Therapeutic Potential of Bovine Amniotic Membrane in Wound Healing: Insights from a Mouse Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Bovine Amniotic Membrane Preparation
2.3. Wound Area Measurement
2.4. Histopathological Evaluation
2.5. Statistical Analysis
3. Results
3.1. Wound Area
3.2. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
hAM | human amniotic membrane |
BAM | bovine amniotic membrane |
IACUC | Institutional Animal Care and Use Committee |
PBS | phosphate-buffered saline |
SD | standard deviation |
DAPI | 4′,6-diamidino-2-phenylindole |
αSMA | α-smooth muscle actin |
CD4 | cluster of differentiation 4 |
ECM | extracellular matrix |
TGF-β | transforming growth factor-beta |
TNF-α | tumor necrosis factor-alpha |
References
- Guo, S.; Dipietro, L.A. Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Rennert, R.C.; Rodrigues, M.; Wong, V.W.; Duscher, D.; Hu, M.; Maan, Z.; Sorkin, M.; Gurtner, G.C.; Longaker, M.T. Biological therapies for the treatment of cutaneous wounds: Phase III and launched therapies. Expert Opin. Biol. Ther. 2013, 13, 1523–1541. [Google Scholar] [CrossRef]
- Fitriani, N.; Wilar, G.; Narsa, A.C.; Mohammed, A.F.A.; Wathoni, N. Application of Amniotic Membrane in Skin Regeneration. Pharmaceutics 2023, 15, 748. [Google Scholar] [CrossRef]
- Dadkhah Tehrani, F.; Firouzeh, A.; Shabani, I.; Shabani, A. A Review on Modifications of Amniotic Membrane for Biomedical Applications. Front. Bioeng. Biotechnol. 2020, 8, 606982. [Google Scholar] [CrossRef]
- Taghiabadi, E.; Nasri, S.; Shafieyan, S.; Firoozinezhad, S.J.; Aghdami, N. Fabrication and characterization of spongy denuded amniotic membrane based scaffold for tissue engineering. Cell J. 2015, 16, 476–487. [Google Scholar] [PubMed]
- Davis, J. Skin transplantation with a review of 550 cases at the Johns Hopkins Hospital. Johns Hopkins Med. J. 1910, 15, 307–398. [Google Scholar]
- Mermet, I.; Pottier, N.; Sainthillier, J.M.; Malugani, C.; Cairey-Remonnay, S.; Maddens, S.; Riethmuller, D.; Tiberghien, P.; Humbert, P.; Aubin, F. Use of amniotic membrane transplantation in the treatment of venous leg ulcers. Wound Repair. Regen. 2007, 15, 459–464. [Google Scholar] [CrossRef]
- Siswanto, R.; Rizkawati, D.M.; Ifada, A.A.; Putra, A.P.; Rachmayani, F. Bovine freeze dried amniotic membrane (FD-AM) covered sterile gauze for wound dressing. In Proceedings of the ASEAN/Asian Academic Society International Conference Proceeding Series, Bali, Indonesia, 20–24 October 2013. [Google Scholar]
- Yang, Y.; Xie, W.; Li, S.; Sun, X.; Yu, B.; Fu, H.; Chen, M. Splint-free line drawing model: An innovative method for excisional wound models. Int. Wound J. 2023, 20, 2673–2678. [Google Scholar] [CrossRef]
- Roychan, M.; Suroto, H.; Wardhana, T.H.; Chilmi, M.Z.; Widhiyanto, L.; Utomo, B. Comparison of thickness, biomechanical characteristics, and absorption capacity of decellularized freeze-dried amnion membrane from human and bovine sources. J. Med. Pharm. Chem. Res. 2025, 7, 161–171. [Google Scholar]
- Villamil Ballesteros, A.C.; Segura Puello, H.R.; Lopez-Garcia, J.A.; Bernal-Ballen, A.; Nieto Mosquera, D.L.; Munoz Forero, D.M.; Segura Charry, J.S.; Neira Bejarano, Y.A. Bovine decellularized amniotic membrane: Extracellular matrix as scaffold for mammalian skin. Polymers 2020, 12, 590. [Google Scholar] [CrossRef]
- Silini, A.R.; Di Pietro, R.; Lang-Olip, I.; Alviano, F.; Banerjee, A.; Basile, M.; Borutinskaite, V.; Eissner, G.; Gellhaus, A.; Giebel, B. Perinatal derivatives: Where do we stand? A roadmap of the human placenta and consensus for tissue and cell nomenclature. Front. Bioeng. Biotechnol. 2020, 8, 610544. [Google Scholar] [CrossRef] [PubMed]
