The RhoGDIβ-Rac1-CARD9 Signaling Module Mediates Islet β-Cell Dysfunction Under Chronic Hyperglycemia
Abstract
1. Introduction
2. Smgs and Their Regulatory Factors in Islet Function
3. Impact of Cellular Stress on the Structure and Function of RhoGDIβ
3.1. Evidence in Other Cells
3.2. Evidence in Pancreatic Islet Beta Cells
4. RhoGDIβ-Rac1 Signalome Contributes to Cellular Dysfunction
4.1. Evidence on Other Cells
4.2. Evidence in Pancreatic Beta Cells
4.3. Does CARD9 Contribute to RhoGDIβ-Rac1-Mediated Beta Cell Dysfunction Under Hyperglycemic Stress Conditions?
4.4. Evidence Affirming Novel Roles of CARD9 in the Induction of Metabolic Dysfunction in Animal Models of Obesity, Glucose Intolerance, and Insulin Resistance
5. Conclusions and Potential Knowledge Gaps and Opportunities for Future Research
Author Contributions
Funding
Institutional Review Board
Data Availability Statement
Conflicts of Interest
Abbreviations
APPL2 | Adaptor Protein–Phosphotyrosine Interacting with PH Domain and Leucine Zipper 2 |
ARF6 | ADP ribosylation factor 6 |
ARNO | ARF nucleotide-binding site opener |
β-PIX | Guanine nucleotide exchange factor for small G proteins (also known as ARHGEF7) |
CARD9 | Caspase recruitment domain-containing protein 9 |
Cdc42 | Cell division control protein 42 homolog |
Epac | Exchange protein directly activated by cAMP |
GAP | GTPase-activating protein |
GEF | Guanine nucleotide exchange factor |
GDI | GDP dissociation inhibitor |
GSIS | Glucose-stimulated insulin secretion |
GPCR | G protein-coupled receptor |
INS-1 832/13 cells | INS-1 832/13 rat insulinoma cell line |
IQGAP | IQ motif containing GTPase-activating protein 1 |
JNK1/2 | c-Jun N-terminal kinases 1 and 2 |
Nox2 | Phagocyte-like NADPH oxidase |
P38MAPK | p38 mitogen-activated protein kinase |
PTMs | Post-translational modifications |
Rac1 | Ras-related C3 botulinum toxin substrate 1 |
RhoGDIα | Rho GDP dissociation inhibitor α |
RhoGDIβ | Rho GDP dissociation inhibitor β |
RhoGDIγ | Rho GDP dissociation inhibitor γ |
Raf-1 | Raf-1 proto-oncogene, serine/threonine kinase-1 |
RhoGDI | Rho GDP dissociation inhibitor |
siRNA | Small interfering RNA |
T2DM | Type 2 diabetes |
Tiam1 | T-cell lymphoma invasion and metastasis-inducing protein 1 |
Vav2 | Vav guanine nucleotide exchange factor 2 |
References
- Michaelidou, M.; Pappachan, J.M.; Jeeyavudeen, M.S. Management of diabesity: Current concepts. World J. Diabetes 2023, 14, 396–411. [Google Scholar] [CrossRef] [PubMed]
- Atlas, I.D. IDF Atlas 2025, 11th ed.; International Diabetes Federation: Brussels, Belgium, 2025. [Google Scholar]
- Singh, A.; Shadangi, S.; Gupta, P.K.; Rana, S. Type 2 diabetes mellitus: A comprehensive review of pathophysiology, comorbidities, and emerging therapies. Compr. Physiol. 2025, 15, e70003. [Google Scholar] [CrossRef] [PubMed]
- Młynarska, E.; Czarnik, W.; Dzieża, N.; Jędraszak, W.; Majchrowicz, G.; Prusinowski, F.; Stabrawa, M.; Rysz, J.; Franczyk, B. Type 2 diabetes mellitus: New pathogenetic mechanisms, treatment and the most important complications. Int. J. Mol. Sci. 2025, 26, 1094. [Google Scholar] [CrossRef]
