The Role of Endothelial Progenitor Cells (EPCs) and Circulating Endothelial Cells (CECs) as Early Biomarkers of Endothelial Dysfunction in Children with Newly Diagnosed Type 1 Diabetes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BMI | Body mass index |
BMI-SDS | Body mass index standard deviation score |
CECs | Circulating endothelial cells |
CVD | Cardiovascular diseases |
DIR | Daily insulin requirement |
DMSO | Dimethyl sulfoxide |
ECLIA | Electrochemiluminescence |
EPCs | Endothelial progenitor cells |
FBS | Fetal bovine serum |
HbA1c | Glycated hemoglobin |
HIF-1 | Hypoxia-induced factor 1 |
IQR | Interquartile range |
ISPAD | International Society of Pediatric and Adolescent Diabetes |
PBMCs | Peripheral blood mononuclear cells |
PBS | Phosphate-buffered saline |
PR | Partial remission |
SDF-1 | Stromal-derived factor 1 |
T1D | Type 1 diabetes |
References
- Schofield, J.; Ho, J.; Soran, H. Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes Ther. 2019, 10, 773–789. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, E.Z.; Doundoulakis, I.; Antza, C.; Christoforidis, A.; Haidich, A.B.; Kotsis, V.; Stabouli, S. Subclinical arterial damage in children and adolescents with type 1 diabetes: A systematic review and meta-analysis. Pediatr. Diabetes 2019, 20, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Lespagnol, E.; Dauchet, L.; Pawlak-Chaouch, M.; Balestra, C.; Berthoin, S.; Feelisch, M.; Roustit, M.; Boissière, J.; Fontaine, P.; Heyman, E. Early Endothelial Dysfunction in Type 1 Diabetes Is Accompanied by an Impairment of Vascular Smooth Muscle Function: A Meta-Analysis. Front. Endocrinol. 2020, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Dubsky, M.; Veleba, J.; Sojakova, D.; Marhefkova, N.; Fejfarova, V.; Jude, E.B. Endothelial Dysfunction in Diabetes Mellitus: New Insights. Int. J. Mol. Sci. 2023, 24, 10705. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Lu, J.; Sha, W.; Lei, T. Comprehensive treatment of diabetic endothelial dysfunction based on pathophysiological mechanism. Front. Med. 2025, 12, 1509884. [Google Scholar] [CrossRef] [PubMed]
- Maiorino, M.I.; Casciano, O.; Della Volpe, E.; Bellastella, G.; Giugliano, D.; Esposito, K. Reducing glucose variability with continuous subcutaneous insulin infusion increases endothelial progenitor cells in type 1 diabetes: An observational study. Endocrine 2016, 52, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Pyšná, A.; Bém, R.; Němcová, A.; Fejfarová, V.; Jirkovská, A.; Hazdrová, J.; Jude, E.B.; Dubský, M. Endothelial Progenitor Cells Biology in Diabetes Mellitus and Peripheral Arterial Disease and their Therapeutic Potential. Stem Cell Rev. Rep. 2019, 15, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Altabas, V.; Marinković Radošević, J.; Špoljarec, L.; Uremović, S.; Bulum, T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023, 11, 3051. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, A.; Lastraioli, E.; Piccini, B.; D’aMico, M.; Lenzi, L.; Pillozzi, S.; Calabrese, M.; Toni, S.; Arcangeli, A. Circulating Endothelial Progenitor Cells in Type 1 Diabetic Patients: Relation with Patients’ Age and Disease Duration. Front. Endocrinol. 2017, 8, 278. [Google Scholar] [CrossRef] [PubMed]
- Zahran, A.M.; Mohamed, I.L.; El Asheer, O.M.; Tamer, D.M.; Abo-Elela, M.G.M.; Abdel-Rahim, M.H.; El-Badawy, O.H.B.; Elsayh, K.I. Circulating Endothelial Cells, Circulating Endothelial Progenitor Cells, and Circulating Microparticles in Type 1 Diabetes Mellitus. Clin. Appl. Thromb. Hemost. 2019, 25, 1076029618825311. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Li, Y.; Huang, D.; Yao, M. Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng. Regen. Med. 2021, 18, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Hung, M.K.; Kwong, D.L.; Zhang, C.F.; Pow, E.H.N. Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int. 2018, 2018, 9847015. [Google Scholar] [CrossRef] [PubMed]