- Mamede, A.C.; Carvalho, M.J.; Abrantes, A.M.; Laranjo, M.; Maia, C.J.; Botelho, M.F. Amniotic membrane: From structure and functions to clinical applications. Cell Tissue Res. 2012, 349, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Sakuragawa, N.; Yoshikawa, H.; Sasaki, M. Amniotic tissue transplantation: Clinical and biochemical evaluations for some lysosomal storage diseases. Brain Dev. 1992, 14, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Shimmura, S.; Shimazaki, J.; Ohashi, Y.; Tsubota, K. Antiinflammatory effects of amniotic membrane transplantation in ocular surface disorders. Cornea 2001, 20, 408–413. [Google Scholar] [CrossRef]
- Li, H.; Niederkorn, J.Y.; Neelam, S.; Mayhew, E.; Word, R.A.; McCulley, J.P.; Alizadeh, H. Immunosuppressive factors secreted by human amniotic epithelial cells. Investig. Ophthalmol. Vis. Sci. 2005, 46, 900–907. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, D.H.; Hwang, D.G.; Kim, W.S.; Zhang, F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea 2000, 19, 348–352. [Google Scholar] [CrossRef]
- Kang, M.; Choi, S.; Cho Lee, A.R. Effect of freeze dried bovine amniotic membrane extract on full thickness wound healing. Arch. Pharm. Res. 2013, 36, 472–478. [Google Scholar] [CrossRef]
- Bourne, G.L. The microscopic anatomy of the human amnion and chorion. Am. J. Obstet. Gynecol. 1960, 79, 1070–1073. [Google Scholar] [CrossRef]
- Gruss, J.S.; Jirsch, D.W. Human amniotic membrane: A versatile wound dressing. Can. Med. Assoc. J. 1978, 118, 1237–1246. [Google Scholar]
- Dua, H.S.; Gomes, J.A.; King, A.J.; Maharajan, V.S. The amniotic membrane in ophthalmology. Surv. Ophthalmol. 2004, 49, 51–77. [Google Scholar] [CrossRef]
- Park, M.; Kim, S.; Kim, I.S.; Son, D. Healing of a porcine burn wound dressed with human and bovine amniotic membranes. Wound Repair. Regen. 2008, 16, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Dumville, J.C.; Cullum, N.; Connaughton, E.; Norman, G. Compression bandages or stockings versus no compression for treating venous leg ulcers. Cochrane Database Syst. Rev. 2021, 7, CD013397. [Google Scholar] [CrossRef] [PubMed]
- Dissemond, J.; Protz, K.; Stucker, M. Compression therapy in dermatology. J. Dtsch. Dermatol. Ges. 2023, 21, 1003–1019. [Google Scholar] [CrossRef] [PubMed]
- Beidler, S.K.; Douillet, C.D.; Berndt, D.F.; Keagy, B.A.; Rich, P.B.; Marston, W.A. Multiplexed analysis of matrix metalloproteinases in leg ulcer tissue of patients with chronic venous insufficiency before and after compression therapy. Wound Repair. Regen. 2008, 16, 642–648. [Google Scholar] [CrossRef]
- Ramirez, H.; Patel, S.B.; Pastar, I. The Role of TGFβ Signaling in Wound Epithelialization. Adv. Wound Care 2014, 3, 482–491. [Google Scholar] [CrossRef]
- Hosokawa, R.; Urata, M.M.; Ito, Y.; Bringas, P., Jr.; Chai, Y. Functional significance of Smad2 in regulating basal keratinocyte migration during wound healing. J. Investig. Dermatol. 2005, 125, 1302–1309. [Google Scholar] [CrossRef]
- Merkel, J.R.; DiPaolo, B.R.; Hallock, G.G.; Rice, D.C. Type I and type III collagen content of healing wounds in fetal and adult rats. Proc. Soc. Exp. Biol. Med. 1988, 187, 493–497. [Google Scholar] [CrossRef]
- Volk, S.W.; Wang, Y.; Mauldin, E.A.; Liechty, K.W.; Adams, S.L. Diminished type III collagen promotes myofibroblast differentiation and increases scar deposition in cutaneous wound healing. Cells Tissues Organs 2011, 194, 25–37. [Google Scholar] [CrossRef]