- Campbell, J.E.; Newgard, C.B. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat. Rev. Mol. Cell Biol. 2021, 22, 142–158. [Google Scholar] [CrossRef]
- Merrins, M.J.; Kibbey, R.G. Glucose regulation of β-cell katp channels: It is time for a new model! Diabetes 2024, 73, 856–863. [Google Scholar] [CrossRef]
- Ishihara, H. Metabolism-secretion coupling in glucose-stimulated insulin secretion. Diabetol. Int. 2022, 13, 463–470. [Google Scholar] [CrossRef]
- Ježek, P.; Holendová, B.; Jabůrek, M.; Dlasková, A.; Plecitá-Hlavatá, L. Contribution of mitochondria to insulin secretion by various secretagogues. Antioxid. Redox Signal. 2022, 36, 920–952. [Google Scholar] [CrossRef]
- Jensen, M.V.; Joseph, J.W.; Ronnebaum, S.M.; Burgess, S.C.; Sherry, A.D.; Newgard, C.B. Metabolic cycling in control of glucose-stimulated insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2008, 295, E1287–E1297. [Google Scholar] [CrossRef]
- Merrins, M.J.; Corkey, B.E.; Kibbey, R.G.; Prentki, M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022, 34, 947–968. [Google Scholar] [CrossRef]
- Metz, S.A.; Rabaglia, M.E.; Pintar, T.J. Selective inhibitors of gtp synthesis impede exocytotic insulin release from intact rat islets. J. Biol. Chem. 1992, 267, 12517–12527. [Google Scholar]
- Meredith, M.; Rabaglia, M.E.; Metz, S.A. Evidence of a role for gtp in the potentiation of Ca(2+)-induced insulin secretion by glucose in intact rat islets. J. Clin. Investig. 1995, 96, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Metz, S.A.; Meredith, M.; Rabaglia, M.E.; Kowluru, A. Small elevations of glucose concentration redirect and amplify the synthesis of guanosine 5′-triphosphate in rat islets. J. Clin. Investig. 1993, 92, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Gilman, A.G. G proteins: Transducers of receptor-generated signals. Annu. Rev. Biochem. 1987, 56, 615–649. [Google Scholar] [CrossRef] [PubMed]
- Weis, W.I.; Kobilka, B.K. The molecular basis of g protein-coupled receptor activation. Annu. Rev. Biochem. 2018, 87, 897–919. [Google Scholar] [CrossRef]
- Birnbaumer, L. G proteins in signal transduction. Annu. Rev. Pharmacol. Toxicol. 1990, 30, 675–705. [Google Scholar] [CrossRef]
- Veluthakal, R.; Thurmond, D.C. Emerging roles of small gtpases in islet β-cell function. Cells 2021, 10, 1503. [Google Scholar] [CrossRef]
- Kowluru, A. Gpcrs, g proteins, and their impact on β-cell function. Compr. Physiol. 2020, 10, 453–490. [Google Scholar] [CrossRef]
- Ghosh, P.; Rangamani, P.; Kufareva, I. The gaps, gefs, gdis and…Now, gems: New kids on the heterotrimeric g protein signaling block. Cell Cycle 2017, 16, 607–612. [Google Scholar] [CrossRef]
- Gray, J.L.; von Delft, F.; Brennan, P.E. Targeting the small gtpase superfamily through their regulatory proteins. Angew. Chem. Int. Ed. 2020, 59, 6342–6366. [Google Scholar] [CrossRef]
- Müller, M.P.; Goody, R.S. Molecular control of rab activity by gefs, gaps and gdi. Small GTPases 2018, 9, 5–21. [Google Scholar] [CrossRef]
