Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives
Abstract
1. Introduction
2. The Function of miRNAs in Modulating the Chemosensitivity and Radiosensitivity of CSCs
2.1. Regulatory Function of miRNAs in the Chemosensitivity of CSCs
2.1.1. miR-378a-3p and miR-378d
2.1.2. miR-1275
2.1.3. miR-508-5p
2.1.4. miR-181a
2.1.5. miR-485-5p
2.1.6. miR-148a
2.2. The Regulatory Function of miRNAs in the Susceptibility of CSCs to Radiotherapy
2.2.1. miR-7-5p
2.2.2. miR-29b-3p
2.2.3. miR-339-5p
2.2.4. miR-449a
2.2.5. miR-495
3. Regulation of the Self-Renewal Capacity of CSCs by miRNAs
3.1. miR-2117
3.2. miR-194
3.3. miR-342-3p
3.4. miR-130b-5p
3.5. miR-203
3.6. miR-630
3.7. miR-486-5p
3.8. miR-122-5p
3.9. miR-182
4. Regulation of Migration and Invasive Potential of CSCs by miRNAs
4.1. Regulation of the Migratory Capacity for CSCs by miRNAs
4.1.1. miR-101
4.1.2. miR-7
4.1.3. miR-148/152 Family
4.1.4. miR-139-5p
4.1.5. miR-145-5p
4.1.6. miR-150-3p
4.2. Regulation of Cancer Stem Cell Invasiveness by miRNAs
4.2.1. miR-128-3p
4.2.2. miR-9-5p
4.2.3. miR-210
4.2.4. miR-27b-5p
4.2.5. miR-17-5p
5. The Regulatory Function of miRNAs in the Proliferation and Apoptosis of CSCs
5.1. miR-145-5p
5.2. miR-146b-3p
5.3. Conjunction of miR-124, miR-128, and miR-137
5.4. miR-21
5.5. miR-873
5.6. miR-21-5p
5.7. miR-202-5p
6. Regulation of the Cell Cycle in Cancer Stem Cells by miRNAs
6.1. miR-338-5p
6.2. miR-302a/d
6.3. miR-449b
6.4. miR-92a-3p
7. miRNAs as Biomarkers in Cancer
7.1. miR-637
7.2. miR-638
7.3. miR-491-5p
7.4. miR-1260b
7.5. miR-221/222
7.6. miR-23a-3p
8. The Cross-Cancer Perspective Includes the Commonalities and Specificities of Pivotal miRNAs in the Control of Cancer Stem Cell Functions
9. Therapeutic Approaches Targeting miRNA Modulation of Cancer Stem Cell Activity
9.1. miRNA Antagonists (Antagomirs, Anti-miRs, Blockmirs)
9.2. miRNA Mimics and Replacement Therapy
9.3. Integration of miRNA Therapy with Traditional Treatment Modalities
10. Conclusions and Future Perspective
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Niu, T.; Zhang, W.; Xiao, W. MicroRNA regulation of cancer stem cells in the pathogenesis of breast cancer. Cancer Cell Int. 2021, 21, 31. [Google Scholar] [CrossRef] [PubMed]
- Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells—Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66, 9339–9344. [Google Scholar] [CrossRef]
- Bonnet, D.; Dick, J.E. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 1997, 3, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 2003, 100, 3983–3988. [Google Scholar] [CrossRef]
- Ricci-Vitiani, L.; Lombardi, D.G.; Pilozzi, E.; Biffoni, M.; Todaro, M.; Peschle, C.; De Maria, R. Identification and expansion of human colon-cancer-initiating cells. Nature 2007, 445, 111–115. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov. 2017, 16, 203–222. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol. 2018, 141, 1202–1207. [Google Scholar] [CrossRef]
- Visvader, J.E.; Lindeman, G.J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012, 10, 717–728. [Google Scholar] [CrossRef]
- Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [Google Scholar] [CrossRef]
- Chu, X.; Tian, W.; Ning, J.; Xiao, G.; Zhou, Y.; Wang, Z.; Zhai, Z.; Tanzhu, G.; Yang, J.; Zhou, R. Cancer stem cells: Advances in knowledge and implications for cancer therapy. Signal Transduct. Target. Ther. 2024, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, W.; Liu, J.; Wang, Y.; Tai, J.; Yin, X.; Tan, J. Identification of Immune-Related Therapeutically Relevant Biomarkers in Breast Cancer and Breast Cancer Stem Cells by Transcriptome-Wide Analysis: A Clinical Prospective Study. Front. Oncol. 2020, 10, 554138. [Google Scholar] [CrossRef] [PubMed]
- Toh, T.B.; Lim, J.J.; Chow, E.K. Epigenetics in cancer stem cells. Mol. Cancer 2017, 16, 29. [Google Scholar] [CrossRef]
- Kyriazi, A.A.; Papiris, E.; Kitsos Kalyvianakis, K.; Sakellaris, G.; Baritaki, S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int. J. Mol. Sci. 2020, 21, 6658. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wilusz, J.E.; Chen, L.L. Biogenesis and Regulatory Roles of Circular RNAs. Annu. Rev. Cell Dev. Biol. 2022, 38, 263–289. [Google Scholar] [CrossRef]
- Manni, W.; Min, W. Signaling pathways in the regulation of cancer stem cells and associated targeted therapy. MedComm 2022, 3, e176. [Google Scholar] [CrossRef]
- Jiao, X.; Qian, X.; Wu, L.; Li, B.; Wang, Y.; Kong, X.; Xiong, L. microRNA: The Impact on Cancer Stemness and Therapeutic Resistance. Cells 2019, 9, 8. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015, 16, 225–238. [Google Scholar] [CrossRef]
- Gao, Q.; Zhan, Y.; Sun, L.; Zhu, W. Cancer Stem Cells and the Tumor Microenvironment in Tumor Drug Resistance. Stem Cell Rev. Rep. 2023, 19, 2141–2154. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, S.; Shi, Z.; Cao, L.; Liu, J.; Pan, T.; Zhou, D.; Zhang, J. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling. J. Exp. Clin. Cancer Res. 2021, 40, 120. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Li, M.; Xu, J.; Fu, J.; Wang, X.; Wang, J.; Xia, T.; Wang, S.; Ma, G. miR-1275 targets MDK/AKT signaling to inhibit breast cancer chemoresistance by lessening the properties of cancer stem cells. Int. J. Biol. Sci. 2023, 19, 89–103. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Kong, F.; Song, N.; Wang, C.; Ma, X. UPF1 contributes to the maintenance of endometrial cancer stem cell phenotype by stabilizing LINC00963. Cell Death Dis. 2022, 13, 257. [Google Scholar] [CrossRef]
- Belur Nagaraj, A.; Knarr, M.; Sekhar, S.; Connor, R.S.; Joseph, P.; Kovalenko, O.; Fleming, A.; Surti, A.; Nurmemmedov, E.; Beltrame, L.; et al. The miR-181a-SFRP4 Axis Regulates Wnt Activation to Drive Stemness and Platinum Resistance in Ovarian Cancer. Cancer Res. 2021, 81, 2044–2055. [Google Scholar] [CrossRef]
- Jang, T.H.; Huang, W.C.; Tung, S.L.; Lin, S.C.; Chen, P.M.; Cho, C.Y.; Yang, Y.Y.; Yen, T.C.; Lo, G.H.; Chuang, S.E.; et al. MicroRNA-485-5p targets keratin 17 to regulate oral cancer stemness and chemoresistance via the integrin/FAK/Src/ERK/β-catenin pathway. J. Biomed. Sci. 2022, 29, 42. [Google Scholar] [CrossRef] [PubMed]
- Bansard, L.; Bouvet, O.; Moutin, E.; Le Gall, G.; Giammona, A.; Pothin, E.; Bacou, M.; Hassen-Khodja, C.; Bordignon, B.; Bourgaux, J.F.; et al. Niclosamide induces miR-148a to inhibit PXR and sensitize colon cancer stem cells to chemotherapy. Stem Cell Rep. 2022, 17, 835–848. [Google Scholar] [CrossRef]