- Farinacci, M.; Krahn, T.; Dinh, W.; Volk, H.D.; Düngen, H.D.; Wagner, J.; Konen, T.; von Ashen, O. Circulating endothelial cells as biomarker for cardiovascular diseases. Res. Pract. Thromb. Haemost. 2019, 3, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Scheller, K.; Wroński, J.; Feldo, M. Circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPCs) in selected diseases. Acta Angiologica 2014, 20, 36098. [Google Scholar]
- Suh, J.; Choi, Y.; Oh, J.S.; Song, K.; Choi, H.S.; Kwon, A.; Chae, H.W.; Kim, H.-S. Association between early glycemic management and diabetes complications in type 1 diabetes mellitus: A retrospective cohort study. Prim. Care Diabetes 2023, 17, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Grönberg, A.; Espes, D.; Carlsson, P.O. Better HbA1c during the first years after diagnosis of type 1 diabetes is associated with residual C peptide 10 years later. BMJ Open Diabetes Res. Care 2020, 8, e000819. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Y.; Liu, C.; Chi, J.; Wang, Y.; Xu, L. The role of C-peptide in diabetes and its complications: An updated review. Front. Endocrinol. 2023, 14, 1256093. [Google Scholar] [CrossRef] [PubMed]
- Tayebi, A.; Afshar, E.J.; Alan, S.S.; Alan, M.S.; Fazeli, R.; Sohbatzade, T.; Samimisedeh, P.; Rastad, H. Association of detectable C-peptide levels with glycemic control and chronic complications in individuals with type 1 diabetes mellitus: A systematic review and meta-analysis. J. Diabetes Complicat. 2025, 39, 108867. [Google Scholar]
- Washburn, R.L.; Mueller, K.; Kaur, G.; Moreno, T.; Moustaid-Moussa, N.; Ramalingam, L.; Dufour, J.M. C-peptide as a Therapy for Type 1 Diabetes Mellitus. Biomedicines 2021, 9, 270. [Google Scholar] [CrossRef] [PubMed]
- Libman, I.; Haynes, A.; Lyons, S.; Pradeep, P.; Rwagasor, E.; Tung, J.Y.; Jefferies, A.C.; Oram, R.A.; Dabelea, D.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2022: Definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr. Diabetes 2022, 23, 1160–1174. [Google Scholar] [CrossRef] [PubMed]
- Couper, J.J.; Haller, M.J.; Greenbaum, C.J.; Ziegler, A.G.; Wherret, D.K.; Knip, M.; Craig, M.E. ISPAD Clinical Practice Consensus Guidelines 2018: Stages of type 1 diabetes in children and adolescents. Pediatr. Diabetes 2018, 19 (Suppl. S27), 20–27. [Google Scholar] [CrossRef] [PubMed]
- Grubczak, K.; Stożek, K.; Starosz, A.; Bossowski, F.; Pasławska, M.; Bossowski, A.; Marcin, M. Alterations in Stem Cell Populations in IGF-1 Deficient Pediatric Patients Subjected to Mecasermin (Increlex) Treatment. Stem Cell Rev. Rep. 2023, 19, 392–405. [Google Scholar]
- Głowińska-Olszewska, B.; Moniuszko, M.; Hryniewicz, A.; Jeznach, M.; Rusak, M.; Dąbrowska, M.; Łuczyński, W.; Bodzenta-Łukaszyk, A.; Bossowski, A. Relationship between circulating endothelial progenitor cells and endothelial dysfunction in children with type 1 diabetes: A novel paradigm of early atherosclerosis in high-risk young patients. Eur. J. Endocrinol. 2013, 168, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Ciężki, S.; Odyjewska, E.; Bossowski, A.; Głowińska-Olszewska, B. Not Only Metabolic Complications of Childhood Obesity. Nutrients 2024, 16, 539. [Google Scholar] [CrossRef] [PubMed]