- Leech, C.A.; Holz, G.G.; Chepurny, O.; Habener, J.F. Expression of camp-regulated guanine nucleotide exchange factors in pancreatic beta-cells. Biochem. Biophys. Res. Commun. 2000, 278, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Parsons, V.A.; Vadlamudi, S.; Voos, K.M.; Rohy, A.E.; Moxley, A.H.; Cannon, M.E.; Rosen, J.D.; Mills, C.A.; Herring, L.E.; Broadaway, K.A.; et al. Tbc1d30 regulates proinsulin and insulin secretion and is the target of a genomic association signal for proinsulin. Diabetologia 2025, 68, 1169–1183. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Costa-Júnior, J.M.; Kurauti, M.A.; Leite, N.C.; Ortis, F.; Rezende, L.F.; Barbosa, H.C.; Boschero, A.C.; Santos, G.J. Arhgap21 acts as an inhibitor of the glucose-stimulated insulin secretion process. Front. Endocrinol. 2020, 11, 599165. [Google Scholar] [CrossRef]
- Naumann, H.; Rathjen, T.; Poy, M.N.; Spagnoli, F.M. The rhogap stard13 controls insulin secretion through f-actin remodeling. Mol. Metab. 2018, 8, 96–105. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H.; Li, X.; Lu, W.; Kim, J.B.; Xu, A.; Cheng, K.K.Y. The adaptor protein appl2 controls glucose-stimulated insulin secretion via f-actin remodeling in pancreatic β-cells. Proc. Natl. Acad. Sci. USA 2020, 117, 28307–28315. [Google Scholar] [CrossRef]
- Kowluru, A.; Gleason, N.F. Underappreciated roles for rho gdp dissociation inhibitors (rhogdis) in cell function: Lessons learned from the pancreatic islet β-cell. Biochem. Pharmacol. 2022, 197, 114886. [Google Scholar] [CrossRef]
- Mosaddeghzadeh, N.; Ahmadian, M.R. The rho family gtpases: Mechanisms of regulation and signaling. Cells 2021, 10, 1831. [Google Scholar] [CrossRef]
- Cherfils, J.; Zeghouf, M. Regulation of small gtpases by gefs, gaps, and gdis. Physiol. Rev. 2013, 93, 269–309. [Google Scholar] [CrossRef]
- Nevins, A.K.; Thurmond, D.C. Caveolin-1 functions as a novel cdc42 guanine nucleotide dissociation inhibitor in pancreatic beta-cells. J. Biol. Chem. 2006, 281, 18961–18972. [Google Scholar] [CrossRef]
- Tripathi, M.; Colige, A.; Deroanne, C.F. The dual function of rhogdi2 in immunity and cancer. Int. J. Mol. Sci. 2023, 24, 4015. [Google Scholar] [CrossRef]
- Kowluru, A.; Veluthakal, R. Rho guanosine diphosphate-dissociation inhibitor plays a negative modulatory role in glucose-stimulated insulin secretion. Diabetes 2005, 54, 3523–3529. [Google Scholar] [CrossRef] [PubMed]
- Griner, E.M.; Theodorescu, D. The faces and friends of rhogdi2. Cancer Metastasis Rev. 2012, 31, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Baek, K.E.; Yoo, J. Rhogdi2 as a therapeutic target in cancer. Expert Opin. Ther. Targets 2010, 14, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.P.; Papaioannou, A.; Malliri, A. Deregulation of rho gtpases in cancer. Small GTPases 2016, 7, 123–138. [Google Scholar] [CrossRef]
- Garcia-Mata, R.; Boulter, E.; Burridge, K. The ‘invisible hand’: Regulation of rho gtpases by rhogdis. Nat. Rev. Mol. Cell Biol. 2011, 12, 493–504. [Google Scholar] [CrossRef]
- Olofsson, B. Rho guanine dissociation inhibitors: Pivotal molecules in cellular signalling. Cell. Signal. 1999, 11, 545–554. [Google Scholar] [CrossRef]
