IP3R2-Mediated Astrocytic Ca2+ Transients Are Critical to Sustain Modulatory Effects of Locomotion on Neurons in Mouse Somatosensory Cortex
Abstract
1. Introduction
2. Material and Methods
2.1. Animals
2.2. Plasmid Construction and Virus Production
2.3. Surgical Procedures and Virus Transduction
2.4. Animal Training
2.5. Two-Photon Imaging
2.6. Image Pre-Analysis
2.7. Calcium Data Analysis
2.8. Behavior Segmentation
2.9. Effect of Free Whisking and Locomotion
2.10. Calculation of Ca2+ Event Onsets During Still to Locomotion Transition
2.11. Calculation of Activation Rate and Response Reliability
2.12. Statistical Analysis
3. Results
3.1. Two-Photon Ca2+ Imaging Revealed Distinct Astrocytic Activity Patterns in Wild-Type and Itpr2−/− Mice
3.2. The Absence of IP3R2 Reduced Astrocytic Ca2+ Transients During the Transition Period from Still to Locomotion
3.3. Itpr2−/− Mice Exhibit Reduced but Not Totally Abolished Astrocytic Ca2+ Transients Modulated by Whisking and Locomotion
3.4. Locomotion Failed to Modulate Layer 2/3 vS1 Neurons in Itpr2−/− Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Semyanov, A.; Verkhratsky, A. Inclusive Brain: From Neuronal Doctrine to the Active Milieu. Function 2022, 3, zqab069. [Google Scholar] [CrossRef] [PubMed]
- Lyon, K.A.; Allen, N.J. From Synapses to Circuits, Astrocytes Regulate Behavior. Front. Neural Circuits 2022, 15, 786293. [Google Scholar] [CrossRef] [PubMed]
- Nagai, J.; Yu, X.; Papouin, T.; Cheong, E.; Freeman, M.R.; Monk, K.R.; Hastings, M.H.; Haydon, P.G.; Rowitch, D.; Shaham, S.; et al. Behaviorally Consequential Astrocytic Regulation of Neural Circuits. Neuron 2021, 109, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.N.; Lee, J.S.; Seo, K.; Lee, H. Astrocytic Regulation of Neural Circuits Underlying Behaviors. Cells 2021, 10, 296. [Google Scholar] [CrossRef]
- Rasmussen, R.N.; Asiminas, A.; Carlsen, E.M.M.; Kjaerby, C.; Smith, N.A. Astrocytes: Integrators of Arousal State and Sensory Context. Trends Neurosci 2023, 46, 418–425. [Google Scholar] [CrossRef]
- Poskanzer, K.E.; Yuste, R. Astrocytes Regulate Cortical State Switching in Vivo. Proc. Natl. Acad. Sci. USA 2016, 113, E2675–E2684. [Google Scholar] [CrossRef]
- Murphy-Royal, C.; Ching, S.; Papouin, T. A Conceptual Framework for Astrocyte Function. Nat. Neurosci. 2023, 26, 1848–1856. [Google Scholar] [CrossRef]
- Sharp, A.H.; Nucifora Jr., F. C.; Blondel, O.; Sheppard, C.A.; Zhang, C.; Snyder, S.H.; Russell, J.T.; Ryugoand, D.K.; Ross, C.A. Differential Cellular Expression of Isoforms of Inositol 1,4,5-Triphosphate Receptors in Neurons and Glia in Brain. J. Comp. Neurol. 1999, 406, 207–220. [Google Scholar] [CrossRef]
- Hertle, D.N.; Yeckel, M.F. Distribution of Inositol-1,4,5-Trisphosphate Receptor Isotypes and Ryanodine Receptor Isotypes during Maturation of the Rat Hippocampus. Neuroscience 2007, 150, 625–638. [Google Scholar] [CrossRef]
- Petravicz, J.; Boyt, K.M.; McCarthy, K.D. Astrocyte IP3R2-Dependent Ca(2+) Signaling Is Not a Major Modulator of Neuronal Pathways Governing Behavior. Front. Behav. Neurosci. 2014, 8, 384. [Google Scholar] [CrossRef]
- Agulhon, C.; Fiacco, T.A.; McCarthy, K.D. Hippocampal Short- and Long-Term Plasticity Are Not Modulated by Astrocyte Ca2+ Signaling. Science 2010, 327, 1250–1254. [Google Scholar] [CrossRef]