- Yao, H.; Yang, Z.; Lou, Y.; Huang, J.; Yang, P.; Jiang, W.; Chen, S. miR-186 Inhibits Liver Cancer Stem Cells Expansion via Targeting PTPN11. Front. Oncol. 2021, 11, 632976. [Google Scholar] [CrossRef]
- Jiao, D.; Chen, J.; Li, Y.; Tang, X.; Wang, J.; Xu, W.; Song, J.; Li, Y.; Tao, H.; Chen, Q. miR-1-3p and miR-206 sensitizes HGF-induced gefitinib-resistant human lung cancer cells through inhibition of c-Met signalling and EMT. J. Cell. Mol. Med. 2018, 22, 3526–3536. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, J.; Wang, W.; Zhong, X.; Xu, F.; Lu, J. miR-206 inhibits liver cancer stem cell expansion by regulating EGFR expression. Cell Cycle 2020, 19, 1077–1088. [Google Scholar] [CrossRef]
- Yang, R.; Wang, D.; Han, S.; Gu, Y.; Li, Z.; Deng, L.; Yin, A.; Gao, Y.; Li, X.; Yu, Y.; et al. MiR-206 suppresses the deterioration of intrahepatic cholangiocarcinoma and promotes sensitivity to chemotherapy by inhibiting interactions with stromal CAFs. Int. J. Biol. Sci. 2022, 18, 43–64. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, H.; Zhao, L.; Guo, S.; Hu, S.; Tian, M.; Nie, Y.; Yu, J.; Zhou, C.; Niu, J.; et al. Targeting the miR-34a/LRPPRC/MDR1 axis collapse the chemoresistance in P53 inactive colorectal cancer. Cell Death Differ. 2022, 29, 2177–2189. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Xiu, Z.; Jian, Y.; Zhou, J.; Chen, X.; Chen, X.; Chen, C.; Chen, H.; Yang, S.; Yin, L.; et al. microRNA-497 prevents pancreatic cancer stem cell gemcitabine resistance, migration, and invasion by directly targeting nuclear factor kappa B 1. Aging 2022, 14, 5908–5924. [Google Scholar] [CrossRef] [PubMed]
- Shukla, D.; Mishra, S.; Mandal, T.; Charan, M.; Verma, A.K.; Khan, M.M.A.; Chatterjee, N.; Dixit, A.K.; Ganesan, S.K.; Ganju, R.K.; et al. MicroRNA-379-5p attenuates cancer stem cells and reduces cisplatin resistance in ovarian cancer by regulating RAD18/Polη axis. Cell Death Dis. 2025, 16, 140. [Google Scholar] [CrossRef]
- Shang, Y.; Zhu, Z.; Zhang, Y.; Ji, F.; Zhu, L.; Liu, M.; Deng, Y.; Lv, G.; Li, D.; Zhou, Z.; et al. MiR-7-5p/KLF4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Discov. 2023, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Du, Y.; Li, R.; Shen, A.; Liu, X.; Li, C.; Hu, B. miR-29b-3p Increases Radiosensitivity in Stemness Cancer Cells via Modulating Oncogenes Axis. Front. Cell Dev. Biol. 2021, 9, 741074. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, F.; Gao, W.; Wang, Q.; Li, X.; Li, X.; Li, W.; Liu, J.; Zhou, H.; Luo, A.; et al. Bismuth Sulfide Nanoflowers Facilitated miR339 Delivery to Overcome Stemness and Radioresistance through Ubiquitin-Specific Peptidase 8 in Esophageal Cancer. ACS Nano 2024, 18, 19232–19246. [Google Scholar] [CrossRef]
- Mao, A.; Zhao, Q.; Zhou, X.; Sun, C.; Si, J.; Zhou, R.; Gan, L.; Zhang, H. MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci. Rep. 2016, 6, 27346. [Google Scholar] [CrossRef]
- Feng, X.; Lv, W.; Wang, S.; He, Q. miR-495 enhances the efficacy of radiotherapy by targeting GRP78 to regulate EMT in nasopharyngeal carcinoma cells. Oncol. Rep. 2018, 40, 1223–1232. [Google Scholar] [CrossRef]
- Mirzaei, S.; Paskeh, M.D.A.; Entezari, M.; Mirmazloomi, S.R.; Hassanpoor, A.; Aboutalebi, M.; Rezaei, S.; Hejazi, E.S.; Kakavand, A.; Heidari, H.; et al. SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed. Pharmacother. 2022, 156, 113860. [Google Scholar] [CrossRef]
- Schepers, G.E.; Teasdale, R.D.; Koopman, P. Twenty pairs of sox: Extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev. Cell 2002, 3, 167–170. [Google Scholar] [CrossRef]
- Tang, J.; Long, G.; Xiao, L.; Zhou, L. USP8 positively regulates hepatocellular carcinoma tumorigenesis and confers ferroptosis resistance through β-catenin stabilization. Cell Death Dis. 2023, 14, 360. [Google Scholar] [CrossRef] [PubMed]
- Avvakumov, G.V.; Walker, J.R.; Xue, S.; Finerty, P.J., Jr.; Mackenzie, F.; Newman, E.M.; Dhe-Paganon, S. Amino-terminal dimerization, NRDP1-rhodanese interaction, and inhibited catalytic domain conformation of the ubiquitin-specific protease 8 (USP8). J. Biol. Chem. 2006, 281, 38061–38070. [Google Scholar] [CrossRef]
- Llombart, V.; Mansour, M.R. Therapeutic targeting of “undruggable” MYC. eBioMedicine 2022, 75, 103756. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, G.; Lin, W.; Zhang, J. microRNA-2117 Negatively Regulates Liver Cancer Stem Cells Expansion and Chemoresistance Via Targeting SOX2. Mol. Carcinog. 2025, 64, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Ran, R.Z.; Chen, J.; Cui, L.J.; Lin, X.L.; Fan, M.M.; Cong, Z.Z.; Zhang, H.; Tan, W.F.; Zhang, G.Q.; Zhang, Y.J. miR-194 inhibits liver cancer stem cell expansion by regulating RAC1 pathway. Exp. Cell Res. 2019, 378, 66–75. [Google Scholar] [CrossRef]
- Cai, S.; Weng, Y.; Miao, F. MicroRNA-194 inhibits PRC1 activation of the Wnt/β-catenin signaling pathway to prevent tumorigenesis by elevating self-renewal of non-side population cells and side population cells in esophageal cancer stem cells. Cell Tissue Res. 2021, 384, 353–366. [Google Scholar] [CrossRef]
- Xu, C.; Sun, W.; Liu, J.; Pu, H.; Li, Y. MiR-342-3p inhibits LCSC oncogenicity and cell stemness through HDAC7/PTEN axis. Inflamm. Res. 2022, 71, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Luo, F. Elevated microRNA-130b-5p or silenced ELK1 inhibits self-renewal ability, proliferation, migration, and invasion abilities, and promotes apoptosis of cervical cancer stem cells. IUBMB Life 2021, 73, 118–129. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, G.; Luo, H.; Zhao, S. MicroRNA-203 As a Stemness Inhibitor of Glioblastoma Stem Cells. Mol. Cells 2016, 39, 619–624. [Google Scholar] [CrossRef]
- Lai, H.T.; Tseng, W.K.; Huang, S.W.; Chao, T.C.; Su, Y. MicroRNA-203 diminishes the stemness of human colon cancer cells by suppressing GATA6 expression. J. Cell. Physiol. 2020, 235, 2866–2880. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, S.Y.; Yan, H.Z.; Xu, D.D.; Chen, H.X.; Wang, X.Y.; Wang, X.; Liu, Y.T.; Zhang, L.; Wang, S.; et al. miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1. Sci. Rep. 2016, 6, 19995. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yang, S.; He, C.; Deng, L.; Xu, B.; Chen, S. miR-630 as a therapeutic target in pancreatic cancer stem cells: Modulation of the PRKCI-Hedgehog signaling axis. Biol. Direct 2024, 19, 109. [Google Scholar] [CrossRef] [PubMed]
- Moro, M.; Fortunato, O.; Bertolini, G.; Mensah, M.; Borzi, C.; Centonze, G.; Andriani, F.; Di Paolo, D.; Perri, P.; Ponzoni, M.; et al. MiR-486-5p Targets CD133+ Lung Cancer Stem Cells through the p85/AKT Pathway. Pharmaceuticals 2022, 15, 297. [Google Scholar] [CrossRef]