- Thamilselvan, V.; Kowluru, A. Paradoxical regulation of glucose-induced rac1 activation and insulin secretion by rhogdiβ in pancreatic β-cells. Small GTPases 2021, 12, 114–121. [Google Scholar] [CrossRef]
- Gleason, N.; Kowluru, A. Hyperglycemic stress induces expression, degradation, and nuclear association of rho gdp dissociation inhibitor 2 (rhogdiβ) in pancreatic β-cells. Cells 2024, 13, 272. [Google Scholar] [CrossRef]
- Chundru, S.A. Novel Regulatory Roles of Rhog and Iqgaps in Pancreatic Islet Beta Cell Function. Master’s Thesis, Wayne State University, Detroit, MI, USA, 2020. [Google Scholar]
- Harding, M.A.; Theodorescu, D. Rhogdi signaling provides targets for cancer therapy. Eur. J. Cancer 2010, 46, 1252–1259. [Google Scholar] [CrossRef]
- Zhou, X.; Suto, S.; Ota, T.; Tatsuka, M. Nuclear translocation of cleaved lygdi dissociated from rho and rac during trp53-dependent ionizing radiation-induced apoptosis of thymus cells in vitro. Radiat. Res. 2004, 162, 287–295. [Google Scholar] [CrossRef]
- Na, S.; Chuang, T.H.; Cunningham, A.; Turi, T.G.; Hanke, J.H.; Bokoch, G.M.; Danley, D.E. D4-gdi, a substrate of cpp32, is proteolyzed during fas-induced apoptosis. J. Biol. Chem. 1996, 271, 11209–11213. [Google Scholar] [CrossRef] [PubMed]
- Rickers, A.; Brockstedt, E.; Mapara, M.Y.; Otto, A.; Dörken, B.; Bommert, K. Inhibition of cpp32 blocks surface igm-mediated apoptosis and d4-gdi cleavage in human bl60 burkitt lymphoma cells. Eur. J. Immunol. 1998, 28, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Kettritz, R.; Xu, Y.X.; Faass, B.; Klein, J.B.; Müller, E.C.; Otto, A.; Busjahn, A.; Luft, F.C.; Haller, H. Tnf-alpha-mediated neutrophil apoptosis involves ly-gdi, a rho gtpase regulator. J. Leukoc. Biol. 2000, 68, 277–283. [Google Scholar] [PubMed]
- Krieser, R.J.; Eastman, A. Cleavage and nuclear translocation of the caspase 3 substrate rho gdp-dissociation inhibitor, d4-gdi, during apoptosis. Cell Death Differ. 1999, 6, 412–419. [Google Scholar] [CrossRef]
- Essmann, F.; Wieder, T.; Otto, A.; Müller, E.C.; Dörken, B.; Daniel, P.T. Gdp dissociation inhibitor d4-gdi (rho-gdi 2), but not the homologous rho-gdi 1, is cleaved by caspase-3 during drug-induced apoptosis. Biochem. J. 2000, 346 Pt 3, 777–783. [Google Scholar]
- Choi, M.R.; Groot, M.; Drexler, H.C. Functional implications of caspase-mediated rhogdi2 processing during apoptosis of hl60 and k562 leukemia cells. Apoptosis 2007, 12, 2025–2035. [Google Scholar] [CrossRef]
- Ota, T.; Maeda, M.; Sakita-Suto, S.; Zhou, X.; Murakami, M.; Takegami, T.; Tatsuka, M. Rhogdibeta lacking the n-terminal regulatory domain suppresses metastasis by promoting anoikis in v-src-transformed cells. Clin. Exp. Metastasis 2006, 23, 323–334. [Google Scholar] [CrossRef]
- Ota, T.; Maeda, M.; Murakami, M.; Takegami, T.; Suto, S.; Tatsuka, M. Activation of rac1 by rho-guanine nucleotide dissociation inhibitor-beta with defective isoprenyl-binding pocket. Cell Biol. Int. 2007, 31, 92–96. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, I.K.; Park, S.M.; Baek, K.E.; Nam, I.K.; Park, S.H.; Ryu, K.J.; Choi, J.; Ryu, J.; Hong, S.C.; et al. Vegf-c mediates rhogdi2-induced gastric cancer cell metastasis and cisplatin resistance. Int. J. Cancer 2014, 135, 1553–1563. [Google Scholar] [CrossRef]