- Nizar, K.; Uhlirova, H.; Tian, P.; Saisan, P.A.; Cheng, Q.; Reznichenko, L.; Weldy, K.L.; Steed, T.C.; Sridhar, V.B.; MacDonald, C.L.; et al. In Vivo Stimulus-Induced Vasodilation Occurs without IP3 Receptor Activation and May Precede Astrocytic Calcium Increase. J. Neurosci. 2013, 33, 8411–8422. [Google Scholar] [CrossRef]
- Kirchhoff, F. Questionable Calcium. Science 2010, 327, 1212–1213. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, R.; Huang, B.S.; Venugopal, S.; Johnston, A.D.; Chai, H.; Zeng, H.; Golshani, P.; Khakh, B.S. Ca(2+) Signaling in Astrocytes from Ip3r2(-/-) Mice in Brain Slices and during Startle Responses in Vivo. Nat. Neurosci. 2015, 18, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Rungta, R.L.; Bernier, L.P.; Dissing-Olesen, L.; Groten, C.J.; LeDue, J.M.; Ko, R.; Drissler, S.; MacVicar, B.A. Ca2+ Transients in Astrocyte Fine Processes Occur via Ca2+ Influx in the Adult Mouse Hippocampus. Glia 2016, 64, 2093–2103. [Google Scholar] [CrossRef]
- Kanemaru, K.; Sekiya, H.; Xu, M.; Satoh, K.; Kitajima, N.; Yoshida, K.; Okubo, Y.; Sasaki, T.; Moritoh, S.; Hasuwa, H.; et al. In Vivo Visualization of Subtle, Transient, and Local Activity of Astrocytes Using an Ultrasensitive Ca2+ Indicator. Cell Rep. 2014, 8, 311–318. [Google Scholar] [CrossRef]
- Okubo, Y.; Kanemaru, K.; Suzuki, J.; Kobayashi, K.; Hirose, K.; Iino, M. Inositol 1,4,5-Trisphosphate Receptor Type 2-Independent Ca2+ Release from the Endoplasmic Reticulum in Astrocytes. Glia 2019, 67, 113–124. [Google Scholar] [CrossRef]
- Guerra-Gomes, S.; Cunha-Garcia, D.; Marques Nascimento, D.S.; Duarte-Silva, S.; Loureiro-Campos, E.; Morais Sardinha, V.; Viana, J.F.; Sousa, N.; Maciel, P.; Pinto, L.; et al. IP3R2 Null Mice Display a Normal Acquisition of Somatic and Neurological Development Milestones. Eur. J. Neurosci. 2021, 54, 5673–5686. [Google Scholar] [CrossRef]
- Petravicz, J.; Fiacco, T.A.; McCarthy, K.D. Loss of IP3 Receptor-Dependent Ca2+ Increases in Hippocampal Astrocytes Does Not Affect Baseline CA1 Pyramidal Neuron Synaptic Activity. J. Neurosci. 2008, 28, 4967–4973. [Google Scholar] [CrossRef]
- Sherwood, M.W.; Arizono, M.; Hisatsune, C.; Bannai, H.; Ebisui, E.; Sherwood, J.L.; Panatier, A.; Oliet, S.H.R.; Mikoshiba, K. Astrocytic IP3Rs: Contribution to Ca2+ Signalling and Hippocampal LTP. Glia 2017, 65, 502–513. [Google Scholar] [CrossRef]
- Padmashri, R.; Suresh, A.; Boska, M.D.; Dunaevsky, A. Motor-Skill Learning Is Dependent on Astrocytic Activity. Neural Plast. 2015, 2015, 938023. [Google Scholar] [CrossRef]
- Foley, J.; Blutstein, T.; Lee, S.; Erneux, C.; Halassa, M.M.; Haydon, P. Astrocytic IP3/Ca2+ Signaling Modulates Theta Rhythm and REM Sleep. Front. Neural Circuits 2017, 11, 3. [Google Scholar] [CrossRef]
- Wang, Q.; Kong, Y.; Wu, D.Y.; Liu, J.H.; Jie, W.; You, Q.L.; Huang, L.; Hu, J.; Chu, H.-D.; Gao, F.; et al. Impaired Calcium Signaling in Astrocytes Modulates Autism Spectrum Disorder-like Behaviors in Mice. Nat. Commun. 2021, 12, 3321. [Google Scholar] [CrossRef]
- Pinto-Duarte, A.; Roberts, A.J.; Ouyang, K.; Sejnowski, T.J. Impairments in Remote Memory Caused by the Lack of Type 2 IP3 Receptors. Glia 2019, 67, 1976–1989. [Google Scholar] [CrossRef]
- Li, J.T.; Jin, S.Y.; Hu, J.; Xu, R.X.; Xu, J.N.; Li, Z.M.; Wang, M.L.; Fu, Y.W.; Liao, S.H.; Li, X.W.; et al. Astrocytes in the Ventral Hippocampus Bidirectionally Regulate Innate and Stress-Induced Anxiety-Like Behaviors in Male Mice. Adv. Sci. 2024, 11, 2400354. [Google Scholar] [CrossRef] [PubMed]