- Lopez-Bertoni, H.; Kotchetkov, I.S.; Mihelson, N.; Lal, B.; Rui, Y.; Ames, H.; Lugo-Fagundo, M.; Guerrero-Cazares, H.; Quiñones-Hinojosa, A.; Green, J.J.; et al. A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Res. 2020, 80, 1644–1655. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X.; Wang, Z.; Cheng, Q.; Ji, G.; Yang, H.; Wan, L.; Ge, C.; Zeng, Q.; Huang, H.; et al. MicroRNA-486-5p functions as a tumor suppressor of proliferation and cancer stem-like cell properties by targeting Sirt1 in liver cancer. Oncol. Rep. 2019, 41, 1938–1948. [Google Scholar] [CrossRef]
- Gao, Z.; Wang, Q.; Ji, M.; Guo, X.; Li, L.; Su, X. Exosomal lncRNA UCA1 modulates cervical cancer stem cell self-renewal and differentiation through microRNA-122-5p/SOX2 axis. J. Transl. Med. 2021, 19, 229. [Google Scholar] [CrossRef]
- Ye, S.; Xiong, F.; He, X.; Yuan, Y.; Li, D.; Ye, D.; Shi, L.; Lin, Z.; Zhao, M.; Feng, S.; et al. DNA hypermethylation-induced miR-182 silence targets BCL2 and HOXA9 to facilitate the self-renewal of leukemia stem cell, accelerate acute myeloid leukemia progression, and determine the sensitivity of BCL2 inhibitor venetoclax. Theranostics 2023, 13, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lin, B.; Zhao, M.; Yang, X.; Chen, M.; Gao, A.; Liu, F.; Que, J.; Lan, X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell. Signal. 2013, 25, 1264–1271. [Google Scholar] [CrossRef]
- Mollinari, C.; Kleman, J.P.; Jiang, W.; Schoehn, G.; Hunter, T.; Margolis, R.L. PRC1 is a microtubule binding and bundling protein essential to maintain the mitotic spindle midzone. J. Cell Biol. 2002, 157, 1175–1186. [Google Scholar] [CrossRef]
- Chen, J.; Rajasekaran, M.; Xia, H.; Zhang, X.; Kong, S.N.; Sekar, K.; Seshachalam, V.P.; Deivasigamani, A.; Goh, B.K.; Ooi, L.L.; et al. The microtubule-associated protein PRC1 promotes early recurrence of hepatocellular carcinoma in association with the Wnt/β-catenin signalling pathway. Gut 2016, 65, 1522–1534. [Google Scholar] [CrossRef]
- Wang, Y.; Abrol, R.; Mak, J.Y.W.; Das Gupta, K.; Ramnath, D.; Karunakaran, D.; Fairlie, D.P.; Sweet, M.J. Histone deacetylase 7: A signalling hub controlling development, inflammation, metabolism and disease. FEBS J. 2023, 290, 2805–2832. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yen, C.; Liaw, D.; Podsypanina, K.; Bose, S.; Wang, S.I.; Puc, J.; Miliaresis, C.; Rodgers, L.; McCombie, R.; et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 1997, 275, 1943–1947. [Google Scholar] [CrossRef] [PubMed]
- Radha, G.; Raghavan, S.C. BCL2: A promising cancer therapeutic target. Biochim. Biophys. Acta Rev. Cancer 2017, 1868, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhou, B.; Mao, F.; Xu, J.; Miao, H.; Zou, Z.; Phuc Khoa, L.T.; Jang, Y.; Cai, S.; Witkin, M.; et al. HOXA9 Reprograms the Enhancer Landscape to Promote Leukemogenesis. Cancer Cell 2018, 34, 643–658.e645. [Google Scholar] [CrossRef]
- Collins, C.T.; Hess, J.L. Role of HOXA9 in leukemia: Dysregulation, cofactors and essential targets. Oncogene 2016, 35, 1090–1098. [Google Scholar] [CrossRef]
- Iqbal, W.; Alkarim, S.; AlHejin, A.; Mukhtar, H.; Saini, K.S. Targeting signal transduction pathways of cancer stem cells for therapeutic opportunities of metastasis. Oncotarget 2016, 7, 76337–76353. [Google Scholar] [CrossRef]
- Yang, J.; Mani, S.A.; Weinberg, R.A. Exploring a new twist on tumor metastasis. Cancer Res. 2006, 66, 4549–4552. [Google Scholar] [CrossRef]
- Venkatesh, V.; Nataraj, R.; Thangaraj, G.S.; Karthikeyan, M.; Gnanasekaran, A.; Kaginelli, S.B.; Kuppanna, G.; Kallappa, C.G.; Basalingappa, K.M. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig. 2018, 5, 5. [Google Scholar] [CrossRef]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar] [CrossRef]
- Yu, M.; Ting, D.T.; Stott, S.L.; Wittner, B.S.; Ozsolak, F.; Paul, S.; Ciciliano, J.C.; Smas, M.E.; Winokur, D.; Gilman, A.J.; et al. RNA sequencing of pancreatic circulating tumour cells implicates WNT signalling in metastasis. Nature 2012, 487, 510–513. [Google Scholar] [CrossRef]
- Ma, S.; Cheng, J.; Wang, H.; Ding, N.; Zhou, F.; Ji, R.; Zhu, L.; Zhu, C.; Pan, Y. A novel regulatory loop miR-101/ANXA2/EGR1 mediates malignant characteristics of liver cancer stem cells. Carcinogenesis 2021, 42, 93–104. [Google Scholar] [CrossRef]
- Okuda, H.; Xing, F.; Pandey, P.R.; Sharma, S.; Watabe, M.; Pai, S.K.; Mo, Y.Y.; Iiizumi-Gairani, M.; Hirota, S.; Liu, Y.; et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 2013, 73, 1434–1444. [Google Scholar] [CrossRef]
- Li, M.; Pan, M.; Wang, J.; You, C.; Zhao, F.; Zheng, D.; Guo, M.; Xu, H.; Wu, D.; Wang, L.; et al. miR-7 Reduces Breast Cancer Stem Cell Metastasis via Inhibiting RELA to Decrease ESAM Expression. Mol. Ther. Oncolytics 2020, 18, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, L.; Wu, J. The members of the miR-148/152 family inhibit cancer stem cell-like properties in gastric cancer via negative regulation of ITGA5. J. Transl. Med. 2023, 21, 105. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, J.; Li, J.; Li, Y.; Le, V.M.; Li, S.; Liang, X.; Liu, L.; Liu, J. miR-139-5p reverses stemness maintenance and metastasis of colon cancer stem-like cells by targeting E2-2. J. Cell. Physiol. 2019, 234, 22703–22718. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, H.; Xie, J.; Wang, F.; Cao, D.; Lou, Y. miR-139-5p affects cell proliferation, migration and adipogenesis by targeting insulin-like growth factor 1 receptor in hemangioma stem cells. Int. J. Mol. Med. 2020, 45, 569–577. [Google Scholar] [CrossRef]
- Sun, F.; Chen, H.; Dai, X.; Hou, Y.; Li, J.; Zhang, Y.; Huang, L.; Guo, B.; Yang, D. Liposome-lentivirus for miRNA therapy with molecular mechanism study. J. Nanobiotechnology 2024, 22, 329. [Google Scholar] [CrossRef]
- Wu, K.; Xu, T.; Song, X.; Shen, J.; Zheng, S.; Zhang, L.; Tao, G.; Jiang, B. LncRNA SLCO4A1-AS1 modulates colon cancer stem cell properties by binding to miR-150-3p and positively regulating SLCO4A1. Lab. Investig. 2021, 101, 908–920. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, N.; Liu, L.; Dong, H.; Liu, X. microRNA-128-3p overexpression inhibits breast cancer stem cell characteristics through suppression of Wnt signalling pathway by down-regulating NEK2. J. Cell. Mol. Med. 2020, 24, 7353–7369. [Google Scholar] [CrossRef]