- Kim, H.J.; Ryu, K.J.; Kim, M.; Kim, T.; Kim, S.H.; Han, H.; Kim, H.; Hong, K.S.; Song, C.Y.; Choi, Y.; et al. Rhogdi2-mediated rac1 recruitment to filamin a enhances rac1 activity and promotes invasive abilities of gastric cancer cells. Cancers 2022, 14, 255. [Google Scholar] [CrossRef]
- Zhang, Y.; Rivera Rosado, L.A.; Moon, S.Y.; Zhang, B. Silencing of d4-gdi inhibits growth and invasive behavior in mda-mb-231 cells by activation of rac-dependent p38 and jnk signaling. J. Biol. Chem. 2009, 284, 12956–12965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B. D4-gdi, a rho gtpase regulator, promotes breast cancer cell invasiveness. Cancer Res. 2006, 66, 5592–5598. [Google Scholar] [CrossRef] [PubMed]
- Jayaram, B.; Syed, I.; Kyathanahalli, C.N.; Rhodes, C.J.; Kowluru, A. Arf nucleotide binding site opener [arno] promotes sequential activation of arf6, cdc42 and rac1 and insulin secretion in ins 832/13 β-cells and rat islets. Biochem. Pharmacol. 2011, 81, 1016–1027. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Oh, E.; Thurmond, D.C. Glucose-stimulated cdc42 signaling is essential for the second phase of insulin secretion. J. Biol. Chem. 2007, 282, 9536–9546. [Google Scholar] [CrossRef]
- Asahara, S.; Shibutani, Y.; Teruyama, K.; Inoue, H.Y.; Kawada, Y.; Etoh, H.; Matsuda, T.; Kimura-Koyanagi, M.; Hashimoto, N.; Sakahara, M.; et al. Ras-related c3 botulinum toxin substrate 1 (rac1) regulates glucose-stimulated insulin secretion via modulation of f-actin. Diabetologia 2013, 56, 1088–1097. [Google Scholar] [CrossRef]
- Kowluru, A.; Veluthakal, R.; Rhodes, C.J.; Kamath, V.; Syed, I.; Koch, B.J. Protein farnesylation-dependent raf/extracellular signal-related kinase signaling links to cytoskeletal remodeling to facilitate glucose-induced insulin secretion in pancreatic beta-cells. Diabetes 2010, 59, 967–977. [Google Scholar] [CrossRef]
- Jiang, S.; Shen, D.; Jia, W.J.; Han, X.; Shen, N.; Tao, W.; Gao, X.; Xue, B.; Li, C.J. Ggpps-mediated rab27a geranylgeranylation regulates β cell dysfunction during type 2 diabetes development by affecting insulin granule docked pool formation. J. Pathol. 2016, 238, 109–119. [Google Scholar] [CrossRef]
- Yamaoka, M.; Ishizaki, T.; Kimura, T. Gtp- and gdp-dependent rab27a effectors in pancreatic beta-cells. Biol. Pharm. Bull. 2015, 38, 663–668. [Google Scholar] [CrossRef]
- Kimura, T.; Niki, I. Rab27a, actin and beta-cell endocytosis. Endocr. J. 2011, 58, 1–6. [Google Scholar] [CrossRef]
- Syed, I.; Kyathanahalli, C.N.; Jayaram, B.; Govind, S.; Rhodes, C.J.; Kowluru, R.A.; Kowluru, A. Increased phagocyte-like nadph oxidase and ros generation in type 2 diabetic zdf rat and human islets: Role of rac1-jnk1/2 signaling pathway in mitochondrial dysregulation in the diabetic islet. Diabetes 2011, 60, 2843–2852. [Google Scholar] [CrossRef]