- Miguel-Quesada, C.; Zaforas, M.; Herrera-Pérez, S.; Lines, J.; Fernández-López, E.; Alonso-Calviño, E.; Ardaya, M.; Soria, F.N.; Araque, A.; Aguilar, J.; et al. Astrocytes Adjust the Dynamic Range of Cortical Network Activity to Control Modality-Specific Sensory Information Processing. Cell Rep. 2023, 42, 112950. [Google Scholar] [CrossRef] [PubMed]
- Reitman, M.E.; Tse, V.; Mi, X.; Willoughby, D.D.; Peinado, A.; Aivazidis, A.; Myagmar, B.-E.; Simpson, P.C.; Bayraktar, O.A.; Yu, G.; et al. Norepinephrine Links Astrocytic Activity to Regulation of Cortical State. Nat. Neurosci. 2023, 26, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; et al. Ultra-Sensitive Fluorescent Proteins for Imaging Neuronal Activity. Nature 2013, 499, 295–300. [Google Scholar] [CrossRef]
- Dana, H.; Mohar, B.; Sun, Y.; Narayan, S.; Gordus, A.; Hasseman, J.P.; Tsegaye, G.; Holt, G.T.; Hu, A.; Walpita, D.; et al. Sensitive Red Protein Calcium Indicators for Imaging Neural Activity. Elife 2016, 5, e12727. [Google Scholar] [CrossRef]
- Shevtsova, Z.; Malik, J.M.I.; Michel, U.; Bähr, M.; Kügler, S. Promoters and Serotypes: Targeting of Adeno-Associated Virus Vectors for Gene Transfer in the Rat Central Nervous System in Vitro and in Vivo. Exp. Physiol. 2005, 90, 53–59. [Google Scholar] [CrossRef]
- Hirrlinger, J.; Scheller, A.; Hirrlinger, P.G.; Kellert, B.; Tang, W.; Wehr, M.C.; Goebbels, S.; Reichenbach, A.; Sprengel, R.; Rossner, M.; et al. Split-Cre Complementation Indicates Coincident Activity of Different Genes in Vivo. PLoS ONE 2009, 4, e4286. [Google Scholar] [CrossRef] [PubMed]
- Kirchhoff, F.; Tang, W. Analysis of Functional NMDA Receptors in Astrocytes. Methods Mol. Biol. 2024, 2799, 201–223. [Google Scholar] [PubMed]
- Pnevmatikakis, E.A.; Giovannucci, A. NoRMCorre: An Online Algorithm for Piecewise Rigid Motion Correction of Calcium Imaging Data. J. Neurosci. Methods 2017, 291, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Eom, M.; Han, S.; Park, P.; Kim, G.; Cho, E.S.; Sim, J.; Lee, K.H.; Kim, S.; Tian, H.; Böhm, U.L.; et al. Statistically Unbiased Prediction Enables Accurate Denoising of Voltage Imaging Data. Nat. Methods 2023, 20, 1581–1592. [Google Scholar] [CrossRef]
- Keemink, S.W.; Lowe, S.C.; Pakan, J.M.P.; Dylda, E.; van Rossum, M.C.W.; Rochefort, N.L. FISSA: A Neuropil Decontamination Toolbox for Calcium Imaging Signals. Sci. Rep. 2018, 8, 3493. [Google Scholar] [CrossRef]
- Rupprecht, P.; Carta, S.; Hoffmann, A.; Echizen, M.; Blot, A.; Kwan, A.C.; Dan, Y.; Hofer, S.B.; Kitamura, K.; Helmchen, F.; et al. A Database and Deep Learning Toolbox for Noise-Optimized, Generalized Spike Inference from Calcium Imaging. Nat. Neurosci. 2021, 24, 1324–1337. [Google Scholar] [CrossRef]
- Ayaz, A.; Stäuble, A.; Hamada, M.; Wulf, M.A.; Saleem, A.B.; Helmchen, F. Layer-Specific Integration of Locomotion and Sensory Information in Mouse Barrel Cortex. Nat. Commun. 2019, 10, 2585. [Google Scholar] [CrossRef]
- Henschke, J.U.; Price, A.T.; Pakan, J.M.P. Enhanced Modulation of Cell-Type Specific Neuronal Responses in Mouse Dorsal Auditory Field during Locomotion. Cell Calcium 2021, 96, 102390. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-137. 2018. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 14 July 2025).