- Zhang, G.; Jiang, Y.; Wang, Z.; Guo, Z.; Hu, J.; Li, X.; Wang, Y.; Jing, Z. FUS/circZEB1/miR-128-3p/LBH feedback loop contributes to the malignant phenotype of GSCs via TNF-α-mediated NF-κB signaling pathway. Cancer Cell Int. 2024, 24, 365. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Zhao, L.; Zhang, D.; Xu, G.; Hu, J.; Zhang, T.; Jin, M. NUMB suppression by miR-9-5P enhances CD44+ prostate cancer stem cell growth and metastasis. Sci. Rep. 2021, 11, 11210. [Google Scholar] [CrossRef]
- Liao, T.T.; Cheng, W.C.; Yang, C.Y.; Chen, Y.Q.; Su, S.H.; Yeh, T.Y.; Lan, H.Y.; Lee, C.C.; Lin, H.H.; Lin, C.C.; et al. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers 2021, 13, 1833. [Google Scholar] [CrossRef] [PubMed]
- Ke, F.; Ren, C.; Zhai, Z.; Gao, X.; Wei, J.; Zhu, Y.; Zhi, Y. LINC01234 regulates microRNA-27b-5p to induce the migration, invasion and self-renewal of ovarian cancer stem cells through targeting SIRT5. Cell Cycle 2022, 21, 1020–1033. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.T.; Xiang, Y.; Duan, Y.Y.; Wang, J.; Li, J.P.; Zhang, H.M.; Cheng, C.; Wang, Q.; Zhang, T.C.; Liao, X.H. MiR-17-5p and MKL-1 modulate stem cell characteristics of gastric cancer cells. Int. J. Biol. Sci. 2021, 17, 2278–2293. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Liu, L.; Liu, C.; Zhou, L.Q.; Zhou, Q.; Yuan, Y.W.; Li, S.H.; Zhang, H.T. DNA-methylation-mediated silencing of miR-7-5p promotes gastric cancer stem cell invasion via increasing Smo and Hes1. J. Cell. Physiol. 2020, 235, 2643–2654. [Google Scholar] [CrossRef]
- Pan, Y.; Shu, X.; Sun, L.; Yu, L.; Sun, L.; Yang, Z.; Ran, Y. miR-196a-5p modulates gastric cancer stem cell characteristics by targeting Smad4. Int. J. Oncol. 2017, 50, 1965–1976. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, Y.; Zheng, J.; Liu, X.; Chen, J.; Liu, L.; Wang, P.; Xue, Y. GAS5 suppresses malignancy of human glioma stem cells via a miR-196a-5p/FOXO1 feedback loop. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 1605–1617. [Google Scholar] [CrossRef]
- Greene, K.S.; Lukey, M.J.; Wang, X.; Blank, B.; Druso, J.E.; Lin, M.J.; Stalnecker, C.A.; Zhang, C.; Negrón Abril, Y.; Erickson, J.W.; et al. SIRT5 stabilizes mitochondrial glutaminase and supports breast cancer tumorigenesis. Proc. Natl. Acad. Sci. USA 2019, 116, 26625–26632. [Google Scholar] [CrossRef]
- Dean, M.; Fojo, T.; Bates, S. Tumour stem cells and drug resistance. Nat. Rev. Cancer 2005, 5, 275–284. [Google Scholar] [CrossRef]
- Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M.; et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12, 329–341. [Google Scholar] [CrossRef]
- Zhang, Q.; Cheng, Z.; Shi, L.; Mao, G. miR-145-5p inhibits the proliferation of glioma stem cells by targeting translationally controlled tumor protein. J. Cancer 2022, 13, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Gao, Y.; Wang, M.; Guo, X.; Li, X.; Zhu, F.; Xu, S.; Qin, R. MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10. J. Cancer 2021, 12, 3726–3740. [Google Scholar] [CrossRef]
- Kosti, A.; Barreiro, R.; Guardia, G.D.A.; Ostadrahimi, S.; Kokovay, E.; Pertsemlidis, A.; Galante, P.A.F.; Penalva, L.O.F. Synergism of Proneurogenic miRNAs Provides a More Effective Strategy to Target Glioma Stem Cells. Cancers 2021, 13, 289. [Google Scholar] [CrossRef] [PubMed]
- Jaksic Karisik, M.; Lazarevic, M.; Mitic, D.; Milosevic Markovic, M.; Riberti, N.; Jelovac, D.; Milasin, J. MicroRNA-21 as a Regulator of Cancer Stem Cell Properties in Oral Cancer. Cells 2025, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.L.; Ma, Y.S.; Liu, Y.S.; Jiang, X.H.; Ding, H.; Shi, Y.; Jia, C.Y.; Lu, G.X.; Zhang, D.D.; Wang, H.M.; et al. microRNA-873 inhibits self-renewal and proliferation of pancreatic cancer stem cells through pleckstrin-2-dependent PI3K/AKT pathway. Cell. Signal. 2021, 84, 110025. [Google Scholar] [CrossRef]
- Chang, J.; Li, H.; Zhu, Z.; Mei, P.; Hu, W.; Xiong, X.; Tao, J. microRNA-21-5p from M2 macrophage-derived extracellular vesicles promotes the differentiation and activity of pancreatic cancer stem cells by mediating KLF3. Cell Biol. Toxicol. 2022, 38, 577–590. [Google Scholar] [CrossRef]
- Ma, Y.S.; Yang, X.L.; Liu, Y.S.; Ding, H.; Wu, J.J.; Shi, Y.; Jia, C.Y.; Lu, G.X.; Zhang, D.D.; Wang, H.M.; et al. Long non-coding RNA NORAD promotes pancreatic cancer stem cell proliferation and self-renewal by blocking microRNA-202-5p-mediated ANP32E inhibition. J. Transl. Med. 2021, 19, 400. [Google Scholar] [CrossRef]
- Xing, Z.; Yu, L.; Li, X.; Su, X. Anticancer bioactive peptide-3 inhibits human gastric cancer growth by targeting miR-338-5p. Cell Biosci. 2016, 6, 53. [Google Scholar] [CrossRef]
- Ma, Y.S.; Lv, Z.W.; Yu, F.; Chang, Z.Y.; Cong, X.L.; Zhong, X.M.; Lu, G.X.; Zhu, J.; Fu, D. MicroRNA-302a/d inhibits the self-renewal capability and cell cycle entry of liver cancer stem cells by targeting the E2F7/AKT axis. J. Exp. Clin. Cancer Res. 2018, 37, 252. [Google Scholar] [CrossRef]
- Fang, Y.; Gu, X.; Li, Z.; Xiang, J.; Chen, Z. miR-449b inhibits the proliferation of SW1116 colon cancer stem cells through downregulation of CCND1 and E2F3 expression. Oncol. Rep. 2013, 30, 399–406. [Google Scholar] [CrossRef]
- Liu, S.; Chu, L.; Xie, M.; Ma, L.; An, H.; Zhang, W.; Deng, J. miR-92a-3p Promoted EMT via Targeting LATS1 in Cervical Cancer Stem Cells. Front. Cell Dev. Biol. 2021, 9, 757747. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Lian, J.; Liu, Y.; Dong, B.; He, Q.; Zhao, Q.; Zhang, H.; Qi, Y.; Zhang, Y.; Huang, L. Loss of miR-637 promotes cancer cell stemness via WASH/IL-8 pathway and serves as a novel prognostic marker in esophageal squamous cell carcinoma. Biomark. Res. 2022, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Yokota, Y.; Noda, T.; Okumura, Y.; Kobayashi, S.; Iwagami, Y.; Yamada, D.; Tomimaru, Y.; Akita, H.; Gotoh, K.; Takeda, Y.; et al. Serum exosomal miR-638 is a prognostic marker of HCC via downregulation of VE-cadherin and ZO-1 of endothelial cells. Cancer Sci. 2021, 112, 1275–1288. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Cho, Y.; Ahn, S.; Kim, G.; Hwang, D.; Chang, Y.; Ha, S.; Choi, Y.; Lee, M.H.; et al. Promotion of tumorigenesis by miR-1260b-targeting CASP8: Potential diagnostic and prognostic marker for breast cancer. Cancer Sci. 2022, 113, 2097–2108. [Google Scholar] [CrossRef]
- Schnabel, E.; Knoll, M.; Schwager, C.; Warta, R.; Mock, A.; Campos, B.; König, L.; Jungk, C.; Wick, W.; Unterberg, A.; et al. Prognostic Value of microRNA-221/2 and 17-92 Families in Primary Glioblastoma Patients Treated with Postoperative Radiotherapy. Int. J. Mol. Sci. 2021, 22, 2960. [Google Scholar] [CrossRef]