- Kowluru, A.; Kowluru, R.A. Racking up ceramide-induced islet beta-cell dysfunction. Biochem. Pharmacol. 2018, 154, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, A.; Kowluru, R.A. Phagocyte-like nadph oxidase [nox2] in cellular dysfunction in models of glucolipotoxicity and diabetes. Biochem. Pharmacol. 2014, 88, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Syed, I. Mechanisms of Regulation of Islet Function by Nadph Oxidase. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 2011. [Google Scholar]
- Baidwan, S.; Chekuri, A.; Hynds, D.L.; Kowluru, A. Glucotoxicity promotes aberrant activation and mislocalization of ras-related c3 botulinum toxin substrate 1 [rac1] and metabolic dysfunction in pancreatic islet β-cells: Reversal of such metabolic defects by metformin. Apoptosis 2017, 22, 1380–1393. [Google Scholar] [CrossRef] [PubMed]
- Kowluru, A. Protein prenylation in islet β-cell function in health and metabolic stress. Biochem. Pharmacol. 2025, 238, 116994. [Google Scholar] [CrossRef]
- Liu, X.; Jiang, B.; Hao, H.; Liu, Z. Card9 signaling, inflammation, and diseases. Front. Immunol. 2022, 13, 880879. [Google Scholar] [CrossRef]
- Sheng, R.; Zhong, X.; Yang, Z.; Wang, X. The role of card9 deficiency in neutrophils. Mediat. Inflamm. 2021, 2021, 6643603. [Google Scholar] [CrossRef]
- Ruland, J. Card9 signaling in the innate immune response. Ann. N. Y. Acad. Sci. 2008, 1143, 35–44. [Google Scholar] [CrossRef]
- Roth, S.; Ruland, J. Caspase recruitment domain-containing protein 9 signaling in innate immunity and inflammation. Trends Immunol. 2013, 34, 243–250. [Google Scholar] [CrossRef]
- Peterson, M.R.; Haller, S.E.; Ren, J.; Nair, S.; He, G. Card9 as a potential target in cardiovascular disease. Drug Des. Dev. Ther. 2016, 10, 3799–3804. [Google Scholar] [CrossRef]
- Hsu, Y.M.; Zhang, Y.; You, Y.; Wang, D.; Li, H.; Duramad, O.; Qin, X.F.; Dong, C.; Lin, X. The adaptor protein card9 is required for innate immune responses to intracellular pathogens. Nat. Immunol. 2007, 8, 198–205. [Google Scholar] [CrossRef]
- Tian, C.; Tuo, Y.L.; Lu, Y.; Xu, C.R.; Xiang, M. The role of card9 in metabolic diseases. Curr. Med. Sci. 2020, 40, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Hsu, Y.M.; Bi, L.; Songyang, Z.; Lin, X. Card9 facilitates microbe-elicited production of reactive oxygen species by regulating the lygdi-rac1 complex. Nat. Immunol. 2009, 10, 1208–1214. [Google Scholar] [CrossRef] [PubMed]
- Gamage, S.; Hali, M.; Kowluru, A. Card9 mediates glucose-stimulated insulin secretion in pancreatic beta cells. Biochem. Pharmacol. 2021, 192, 114670. [Google Scholar] [CrossRef]
- Gamage, S.; Hali, M.; Chen, F.; Kowluru, A. Card9 mediates pancreatic islet beta-cell dysfunction under the duress of hyperglycemic stress. Cell. Physiol. Biochem. 2022, 56, 120–137. [Google Scholar] [CrossRef]
- Groysman, M.; Russek, C.S.; Katzav, S. Vav, a gdp/gtp nucleotide exchange factor, interacts with gdis, proteins that inhibit gdp/gtp dissociation. FEBS Lett. 2000, 467, 75–80. [Google Scholar] [CrossRef]