- Rizopoulos, D. GLMMadaptive: Generalized Linear Mixed Models Using Adaptive Gaussian Quadrature. 2019. Available online: https://drizopoulos.github.io/GLMMadaptive/ (accessed on 14 July 2025).
- Saravanan, V.; Berman, G.J.; Sober, S.J. Application of the Hierarchical Bootstrap to Multi-Level Data in Neuroscience. Neurons Behav. Data Anal. Theory 2020, 3. Available online: https://nbdt.scholasticahq.com/article/13927-application-of-the-hierarchical-bootstrap-to-multi-level-data-in-neuroscience (accessed on 14 July 2025).
- Shigetomi, E.; Bushong, E.A.; Haustein, M.D.; Tong, X.; Jackson-Weaver, O.; Kracun, S.; Xu, J.; Sofroniew, M.V.; Ellisman, M.H.; Khakh, B.S. Imaging Calcium Microdomains within Entire Astrocyte Territories and Endfeet with GCaMPs Expressed Using Adeno-Associated Viruses. J. Gen. Physiol. 2013, 141, 633–647. [Google Scholar] [CrossRef]
- Stobart, J.L.; Ferrari, K.D.; Barrett, M.J.P.; Stobart, M.J.; Looser, Z.J.; Saab, A.S.; Weber, B. Long-Term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation. Cereb. Cortex 2018, 28, 184–198. [Google Scholar] [CrossRef]
- Institoris, A.; Vandal, M.; Peringod, G.; Catalano, C.; Tran, C.H.; Yu, X.; Visser, F.; Breiteneder, C.; Molina, L.; Khakh, B.S.; et al. Astrocytes Amplify Neurovascular Coupling to Sustained Activation of Neocortex in Awake Mice. Nat. Commun. 2022, 13, 7872. [Google Scholar] [CrossRef] [PubMed]
- Biesecker, K.R.; Srienc, A.I. The Functional Role of Astrocyte Calcium Signaling in Cortical Blood Flow Regulation. J. Neurosci. 2015, 35, 868–870. [Google Scholar] [CrossRef] [PubMed]
- Fedotova, A.; Brazhe, A.; Doronin, M.; Toptunov, D.; Pryazhnikov, E.; Khiroug, L.; Verkhratsky, A.; Semyanov, A. Dissociation Between Neuronal And Astrocytic Calcium Activity in Response to Locomotion in Mice. Function 2023, 4, zqad019. [Google Scholar] [CrossRef] [PubMed]
- McGinley, M.J.; Vinck, M.; Reimer, J.; Batista-Brito, R.; Zagha, E.; Cadwell, C.R.; Tolias, A.S.; Cardin, J.A.; McCormick, D.A. Waking State: Rapid Variations Modulate Neural and Behavioral Responses. Neuron 2015, 87, 1143–1161. [Google Scholar] [CrossRef]
- Ni, J.; Chen, J.L. Long-Range Cortical Dynamics: A Perspective from the Mouse Sensorimotor Whisker System. Eur. J. Neurosci. 2017, 46, 2315–2324. [Google Scholar] [CrossRef]
- Staiger, J.F.; Petersen, C.C.H. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol. Rev. 2021, 101, 353–415. [Google Scholar] [CrossRef]
- Bindocci, E.; Savtchouk, I.; Liaudet, N.; Becker, D.; Carriero, G.; Volterra, A. Three-Dimensional Ca2+ Imaging Advances Understanding of Astrocyte Biology. Science 2017, 356, eaai8185. [Google Scholar] [CrossRef]
- Lalo, U.; Verkhratsky, A.; Pankratov, Y. Ionotropic ATP Receptors in Neuronal–Glial Communication. Semin. Cell Dev. Biol. 2011, 22, 220–228. [Google Scholar] [CrossRef]
- Palygin, O.; Lalo, U.; Verkhratsky, A.; Pankratov, Y. Ionotropic NMDA and P2X1/5 Receptors Mediate Synaptically Induced Ca2+ Signalling in Cortical Astrocytes. Cell Calcium 2010, 48, 225–231. [Google Scholar] [CrossRef]