- Kajikawa, M.; Higashi, Y. Obesity and Endothelial Function. Biomedicines 2022, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Collier, J.J.; Wasserfall, C.H.; Brehm, M.A.; Karlstad, M.D. Partial remission of type 1 diabetes: Do immunometabolic events define the honeymoon period? Diabetes Obes. Metab. 2025, 27, 4092–4101. [Google Scholar] [CrossRef] [PubMed]
- Budzyń, M.; Gryszczyńska, B.; Boruczkowski, M.; Kaczmarek, M.; Begier-Krasińska, B.; Osińska, A.; Bukowska, A.; Iskra, M.; Kasprzak, M.P. The endothelial status reflected by circulating endothelial cells, circulating endothelial progenitor cells and soluble thrombomodulin in patients with mild and resistant hypertension. Vasc. Pharmacol. 2019, 113, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, S.L.; Gong, J.H.; Chen, L.; Wu, I.-H.; Sun, J.K.; Keenan, H.A.; King, G.L. Characterization of circulating and endothelial progenitor cells in patients with extreme-duration type 1 diabetes. Diabetes Care 2014, 37, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Waclawovsky, G.; Umpierre, D.; Figueira, F.R.; DE Lima, E.S.; Alegretti, A.P.; Schneider, L.; Matte, U.S.; Rodrigues, T.C.; Schaan, B.D. Exercise on Progenitor Cells in Healthy Subjects and Patients with Type 1 Diabetes. Med. Sci. Sports Exerc. 2016, 48, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.W.; Rider, R.; Glanville, M.; Narayanan, K.; Razvi, S.; Weaver, J.U. Metformin improves circulating endothelial cells and endothelial progenitor cells in type 1 diabetes: MERIT study. Cardiovasc. Diabetol. 2016, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Longo, M.; Scappaticcio, L.; Bellastella, G.; Pernice, V.; Cirillo, P.; Maio, A.; Castaldo, F.; Giugliano, D.; Esposito, K.; Maiorino, M.I. Alterations in the Levels of Circulating and Endothelial Progenitor Cells Levels in Young Adults with Type 1 Diabetes: A 2-Year Follow-Up from the Observational METRO Study. Diabetes Metab. Syndr. Obes. 2020, 13, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Ambasta, R.K.; Kohli, H.; Kumar, P. Multiple therapeutic effect of endothelial progenitor cell regulated by drugs in diabetes and diabetes related disorder. J. Transl. Med. 2017, 15, 185. [Google Scholar] [CrossRef] [PubMed]
Clinical Condition | |||
---|---|---|---|
Good | Moderate | Severe | |
Diabetes symptoms | Present | Present | Present |
Dehydration | no/mild | Moderate | Marked |
pH (capillary) | >7.3 | 7.2–7.3 | <7.1 |
Bicarbonate (mmol/L) | >10 | 5–10 | <5 |
DKA | No | mild/moderate DKA | severe DKA |
Consciousness | Conscious | conscious/lethargic | unconscious |
Parameter | Type 1 Diabetes | Control Group | p-Value | |
---|---|---|---|---|
No. | 45 | 20 | ||
Gender (% boys) | 55.55% | 52.38% | p = ns | |
Age (yrs) | 11 (8–12.5) | 13.75 (10.25–15.25) | p = 0.0062 | |
At onset | Glucose level (mg/dL) | 427 [317,495] | 87 [82,93] | p < 0.00001 |
pH | 7.35 (7.29–7.39) | - | - | |
DKA (%) | 31.11% | - | - | |
BMI (kg/m2) | 15.5 (14.0–17.9) | 20.9 (18.25–23.25) | p = 0.000175 | |
BMI-SDS | −0.53 (−1.32–0.37) | 0.76 (−0.18–1.22) | p = 0.001766 | |
HbA1c (%) | 12.32 (10.74–14.19) | 5.07 (4.82–5.33) | p = 0.019 | |
DIR (U/kg/24 h) | 0.65 (0.5–0.77) | - | - | |
PR (%) | 24.44% | - | - | |
Fasting C-peptide (ng/mL) | 0.48 (0.31–0.65) | 2.13 (1.67–2.59) | p = 0.019481 | |
Stimulated C-peptide (ng/mL) | 0.97 (0.74–1.53) | - | - | |
No. of positive islet autoantibodies | 1 (+)—21.5% 2 (+)—28.3% 3 (+)—50.2% | - | - | |
3 months post diagnosis | BMI (kg/m2) | 18.05 (16.15–20.45) | - | - |
BMI-SDS | 0.165 (−0.3–0.922) | - | - | |
HbA1c (%) | 6.41 (5.97–6.92) | - | - | |
DIR (U/kg/24 h) | 0.45 (0.36–0.52) | - | - | |
% of PR | 53.85% | - | - | |
6 months post diagnosis | BMI (kg/m2) | 18.35 (15.8–20.4) | - | - |
BMI-SDS | 0.19 (−0.22–0.84) | - | - | |
HbA1c (%) | 6.32 (5.95–6.71) | - | - | |