- Todeschini, P.; Salviato, E.; Romani, C.; Raimondi, V.; Ciccarese, F.; Ferrari, F.; Tognon, G.; Marchini, S.; D’Incalci, M.; Zanotti, L.; et al. Comprehensive Profiling of Hypoxia-Related miRNAs Identifies miR-23a-3p Overexpression as a Marker of Platinum Resistance and Poor Prognosis in High-Grade Serous Ovarian Cancer. Cancers 2021, 13, 3358. [Google Scholar] [CrossRef]
- Sirois, I.; Raymond, M.A.; Brassard, N.; Cailhier, J.F.; Fedjaev, M.; Hamelin, K.; Londono, I.; Bendayan, M.; Pshezhetsky, A.V.; Hébert, M.J. Caspase-3-dependent export of TCTP: A novel pathway for antiapoptotic intercellular communication. Cell Death Differ. 2011, 18, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Guo, Z.; Min, W.; Zhou, B.; Li, M.; Li, W.; Luo, D. Upregulation of TCTP expression in human skin squamous cell carcinoma increases tumor cell viability through anti-apoptotic action of the protein. Exp. Ther. Med. 2012, 3, 437–442. [Google Scholar] [CrossRef]
- Yin, E.; Liu, C.; Yao, Y.; Luo, Y.; Yang, Y.; Tang, X.; Zheng, S.; Tian, L.; He, J. Unveiling the role of Pleckstrin-2 in tumor progression and immune modulation: Insights from a comprehensive pan-cancer analysis with focus on lung cancer. Mol. Biomed. 2024, 5, 59. [Google Scholar] [CrossRef]
- Lago, S.; Poli, V.; Fol, L.; Botteon, M.; Busi, F.; Turdo, A.; Gaggianesi, M.; Ciani, Y.; D’Amato, G.; Fagnocchi, L.; et al. ANP32E drives vulnerability to ATR inhibitors by inducing R-loops-dependent transcription replication conflicts in triple negative breast cancer. Nat. Commun. 2025, 16, 4602. [Google Scholar] [CrossRef]
- Pajonk, F.; Vlashi, E.; McBride, W.H. Radiation resistance of cancer stem cells: The 4 R’s of radiobiology revisited. Stem Cells 2010, 28, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Saydé, T.; Manczak, R.; Saada, S.; Bégaud, G.; Bessette, B.; Lespes, G.; Le Coustumer, P.; Gaudin, K.; Dalmay, C.; Pothier, A.; et al. Characterization of Glioblastoma Cancer Stem Cells Sorted by Sedimentation Field-Flow Fractionation Using an Ultrahigh-Frequency Range Dielectrophoresis Biosensor. Anal. Chem. 2021, 93, 12664–12671. [Google Scholar] [CrossRef] [PubMed]
- Moore, N.; Lyle, S. Quiescent, slow-cycling stem cell populations in cancer: A review of the evidence and discussion of significance. J. Oncol. 2011, 2011, 396076. [Google Scholar] [CrossRef]
- Maleki, E.H.; Bahrami, A.R.; Matin, M.M. Cancer cell cycle heterogeneity as a critical determinant of therapeutic resistance. Genes Dis. 2024, 11, 189–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cui, Z.; Xie, Z.; Li, C.; Xu, C.; Guo, X.; Yu, J.; Chen, T.; Facchinetti, F.; Bohnenberger, H.; et al. Deubiquitinase USP5 promotes non-small cell lung cancer cell proliferation by stabilizing cyclin D1. Transl. Lung Cancer Res. 2021, 10, 3995–4011. [Google Scholar] [CrossRef]
- Leone, G.; DeGregori, J.; Yan, Z.; Jakoi, L.; Ishida, S.; Williams, R.S.; Nevins, J.R. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 1998, 12, 2120–2130. [Google Scholar] [CrossRef]
- Turchinovich, A.; Tonevitsky, A.G.; Cho, W.C.; Burwinkel, B. Check and mate to exosomal extracellular miRNA: New lesson from a new approach. Front. Mol. Biosci. 2015, 2, 11. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. The microRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Panvongsa, W.; Siripoon, T.; Worakitchanon, W.; Arsa, L.; Trachu, N.; Jinawath, N.; Ngamphaiboon, N.; Chairoungdua, A. Plasma extracellular vesicle microRNA-491-5p as diagnostic and prognostic marker for head and neck squamous cell carcinoma. Cancer Sci. 2021, 112, 4257–4269. [Google Scholar] [CrossRef]
- Lin, X.; Chen, W.; Wei, F.; Zhou, B.P.; Hung, M.C.; Xie, X. Nanoparticle Delivery of miR-34a Eradicates Long-term-cultured Breast Cancer Stem Cells via Targeting C22ORF28 Directly. Theranostics 2017, 7, 4805–4824. [Google Scholar] [CrossRef]
- Park, E.Y.; Chang, E.; Lee, E.J.; Lee, H.W.; Kang, H.G.; Chun, K.H.; Woo, Y.M.; Kong, H.K.; Ko, J.Y.; Suzuki, H.; et al. Targeting of miR34a-NOTCH1 axis reduced breast cancer stemness and chemoresistance. Cancer Res. 2014, 74, 7573–7582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.Y.; Hwang, C.I.; Corney, D.C.; Flesken-Nikitin, A.; Jiang, L.; Öner, G.M.; Munroe, R.J.; Schimenti, J.C.; Hermeking, H.; Nikitin, A.Y. miR-34 cooperates with p53 in suppression of prostate cancer by joint regulation of stem cell compartment. Cell Rep. 2014, 6, 1000–1007. [Google Scholar] [CrossRef]
- Li, W.J.; Wang, Y.; Liu, X.; Wu, S.; Wang, M.; Turowski, S.G.; Spernyak, J.A.; Tracz, A.; Abdelaal, A.M.; Sudarshan, K.; et al. Developing Folate-Conjugated miR-34a Therapeutic for Prostate Cancer: Challenges and Promises. Int. J. Mol. Sci. 2024, 25, 2123. [Google Scholar] [CrossRef]
- Bu, P.; Chen, K.Y.; Chen, J.H.; Wang, L.; Walters, J.; Shin, Y.J.; Goerger, J.P.; Sun, J.; Witherspoon, M.; Rakhilin, N.; et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 2013, 12, 602–615. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Hisamori, S.; Oshima, N.; Sato, F.; Shimono, Y.; Sakai, Y. miR-137 Regulates the Tumorigenicity of Colon Cancer Stem Cells through the Inhibition of DCLK1. Mol. Cancer Res. 2016, 14, 354–362. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Guo, X.; Tian, S.; Zhu, C.; Chen, S.; Yu, C.; Jiang, J.; Sun, C. MicroRNA-137 reduces stemness features of pancreatic cancer cells by targeting KLF12. J. Exp. Clin. Cancer Res. 2019, 38, 126. [Google Scholar] [CrossRef]
- Bier, A.; Giladi, N.; Kronfeld, N.; Lee, H.K.; Cazacu, S.; Finniss, S.; Xiang, C.; Poisson, L.; de Carvalho, A.C.; Slavin, S.; et al. MicroRNA-137 is downregulated in glioblastoma and inhibits the stemness of glioma stem cells by targeting RTVP-1. Oncotarget 2013, 4, 665–676. [Google Scholar] [CrossRef]
- Hu, Q.; Yuan, Y.; Wu, Y.; Huang, Y.; Zhao, Z.; Xiao, C. MicroRNA-137 exerts protective effects on hypoxia-induced cell injury by inhibiting autophagy/mitophagy and maintaining mitochondrial function in breast cancer stem-like cells. Oncol. Rep. 2020, 44, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Mortoglou, M.; Miralles, F.; Arisan, E.D.; Dart, A.; Jurcevic, S.; Lange, S.; Uysal-Onganer, P. microRNA-21 Regulates Stemness in Pancreatic Ductal Adenocarcinoma Cells. Int. J. Mol. Sci. 2022, 23, 1275. [Google Scholar] [CrossRef]
- Han, M.; Liu, M.; Wang, Y.; Chen, X.; Xu, J.; Sun, Y.; Zhao, L.; Qu, H.; Fan, Y.; Wu, C. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN. PLoS ONE 2012, 7, e39520. [Google Scholar] [CrossRef]