- Saab, A.S.; Neumeyer, A.; Jahn, H.M.; Cupido, A.; Šimek, A.A.M.; Boele, H.J.; Scheller, A.; Le Meur, K.; Götz, M.; Monyer, H.; et al. Bergmann Glial AMPA Receptors Are Required for Fine Motor Coordination. Science 2012, 337, 749–753. [Google Scholar] [CrossRef]
- Rose, C.R.; Ziemens, D.; Verkhratsky, A. On the Special Role of NCX in Astrocytes: Translating Na+-Transients into Intracellular Ca2+ Signals. Cell Calcium 2020, 86, 102154. [Google Scholar] [CrossRef] [PubMed]
- Hjukse, J.B.; Puebla, M.F.D.L.; Vindedal, G.F.; Sprengel, R.; Jensen, V.; Nagelhus, E.A.; Tang, W. Increased Membrane Ca2+ Permeability Drives Astrocytic Ca2+ Dynamics during Neuronal Stimulation at Excitatory Synapses. Glia 2023, 71, 2770–2781. [Google Scholar] [CrossRef] [PubMed]
- Shigetomi, E.; Jackson-Weaver, O.; Huckstepp, R.T.; O’Dell, T.J.; Khakh, B.S. TRPA1 Channels Are Regulators of Astrocyte Basal Calcium Levels and Long-Term Potentiation via Constitutive d-Serine Release. J. Neurosci. 2013, 33, 10143–10153. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.C.; Verkhratsky, A.; Parpura, V. TRPC1-Mediated Ca2+ and Na+ Signalling in Astroglia: Differential Filtering of Extracellular Cations. Cell Calcium 2013, 54, 120–125. [Google Scholar] [CrossRef]
- Wahis, J.; Holt, M.G. Astrocytes, Noradrenaline, A1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front. Cell Neurosci. 2021, 15, 645691. [Google Scholar] [CrossRef]
- Pacholko, A.G.; Wotton, C.A.; Bekar, L.K. Astrocytes—The Ultimate Effectors of Long-Range Neuromodulatory Networks? Front. Cell Neurosci. 2020, 14, 581075. [Google Scholar] [CrossRef]
- Poskanzer, K.E.; Yuste, R. Astrocytic Regulation of Cortical UP States. Proc. Natl. Acad. Sci. USA 2011, 108, 18453–18458. [Google Scholar] [CrossRef]
- Tanaka, M.; Shih, P.Y.; Gomi, H.; Yoshida, T.; Nakai, J.; Ando, R.; Furuichi, T.; Mikoshiba, K.; Semyanov, A.; Itohara, S. Astrocytic Ca2+ Signals Are Required for the Functional Integrity of Tripartite Synapses. Mol. Brain 2013, 6, 6. [Google Scholar] [CrossRef]
- Cavaccini, A.; Durkee, C.; Kofuji, P.; Tonini, R.; Araque, A. Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway. J. Neurosci. 2020, 40, 5757–5768. [Google Scholar] [CrossRef]
- Bonder, D.E.; McCarthy, K.D. Astrocytic Gq-GPCR-Linked IP3R-Dependent Ca2+ Signaling Does Not Mediate Neurovascular Coupling in Mouse Visual Cortex in Vivo. J. Neurosci. 2014, 34, 13139–13150. [Google Scholar] [CrossRef] [PubMed]
- Butcher, J.B.; Sims, R.E.; Ngum, N.M.; Bazzari, A.H.; Jenkins, S.I.; King, M.; Hill, E.J.; Nagel, D.A.; Fox, K.; Parri, H.R.; et al. A Requirement for Astrocyte IP3R2 Signaling for Whisker Experience-Dependent Depression and Homeostatic Upregulation in the Mouse Barrel Cortex. Front. Cell Neurosci. 2022, 16, 905285. [Google Scholar] [CrossRef]
- Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal Aging Induces A1-like Astrocyte Reactivity. Proc. Natl. Acad. Sci. USA 2018, 115, E1896–E1905. [Google Scholar] [CrossRef]
- Palmer, A.L.; Ousman, S.S. Astrocytes and Aging. Front. Aging Neurosci. 2018, 10, 337. [Google Scholar] [CrossRef]