DIR (U/kg/24 h) | 0.465 (0.35–0.58) | - | - | |
% of PR | 51.35% | - | - | |
12 months post diagnosis | BMI (kg/m2) | 18.28 (16.2–20.6) | - | - |
BMI-SDS | 0.196 (−0.31–0.74) | - | - | |
HbA1c (%) | 6.36 (5.87–6.86) | - | - | |
DIR (U/kg/24 h) | 0.555 (0.43–0.67) | - | - | |
% of PR | 33.33% | - | - | |
24 months post diagnosis | BMI (kg/m2) | 19.05 (16.4–21.6) | - | - |
BMI-SDS | 0.244 (−0.5–0.98) | - | - | |
HbA1c (%) | 6.90 (6.45–7.38) | - | - | |
DIR (U/kg/24 h) | 0.73 (0.62–0.86) | - | - | |
% of PR | 14.71% | - | - | |
C-peptide (ng/mL) | 0.32 (0.13–0.8) | - | - |
EPC | CEC | EPC/CEC Ratio | ||||
---|---|---|---|---|---|---|
>median | <median | >median | <median | >median | <median | |
Glucose level at onset (>median) | 68.18% | 34.78% | 50.00% | 52.17% | 39.13% | 63.64% |
p = 0.025 | ns | ns | ||||
DKA at onset | 31.82% | 30.43% | 22.73% | 39.13% | 43.48% | 14.29% |
ns | Ns | p = 0.034 | ||||
C-peptide at onset within normal range | 26.32% | 63.64% | 50.00% | 42.86% | 59.09% | 31.58% |
p = 0.017 | ns | ns | ||||
Stimulated C-peptide at onset (<median) | 72.22% | 38.10% | 45.00% | 63.16% | 45.45% | 64.71% |
p = 0.033 | ns | Ns | ||||
PR at onset | 27.27% | 21.74% | 18.18% | 30.43% | 30.43% | 18.18% |
ns | ns | Ns | ||||
PR 3 months post diagnosis | 50.00% | 57.14% | 61.11% | 47.62% | 57.89% | 50.00% |
ns | ns | Ns | ||||
PR 6 months post diagnosis | 47.06% | 55.00% | 70.59% | 35.00% | 61.11% | 42.11% |
ns | p = 0.030 | Ns | ||||
PR 12 months post diagnosis | 43.75% | 25.00% | 46.67% | 23.81% | 27.78% | 38.89% |
ns | ns | Ns | ||||
PR 24 months post diagnosis | 21.43% | 10.00% | 13.33% | 15.79% | 10.53% | 20.00% |
ns | ns | Ns |
Age | BMI at Onset | BMI 12 Months Post Diagnosis | BMI 24 Months Post Diagnosis | Glucose at Onset | pH at Onset | Fasting C-Peptide at Onset | Stimulated C-Peptide at Onset | |
---|---|---|---|---|---|---|---|---|
EPC | −0.08 | 0.01 | 0.22 | 0.21 | 0.17 | −0.15 | 0.01 | −0.09 |
CEC | 0.23 | 0.28 | 0.17 | 0.16 | −0.07 | 0.12 | 0.15 | 0.15 |
EPC/CEC [ratio] | −0.27 | −0.28 | −0.14 | −0.19 | 0.25 | −0.32 | 0.21 | −0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamiołkowska-Sztabkowska, M.; Ciężki, S.; Starosz, A.; Grubczak, K.; Moniuszko, M.; Bossowski, A.; Głowińska-Olszewska, B. The Role of Endothelial Progenitor Cells (EPCs) and Circulating Endothelial Cells (CECs) as Early Biomarkers of Endothelial Dysfunction in Children with Newly Diagnosed Type 1 Diabetes. Cells 2025, 14, 1095. https://doi.org/10.3390/cells14141095
Jamiołkowska-Sztabkowska M, Ciężki S, Starosz A, Grubczak K, Moniuszko M, Bossowski A, Głowińska-Olszewska B. The Role of Endothelial Progenitor Cells (EPCs) and Circulating Endothelial Cells (CECs) as Early Biomarkers of Endothelial Dysfunction in Children with Newly Diagnosed Type 1 Diabetes. Cells. 2025; 14(14):1095. https://doi.org/10.3390/cells14141095
Chicago/Turabian StyleJamiołkowska-Sztabkowska, Milena, Sebastian Ciężki, Aleksandra Starosz, Kamil Grubczak, Marcin Moniuszko, Artur Bossowski, and Barbara Głowińska-Olszewska. 2025. "The Role of Endothelial Progenitor Cells (EPCs) and Circulating Endothelial Cells (CECs) as Early Biomarkers of Endothelial Dysfunction in Children with Newly Diagnosed Type 1 Diabetes" Cells 14, no. 14: 1095. https://doi.org/10.3390/cells14141095
APA StyleJamiołkowska-Sztabkowska, M., Ciężki, S., Starosz, A., Grubczak, K., Moniuszko, M., Bossowski, A., & Głowińska-Olszewska, B. (2025). The Role of Endothelial Progenitor Cells (EPCs) and Circulating Endothelial Cells (CECs) as Early Biomarkers of Endothelial Dysfunction in Children with Newly Diagnosed Type 1 Diabetes. Cells, 14(14), 1095. https://doi.org/10.3390/cells14141095