- Kim, H.; Son, D.; Choi, T.H.; Jung, S.; Kwon, S.; Kim, J.; Han, K. Evaluation of an amniotic membrane-collagen dermal substitute in the management of full-thickness skin defects in a pig. Arch. Plast. Surg. 2013, 40, 11–18. [Google Scholar] [CrossRef]
- Hinz, B.; Celetta, G.; Tomasek, J.J.; Gabbiani, G.; Chaponnier, C. Alpha-Smooth Muscle Actin Expression Upregulates Fibroblast Contractile Activity. Mol. Biol. Cell 2001, 12, 2730–2741. [Google Scholar] [CrossRef]
- Shinde, A.V.; Humeres, C.; Frangogiannis, N.G. The role of alpha-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 298–309. [Google Scholar] [CrossRef]
- Hinz, B.; Phan, S.H.; Thannickal, V.J.; Prunotto, M.; Desmouliere, A.; Varga, J.; De Wever, O.; Mareel, M.; Gabbiani, G. Recent developments in myofibroblast biology: Paradigms for connective tissue remodeling. Am. J. Pathol. 2012, 180, 1340–1355. [Google Scholar] [CrossRef] [PubMed]
- Laranjeira, P.; Duque, M.; Vojtek, M.; Inácio, M.J.; Silva, I.; Mamede, A.C.; Laranjo, M.; Pedreiro, S.; Carvalho, M.J.; Moura, P.; et al. Amniotic membrane extract differentially regulates human peripheral blood T cell subsets, monocyte subpopulations and myeloid dendritic cells. Cell Tissue Res. 2018, 373, 459–476. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Rosenblatt, M.; Monroy, D.; Ji, Z.; Pflugfelder, S.C.; Tseng, S.C. Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br. J. Ophthalmol. 2001, 85, 444–449. [Google Scholar] [CrossRef]
- He, H.; Li, W.; Chen, S.-Y.; Zhang, S.; Chen, Y.-T.; Hayashida, Y.; Zhu, Y.-T.; Tseng, S.C. Suppression of activation and induction of apoptosis in RAW264. 7 cells by amniotic membrane extract. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4468–4475. [Google Scholar] [CrossRef] [PubMed]
- McQuilling, J.P.; Vines, J.B.; Mowry, K.C. In vitro assessment of a novel, hypothermically stored amniotic membrane for use in a chronic wound environment. Int. Wound J. 2017, 14, 993–1005. [Google Scholar] [CrossRef]
- Avilla-Royo, E.; Gegenschatz-Schmid, K.; Grossmann, J.; Kockmann, T.; Zimmermann, R.; Snedeker, J.G.; Ochsenbein-Kölble, N.; Ehrbar, M. Comprehensive quantitative characterization of the human term amnion proteome. Matrix Biol. Plus 2021, 12, 100084. [Google Scholar] [CrossRef]
- McQuilling, J.P.; Vines, J.B.; Kimmerling, K.A.; Mowry, K.C. Proteomic comparison of amnion and chorion and evaluation of the effects of processing on placental membranes. Wounds Compend. Clin. Res. Pract. 2017, 29, E36–E40. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, D.; Kwon, Y.J.; Kim, C.H.; Han, I.; Hwang, J.-M.; Kim, K.-T. Therapeutic Potential of Bovine Amniotic Membrane in Wound Healing: Insights from a Mouse Model. Cells 2025, 14, 1040. https://doi.org/10.3390/cells14141040
Yu D, Kwon YJ, Kim CH, Han I, Hwang J-M, Kim K-T. Therapeutic Potential of Bovine Amniotic Membrane in Wound Healing: Insights from a Mouse Model. Cells. 2025; 14(14):1040. https://doi.org/10.3390/cells14141040
Chicago/Turabian StyleYu, Dongwoo, Ye Jin Kwon, Chi Heon Kim, Inbo Han, Jong-Moon Hwang, and Kyoung-Tae Kim. 2025. "Therapeutic Potential of Bovine Amniotic Membrane in Wound Healing: Insights from a Mouse Model" Cells 14, no. 14: 1040. https://doi.org/10.3390/cells14141040
APA StyleYu, D., Kwon, Y. J., Kim, C. H., Han, I., Hwang, J.-M., & Kim, K.-T. (2025). Therapeutic Potential of Bovine Amniotic Membrane in Wound Healing: Insights from a Mouse Model. Cells, 14(14), 1040. https://doi.org/10.3390/cells14141040