- Matias, I.; Morgado, J.; Gomes, F.C.A. Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front. Aging Neurosci. 2019, 11, 59. [Google Scholar] [CrossRef]
- Eddleston, M.; Mucke, L. Molecular Profile of Reactive Astrocytes-Implications for Their Role in Neurologic Disease. Neurosci. 1993, 54, 15–36. [Google Scholar] [CrossRef]
- Wisniewski, H.M.; Wegiel, J. Spatial Relationships between Astrocytes and Classical Plaque Components. Neurobiol. Aging 1991, 12, 593–600. [Google Scholar] [CrossRef]
- Kashon, M.L.; Ross, G.W.; O’Callaghan, J.P.; Miller, D.B.; Petrovitch, H.; Burchfiel, C.M.; Sharp, D.S.; Markesbery, W.R.; Davis, D.G.; Hardman, J.; et al. Associations of Cortical Astrogliosis with Cognitive Performance and Dementia Status. J. Alzheimer’s Dis. 2004, 6, 595–604. [Google Scholar] [CrossRef]
- Kuchibhotla, K.V.; Lattarulo, C.R.; Hyman, B.T.; Bacskai, B.J. Synchronous Hyperactivity and Intercellular Calcium Waves in Astrocytes in Alzheimer Mice. Science 2009, 323, 1211–1215. [Google Scholar] [CrossRef]
- Purushotham, S.S.; Buskila, Y. Astrocytic Modulation of Neuronal Signalling. Front. Netw. Physiol. 2023, 3, 1205544. [Google Scholar] [CrossRef]
- Gonçalves-Ribeiro, J.; Vaz, S.H. The IP3R2 Knockout Mice in Behavior: A Blessing or a Curse? J. Neurochem. 2025, 169, e70062. [Google Scholar] [CrossRef]
- Mi, X.; Chen, A.B.-Y.; Duarte, D.; Carey, E.; Taylor, C.R.; Braaker, P.N.; Bright, M.; Almeida, R.G.; Lim, J.-X.; Ruetten, V.M.S.; et al. Fast, Accurate, and Versatile Data Analysis Platform for the Quantification of Molecular Spatiotemporal Signals. Cell 2025, 188, 2794–2809. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; DelRosso, N.V.; Vaidyanathan, T.V.; Cahill, M.K.; Reitman, M.E.; Pittolo, S.; Mi, X.; Yu, G.; Poskanzer, K.E. Accurate Quantification of Astrocyte and Neurotransmitter Fluorescence Dynamics for Single-Cell and Population-Level Physiology. Nat. Neurosci. 2019, 22, 1936–1944. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández de la Puebla, M.; Zhang, X.; Nagelhus, E.A.; Bjørås, M.; Tang, W. IP3R2-Mediated Astrocytic Ca2+ Transients Are Critical to Sustain Modulatory Effects of Locomotion on Neurons in Mouse Somatosensory Cortex. Cells 2025, 14, 1103. https://doi.org/10.3390/cells14141103
Fernández de la Puebla M, Zhang X, Nagelhus EA, Bjørås M, Tang W. IP3R2-Mediated Astrocytic Ca2+ Transients Are Critical to Sustain Modulatory Effects of Locomotion on Neurons in Mouse Somatosensory Cortex. Cells. 2025; 14(14):1103. https://doi.org/10.3390/cells14141103
Chicago/Turabian StyleFernández de la Puebla, Mario, Xiaoyi Zhang, Erlend A. Nagelhus, Magnar Bjørås, and Wannan Tang. 2025. "IP3R2-Mediated Astrocytic Ca2+ Transients Are Critical to Sustain Modulatory Effects of Locomotion on Neurons in Mouse Somatosensory Cortex" Cells 14, no. 14: 1103. https://doi.org/10.3390/cells14141103
APA StyleFernández de la Puebla, M., Zhang, X., Nagelhus, E. A., Bjørås, M., & Tang, W. (2025). IP3R2-Mediated Astrocytic Ca2+ Transients Are Critical to Sustain Modulatory Effects of Locomotion on Neurons in Mouse Somatosensory Cortex. Cells, 14(14), 1103. https://doi.org/10.3390/cells14141103