | Gastric cancer | Recruiting | - | 18–75 | China |
NCT04581473 | Gastric adenocarcinoma | Recruiting | CT041 | 18–75 | China |
NCT06353152 | Gastric adenocarcinoma | Recruiting | - | 18–70 | China |
NCT05952375 | Gastric cancer | Recruiting | XKDCT086 | 18–75 | China |
NCT05539430 | Gastric cancer | Recruiting | LB1908 | 18–75 | USA |
NCT05946226 | Gastric cancer | Recruiting | IMC002 | 18–70 | China |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poniewierska-Baran, A.; Plewa, P.; Żabicka, Z.; Pawlik, A. Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer. Cells 2025, 14, 1285. https://doi.org/10.3390/cells14161285
Poniewierska-Baran A, Plewa P, Żabicka Z, Pawlik A. Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer. Cells. 2025; 14(16):1285. https://doi.org/10.3390/cells14161285
Chicago/Turabian StylePoniewierska-Baran, Agata, Paulina Plewa, Zuzanna Żabicka, and Andrzej Pawlik. 2025. "Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer" Cells 14, no. 16: 1285. https://doi.org/10.3390/cells14161285
APA StylePoniewierska-Baran, A., Plewa, P., Żabicka, Z., & Pawlik, A. (2025). Claudin18.2 as a Promising Therapeutic Target in Gastric Cancer. Cells, 14(16), 1285. https://doi.org/10.3390/cells14161285