- Yu, Y.; Nangia-Makker, P.; Farhana, L.; Rajendra, S.G.; Levi, E.; Majumdar, A.P. miR-21 and miR-145 cooperation in regulation of colon cancer stem cells. Mol. Cancer 2015, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef]
- Lennox, K.A.; Behlke, M.A. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther. 2011, 18, 1111–1120. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, G.; Jia, M.; Zhao, Y.; He, C.; Huang, M.; Jiang, L.; Wu, M.; Yang, J.; Ji, X.; et al. Delivery of Anti-miRNA-221 for Colorectal Carcinoma Therapy Using Modified Cord Blood Mesenchymal Stem Cells-Derived Exosomes. Front. Mol. Biosci. 2021, 8, 743013. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, Y.; Richards, A.M. Effective tools for RNA-derived therapeutics: siRNA interference or miRNA mimicry. Theranostics 2021, 11, 8771–8796. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet. Oncol. 2017, 18, 1386–1396. [Google Scholar] [CrossRef]
- Lou, G.; Chen, L.; Xia, C.; Wang, W.; Qi, J.; Li, A.; Zhao, L.; Chen, Z.; Zheng, M.; Liu, Y. MiR-199a-modified exosomes from adipose tissue-derived mesenchymal stem cells improve hepatocellular carcinoma chemosensitivity through mTOR pathway. J. Exp. Clin. Cancer Res. 2020, 39, 4. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, N.; Wei, Y.; Zhou, D.; Lin, R.; Wang, X.; Shi, B. Anticancer effects of miR-124 delivered by BM-MSC derived exosomes on cell proliferation, epithelial mesenchymal transition, and chemotherapy sensitivity of pancreatic cancer cells. Aging 2020, 12, 19660–19676. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Xu, B.; Akers, J.; Nguyen, T.; Ma, J.; Dhawan, S.; Ning, J.; Mao, Y.; Hua, W.; Kokkoli, E.; et al. Radiation-induced extracellular vesicle (EV) release of miR-603 promotes IGF1-mediated stem cell state in glioblastomas. eBioMedicine 2020, 55, 102736. [Google Scholar] [CrossRef]
- Shen, M.; Dong, C.; Ruan, X.; Yan, W.; Cao, M.; Pizzo, D.; Wu, X.; Yang, L.; Liu, L.; Ren, X.; et al. Chemotherapy-Induced Extracellular Vesicle miRNAs Promote Breast Cancer Stemness by Targeting ONECUT2. Cancer Res. 2019, 79, 3608–3621. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, A.; Sahara, H. The Metabolic Heterogeneity and Flexibility of Cancer Stem Cells. Cancers 2020, 12, 2780. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, D.; Zhang, H.; He, H.; Zhang, C.; Zhao, W.; Shao, R.G. CD133+EpCAM+ phenotype possesses more characteristics of tumor initiating cells in hepatocellular carcinoma Huh7 cells. Int. J. Biol. Sci. 2012, 8, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Garmire, L.; Calvisi, D.F.; Chua, M.S.; Kelley, R.K.; Chen, X. Harnessing big ‘omics’ data and AI for drug discovery in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 238–251. [Google Scholar] [CrossRef]
Events | miRNA | Cancers | Cell Lines | Levels | Target | Mechanism | Function | Reference |
---|---|---|---|---|---|---|---|---|
Radiochemo-therapy sensitivity | miR-378a-3p/ miR-378d | BC | CAL51, MDA-MB-231, MCF-7 | ↑ | DKK3, NUMB | Suppression of DKK3 and NUMB expression activates the WNT/β-catenin and Notch signaling pathways. | Improved characterization of BCSCs resulting in chemotherapy resistance | [21] |
miR-1275 | BC | SUM-1315, MDA-MB-231, MCF-7, MCF-7/ADR | ↓ | MDK | Upregulation of MDK and activation of the PI3K/AKT signaling pathway | Enhanced characterization of BCSCs, thereby promoting chemoresistance in breast cancer | [22] | |
miR-508-5p | EC | Ishikawa | ↓ | SOX2 | Promotes SOX2 expression | Promoting self-renewal and chemotherapy resistance in ECSCs | [23] | |
miR-181a | HGSOC | HEYA8, OV81.2-CP10, OCI-P5X, OVCAR4 | ↑ | SFRP4 | Suppresses SFRP4 expression, thereby facilitating the activation of the Wnt/β-catenin signaling pathway | Facilitating self-renewal and chemoresistance in OCSCs | [24] | |
miR-485-5p | OSCC | OC3, OC3IV, CGHNC9 (C9), C9IV3, HSC3, OECM1 | ↓ | KRT17 | Promotion of KRT17 expression | Promoting self-renewal and enhancing chemotherapy resistance in OCSCs | [25] | |
miR-148a | CRC | T84, SW620, HT29, LS174T, HCT116, CPP1, CPP6, CPP14, CPP24, CPP25, CPP35 CPP19, CPP30, CPP36, CTC44 | ↓ | PXR | Enhanced PXR expression promotes the expression of ALDH1A1, ABCG2 and CYP3A4. | Promoting self-renewal of cancer stem cells, chemotherapy resistance, and thus increased tumor recurrence | [26] | |
miR-186 | HCC | Huh7, Hep3B | ↓ | PTPN11 | Upregulation of PTPN11 expression | Enhanced self-renewal, tumor-forming capacity, and chemotherapy resistance of LCSCs | [27] | |
miR-206 | NSCLC | PC-9, HCC827 | ↓ | c-Met | Promotes c-Met expression and activates its downstream Akt and Erk signaling pathways | Enhancement of HGF-induced resistance to gefitinib in gefitinib-resistant lung cancer cells | [28] | |
HCC | Huh7, HepG2, Hep3B, CSQT-2, PLC, HCCLM3 | ↓ | EGFR | Promotion of EGFR expression | Promoting self-renewal and proliferation of LCSCs while decreasing drug sensitivity of hepatocellular carcinoma cells to sorafenib and cisplatin | [29] | ||
iCCA | HiBEC, HUCCT1, RBE, HUVECs, 293T, NFs, CAFs | ↓ | LASP1, Anxa2 | Promoting the expression of LASP1 and Anxa2 increases Nanog expression and promotes CAF formation. | Enhancement of stemness characteristics, proliferation, migration and invasion of cholangiocarcinoma cells while reducing sensitivity to gemcitabine | [30] | ||
miR-34a | CRC | RKO, DLD-1, SW480, HCT116, HEK 293 T | ↓ | LRPPRC, MDR1 | Promotes LRPPRC expression and maintains MDR1 stability | Reduces the sensitivity of colorectal cancer cells to the chemotherapeutic drug 5-FU | [31] | |
miR-497 | PC | BxPC-3, AsPC-1 | ↓ | NFκB1 | Promotion of NFκB1 expression | Promote chemoresistance, migration and invasiveness of PCSC | [32] | |
miR-379-5p | OC | OVCAR3, SKOV3, OV2008 | ↓ | RAD18 | Promotion of the RAD18/Polη axis | Promoting self-renewal and chemoresistance in OCSCs | [33] | |
miR-7-5p | CRC | HCT116, RKO | ↓ | KLF4 | Promotion of KLF4 expression | Enhancement of CRCSC self-renewal and resistance to radiotherapy | [34] | |
miR-29b-3p | BC/LC | A549, MCF7, LLC1 | ↓ | DNMT3B, PIK3R1, AKT2, Bcl-2, RBL1 | Promotion of DNMT3B, PIK3R1, AKT2 and Bcl-2 expression and promotion of RBL1 expression | Enhancement of CSC sensitivity to radiotherapy and inhibition of their self-renewal and invasive capacity | [35] | |
miR-339-5p | ESCC | KYSE30, KYSE180, KYSE30R, KYSE180R | ↓ | USP8 | Promotion of USP8 expression | Promoting stem cell self-renewal and radiotherapy resistance, thereby reducing ESCC sensitivity to radiotherapy | [36] | |