- Groysman, M.; Hornstein, I.; Alcover, A.; Katzav, S. Vav1 and ly-gdi two regulators of rho gtpases, function cooperatively as signal transducers in t cell antigen receptor-induced pathways. J. Biol. Chem. 2002, 277, 50121–50130. [Google Scholar] [CrossRef]
- Kowluru, A. Regulatory roles of card9-bcl10-rac1 (cbr) signalome in islet β-cell function in health and metabolic stress: Is there room for malt1? Biochem. Pharmacol. 2023, 218, 115889. [Google Scholar] [CrossRef]
- Zeng, X.; Du, X.; Zhang, J.; Jiang, S.; Liu, J.; Xie, Y.; Shan, W.; He, G.; Sun, Q.; Zhao, J. The essential function of card9 in diet-induced inflammation and metabolic disorders in mice. J. Cell. Mol. Med. 2018, 22, 2993–3004. [Google Scholar] [CrossRef]
- Cao, L.; Qin, X.; Peterson, M.R.; Haller, S.E.; Wilson, K.A.; Hu, N.; Lin, X.; Nair, S.; Ren, J.; He, G. Card9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J. Mol. Cell Cardiol. 2016, 92, 185–195. [Google Scholar] [CrossRef]
- Kowluru, A.; Gamage, S.; Hali, M.; Gleason, N. Hyperglycemic conditions promote rac1-mediated serine536 phosphorylation of p65 subunit of nfκb (rela) in pancreatic beta cells. Cell. Physiol. Biochem. 2022, 56, 367–381. [Google Scholar] [CrossRef]
- Cosentino, C.; Regazzi, R. Crosstalk between macrophages and pancreatic β-cells in islet development, homeostasis and disease. Int. J. Mol. Sci. 2021, 22, 1765. [Google Scholar] [CrossRef]
- Chen, J.; Fei, S.; Chan, L.W.C.; Gan, X.; Shao, B.; Jiang, H.; Li, S.; Kuang, P.; Liu, X.; Yang, S. Inflammatory signaling pathways in pancreatic β-cell: New insights into type 2 diabetes pathogenesis. Pharmacol. Res. 2025, 216, 107776. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.N.; Hnatiuk, A.; Delgadillo-Silva, L.; Geravandi, S.; Sameith, K.; Reinhardt, S.; Bernhardt, K.; Singh, S.P.; Maedler, K.; Brusch, L.; et al. Developmental beta-cell death orchestrates the islet’s inflammatory milieu by regulating immune system crosstalk. EMBO J. 2025, 44, 1131–1153. [Google Scholar] [CrossRef] [PubMed]
- Veluthakal, R.; Arora, D.K.; Goalstone, M.L.; Kowluru, R.A.; Kowluru, A. Metabolic stress induces caspase-3 mediated degradation and inactivation of farnesyl and geranylgeranyl transferase activities in pancreatic β-cells. Cell. Physiol. Biochem. 2016, 39, 2110–2120. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowluru, A.; Wang, J.-M. The RhoGDIβ-Rac1-CARD9 Signaling Module Mediates Islet β-Cell Dysfunction Under Chronic Hyperglycemia. Cells 2025, 14, 1046. https://doi.org/10.3390/cells14141046
Kowluru A, Wang J-M. The RhoGDIβ-Rac1-CARD9 Signaling Module Mediates Islet β-Cell Dysfunction Under Chronic Hyperglycemia. Cells. 2025; 14(14):1046. https://doi.org/10.3390/cells14141046
Chicago/Turabian StyleKowluru, Anjaneyulu, and Jie-Mei Wang. 2025. "The RhoGDIβ-Rac1-CARD9 Signaling Module Mediates Islet β-Cell Dysfunction Under Chronic Hyperglycemia" Cells 14, no. 14: 1046. https://doi.org/10.3390/cells14141046
APA StyleKowluru, A., & Wang, J.-M. (2025). The RhoGDIβ-Rac1-CARD9 Signaling Module Mediates Islet β-Cell Dysfunction Under Chronic Hyperglycemia. Cells, 14(14), 1046. https://doi.org/10.3390/cells14141046