miR-449a | PCa | LNCaP, PC-3, DU-145 | ↓ | c-Myc | Promotion of c-Myc expression Further inhibition of Cdc25A expression | Attenuates PCa cell sensitivity to ionizing radiation and inhibits G2/M phase blocking | [37] | |
miR-495 | NPC | 5-8F, 5-8F-IR | ↓ | GRP78 | Promotion of GRP78 expression | Inhibition of nasopharyngeal carcinoma cell sensitivity to radiotherapy and promotion of the EMT process | [38] |
Events | miRNA | Cancers | Cell Lines | Levels | Target | Mechanism | Function | Reference |
---|---|---|---|---|---|---|---|---|
Self-renewal | miR-2117 | HCC | Huh7, HCCLM3, HepG2 | ↓ | SOX2 | Promotion of SOX2 expression | Promote the self-renewal and tumorigenic potential of LCSCs while reducing the sensitivity of HCC cells to chemotherapeutic agents | [44] |
miR-194 | HCC | HUH7, HCCLM3 | ↓ | RAC1 | Promotion of RAC1 expression | Enhancement of the self-renewal and tumorigenic potential of LCSCs while decreasing the sensitivity of HCC cells to sorafenib | [45] | |
EC | Eca-109, TE-13 | ↓ | PRC1, Wnt/β-catenin | Promotion of PRC1 expression | Promotes ECSC proliferation, invasion and self-renewal while reducing apoptosis | [46] | ||
miR-342-3p | HCC | SMMC-7721 | ↓ | HDAC7, PTEN | Enhancement of HDAC7 expression and inhibition of PTEN expression | Promoting self-renewal of LCSCs | [47] | |
miR-130b-5p | CC | HeLa | ↓ | ELK1 | Promotion of ELK1 expression | Promoting self-renewal, proliferation, migration and invasion of CCSCs while inhibiting apoptosis | [48] | |
miR-203 | GBM | CD133+GBM-SCs | ↓ | — | Promote the expression of stem cell-related genes | Promoting self-renewal, proliferation and stemness characteristics of GSCs while reducing apoptosis | [49] | |
CRC | HCT-116, HT-29 | ↓ | GATA6 | Promotion of GATA6 expression | Promote self-renewal and migration of CRCSCs and enhance the expression of stem cell markers such as CD44 | [50] | ||
AML | KG-1a, MOLM13 | ↓ | Survivin, Bmi-1 | Promotion of Survivin and Bmi-1 expression | Promoting proliferation and self-renewal of LSCs | [51] | ||
miR-630 | PC | PANC-1, HPDE, HEK-293T | ↓ | PRKCI | Promotion of PRKCI expression | Enhancing self-renewal and tumor formation in PCSC | [52] | |
miR-486-5p | NSCLC | H460, A549, H1299, LT73, HEK-293 | ↓ | PIK3R1 | Promotes the expression of p85, which promotes the activation of the PI3K/Akt pathway | Enhancing self-renewal and tumor initiation of cancer stem cells (CD133+) | [53] | |
GBM | GBM1A, GBM1B, GBM-KK, Mayo39, A172, HEK293FT, 293T | ↑ | PTEN, FoxO1 | Inhibition of PTEN and FoxO1 expression | Promoting self-renewal and survival of GSCs and enhancing their tolerance to ionizing radiation. | [54] | ||
HCC | Huh7, Hep3B, Li-7, PLC, 97H, 97L, LM3, HepG2 | ↓ | Sirt1 | Promotion of Sirt1 expression | Promoting self-renewal and tumor-forming capacity of LCSCs | [55] | ||
miR-122-5p | CC | CaSki, CD133+CaSki | ↓ | SOX2 | Promotion of SOX2 expression | Promoting self-renewal and differentiation of CCSCs | [56] | |
miR-182 | AML | MOLM-13, THP1, K562, OCI-AML3 | ↓ | BCL2, HOXA9 | Promotion of BCL2 and HOXA9 expression | Promoting LSC self-renewal and acute myeloid leukemia | [57] |
Events | miRNA | Cancers | Cell Lines | Levels | Target | Mechanism | Function | Reference |
---|---|---|---|---|---|---|---|---|
Migration | miR-101 | HCC | HepG2, SUN387, SNU398, SNU423, SNU449, Huh7, SK-HEP-1 | ↓ | ANXA2 | Enhances ANXA2 expression and activates ERK signaling pathway | Promoting self-renewal, proliferation and migration of LCSCs | [71] |
miR-7 | BC | MDA-MB-231 (MB231), 231BoM-1833, 231BrM-2a, CN34, CN34-BoM2d, CN34-BrM2c, MCF7, MCF7-BoM2d, 293TN | ↓ | KLF4 | Promotion of KLF4 expression | Enhancing self-renewal and brain metastasis of BCSCs | [72] | |
BC | MCF-7, SK-BR-3, MDA-MB-231, LD | ↓ | RELA | Promotion of RELA and ESAM expression | Promoting the transfer capacity of BCSCs | [73] | ||
miR-148/152 family | GC | MKN45, AGS, KATO-III, NCI-N87, SNU-1, GES-1 | ↓ | ITGA5 | Promotion of ITGA5 expression | Promoting self-renewal and tumor-forming capacity of GCSCs | [74] | |
miR-139-5p | CRC | HCT116 | ↓ | E2-2 | Promotes E2-2 expression and activates the Wnt/β-catenin/TCF7L2 signaling pathway | Promoting self-renewal and transfer of CCSCs | [75] | |
IH | HemSCs | ↓ | IGF-1R | Promotion of IGF-1R expression | Promoting proliferation, migration, self-renewal and differentiation of HemSCs | [76] | ||
miR-145-5p | HCC | HEK-293T | ↓ | COL4A3 | Promotion of COL4A3 expression | Promoting self-renewal, migration and invasion of LCSCs | [77] | |
miR-150-3p | CRC | HCT116, NCM460, CD133+CD44+HCT116 | ↓ | SLCO4A1 | Promotion of SLCO4A1 expression | Promote migration, invasion, sphere formation and tumorigenicity of CCSCs | [78] | |
Invasiveness | miR-128-3p | BC | MCF-7, ZR-75-1, T47D, MB231, MCF-10A | ↓ | NEK2 | Promotion of NEK2 expression | Promote BCSC proliferation, migration, invasion, and self-renewal | [79] |
GBM | GSC103, GSC107, GSC108, GSC109, GSC111, GSC112 | ↓ | LBH | Promotes TNF-α expression by targeting LBH, which in turn promotes the activation of the NF-κB signaling pathway | Promote GSC proliferation, invasion and self-renewal | [80] | ||
miR-9-5p | PCa | PC3, DU145 | ↑ | NUMB | Inhibition of NUMB expression | Promoting proliferation, migration, invasion and self-renewal of PCSCs | [81] | |
miR-210 | CRC | HT29, HCT15, Colo205, SW1116, HEK293 | ↑ | STMN1 | Inhibition of STMN1 expression | Promoting invasiveness of CRCSCs | [82] | |
miR-27b-5p | OC | SKOV3, CAOV3, HO8910, A2780, IOSE80 | ↓ | SIRT5 | Promotion of SIRT5 expression | Promote migration, invasion and self-renewal of OCSCs | [83] | |
miR-17-5p | GC | SGC-7901, MGC-803, AGS, 293T | ↑ | MKL-1 | Inhibition of MKL-1 expression | Promoting self-renewal and invasiveness of GCSCs | [84] | |
miR-7-5p | GC | BGC-823, SGC-7901 | ↓ | Smo, Hes1 | Promotion of Smo and Hes1 expression | Promoting the invasive capacity of GCSCs | [85] | |
miR-196a-5p | GC | SNU-5, BGC-823 | ↑ | Smad4 | Inhibition of Smad4 expression | Promoting self-renewal and invasiveness of GSCs | [86] | |
GBM | U87, U251, HEK 293T | ↑ | FOXO1 | Inhibition of FOXO1 expression | Promotion of GSC proliferation, migration and invasion and inhibition of apoptosis | [87] |
Events | miRNA | Cancers | Cell Lines | Levels | Target | Mechanism | Function | Reference |
---|---|---|---|---|---|---|---|---|
Apoptosis and proliferation | miR-145-5p | GBM | U87, SHG44, 293T, pGSCs | ↓ | TCTP | Promotion of TCTP expression | Promotes GSC proliferation and reduces apoptosis | [91] |
miR-146b-3p | PC | Panc-1, SW1990, ASPC-1, PC-3, Mia-paca-2, BxPC-3 | ↓ | MAP3K10 | Promotion of MAP3K10 expression | Promotes proliferation and self-renewal of P-CSCs and reduces apoptosis | [92] | |
Conjunction of miR-124, miR-128, and miR-137 | GBM | U251, U343, BE(2)C, Kelly, 3565, 3128, 1123NS, 1919, 19NS, 84NS | ↓ | SP1, MYB, TCF12, TCF3, EGFR, SRC, CDC42 | Promotes the expression of relevant genes | Promotes proliferation, survival and self-renewal of GSCs | [93] | |
miR-21 | OSCC | SCC-25 | ↑ | CTNNB1, CCND1, BAX, BCL-2, CASP3 | Promotion of OCT4, SOX2, NANOG, BCL-2 and CCND1 expression and inhibition of BAX and CASP3 expression | Promoting self-renewal, migration and invasion of OCSCs | [94] | |
miR-873 | PC | hTERT-HPNE, PANC-1, SW1990, MIA PaCa-2 | ↓ | PLEK2 | Promotes PLEK2 expression and further activates PI3K/AKT pathway | Promotes self-renewal and proliferation of PCSC and inhibit apoptosis of cancer cells | [95] | |
miR-21-5p | PC | PANC-1, AsPC-1, PC-3, Capan-1, HPC-Y5, THP-1 | ↑ | KLF3 | Inhibition of KLF3 expression | Promotes differentiation, self-renewal capacity, invasion and migration of PCSCs, and inhibits apoptosis. | [96] | |
miR-202-5p | PC | HPDE6-C7, PANC-1, BxPC-3, MIAPaCa-2 | ↓ | ANP32E | Promotion of ANP32E expression | Promotes proliferation and self-renewal of PCSCs and inhibit apoptosis of cancer cells | [97] | |
Cell cycle | miR-338-5p | GC | MKN45, MKN74, GES-1 | ↓ | BAK, BIM | Promotes the expression of BAK and BIM | Suppresses the transition of GCSCs from G0/G1 to S and G2/M phases | [98] |
miR-302a/d | HCC | HepG2, Huh7 | ↓ | E2F7 | Promotes the expression of E2F7 | Decrease in the proportion of G1 phase cells and increase in the proportion of S and G2/M phase cells, accelerating cell cycle progression | [99] | |
miR-449b | CRC | SW1116 | ↓ | CCND1, E2F3 | Promotion of CCND1 and E2F3 expression | Promotes cell transition from G1 to S phase, accelerates cell cycle progression and enhances cell proliferation | [100] | |
miR-92a-3p | CC | Ect1/E6E7, CaSki, SiHa, HeLa, ME180, MS751, C-33A | ↑ | LATS1 | Inhibition of LATS1 expression | Promotes G1/S transition and accelerates cell cycle progression | [101] | |
Biomarker | miR-637 | ESCC | KYSE70, KYSE450 | ↓ | WASH | Enhanced expression of WASH, which promotes the production of IL-8 | Promoting CSC self-renewal and tumor growth and as a potential prognostic marker for esophageal cancer | [102] |
miR-638 | HCC | HuH-7-Luc, HUVECs | ↑ | VE-cadherin, ZO-1 | Inhibits the expression of VE-cadherin and ZO-1 | Disrupts the tight junctions between endothelial cells and increases vascular permeability, thereby promoting intrahepatic metastasis of hepatocellular carcinoma cells | [103] | |
miR-1260b | BC | MCF-10A, MCF-7, BT-474, SKBR-3, MDA-MB-231 | ↑ | CASP8 | Inhibition of CASP8 expression | Inhibits apoptosis and promotes proliferation, migration and invasion of breast cancer cells | [104] | |
miR-221/222 | GBM | — | ↑ | p27, p57, PTPµ, TIMP3, Akt, SOCS3, PUMA, Cx43 | Inhibits expression of p27, p57, PTPµ, TIMP3, PUMA, Cx43, etc. Promotes the expression of Akt, SOCS3, etc. | Promotion of glioblastoma proliferation, migration, invasion, radiotherapy resistance | [105] | |
miR-23a-3p | HGSOC | OSPC2, OVCAR3 | ↑ | APAF1 | Inhibition of APAF1 expression | Inhibition of tumor cell apoptosis, thereby promoting a platinum drug-resistant phenotype | [106] |
miRNA | Cancers | Cell Lines | Levels | Target | Mechanism | Function | Reference |
---|---|---|---|---|---|---|---|
miR-34a | BC | MDA-MB-231.SC, MCF-7.SC | ↓ | C22ORF28 | Promotes the expression of C22ORF28 | Promotes BCSC self-renewal, proliferation, and apoptosis inhibition | [120] |
BC | MCF7, MCF7/ADR, HEK293T | NOTCH1 | Promotes the expression of NOTCH1 | Promotes chemotherapy resistance in BCSC and inhibit apoptosis | [121] | ||
PC | - | MET | p53/miR-34-MET signaling axis synergistically regulates | Activates PCSC self-renewal, migration, and invasion | [122] | ||
PC | LNCaP, PC3, DU145, VCaP, RWPE-1 | CD44, Cyclin D1, c-Myc, BCL-2 | Promotes the expression of relevant target genes | Promotes PCSC self-renewal, proliferation, and suppression of apoptosis | [123] | ||
CRC | CCSC1/2/3/4/5 | ↓ | Notch1 | miR-34a binds to Notch1 mRNA through mutual sequestration, forming a threshold response that converts continuous Notch signals into a bimodal (high/low) output. | Adjusting the asymmetric division of CCSCs promotes tumor growth and maintains differentiation balance. | [124] | |
miR-137 | CC | SW480, hPCCs, T4056 | DCLK1 | Promotes the expression of DCLK1 | Enhancing the malignant phenotype of colon cancer stem cells | [125] | |
PC | AsPC-1,PANC-1 | KLF12 | Promotes KLF12 expression | Enhancing stem cell properties of pancreatic cancer cells | [126] | ||
GBM | HF2354, HF2355, HF2414, HF2359, HF2485 | RTVP-1 | Promotes RTVP-1 expression | Promotes GSC self-renewal and inhibit differentiation | [127] | ||
BC | MCF-7, SKBR-3, MDA-MB-231 | FUNDC1 | Promotes FUNDC1 expression | Activates mitochondrial autophagy | [128] | ||
miR-21 | OSCC | SCC-25 | ↑ | CTNNB1, CCND1, BAX, BCL-2, CASPASE3 | Promotion of OCT4, SOX2, NANOG, BCL-2 and CCND1 expression and inhibition of BAX and CASPASE3 expression | Promoting self-renewal, migration and invasion of OCSCs | [94] |
PDAC | Panc-1, MiaPaCa-2, BxPC3 | E-cadherin, Vimentin, Snail, Zeb1, Wnt-11 | Regulation of the Wnt-11 pathway | Maintains CSC self-renewal, maintain tumor initiation capacity, and increase chemotherapy resistance | [129] | ||
CC | HCT-116, HT-29, CR-HCT-116, CR-HT-29 | PDCD4, TGFβR2 | Activates the Ras/RREB1 pathway and inhibit the transcription of the miR-143/145 cluster | Promotes dryness, tumor growth, and chemotherapy resistance | [130] | ||
BC | MDA-MB-231 | PTEN | Inhibits PTEN expression and activate the PI3K/AKT pathway | Enhances the self-renewal, proliferation, migration, and invasion capabilities of BCSC | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Peng, S.; Lu, Y.; Song, L. Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives. Cells 2025, 14, 1073. https://doi.org/10.3390/cells14141073
Mao X, Peng S, Lu Y, Song L. Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives. Cells. 2025; 14(14):1073. https://doi.org/10.3390/cells14141073
Chicago/Turabian StyleMao, Xingmei, Sixue Peng, Yan Lu, and Linjiang Song. 2025. "Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives" Cells 14, no. 14: 1073. https://doi.org/10.3390/cells14141073
APA StyleMao, X., Peng, S., Lu, Y., & Song, L. (2025). Regulatory Functions of microRNAs in Cancer Stem Cells: Mechanism, Facts, and Perspectives. Cells, 14(14), 1073. https://doi.org/10.3390/cells14141073