Radioligands Targeting the Purinergic P2X Receptors
Abstract
1. Introduction
2. ATP and ATP Analogues as P2XR Radioligands
3. ATP Competitive Non-Nucleotide P2XR Radioligands
4. Non-Competitive P2XR Radioligands
4.1. P2X3R Allosteric Modulators as Radioligands
4.2. P2X4R Allosteric Modulators as Radioligands
4.3. P2X7R Allosteric Modulators as Radioligands
Cpd | Kd (nM) | Ki (nM) | IC50 (nM) Ca2+ | IC50 (nM) Pore | LogP a | BBB Perm b | Brain Uptake c | LogVDss d | Fract. unb. e | CYP450 Substrate f | t1/2 Radionucl. | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[3H]1b (20) | 3.46 (h) | - | 15 (h) | - | 5.43 | −1.304 | - | −0.463 | 0.349 | * | 12.3 y | [80] |
[125I]1c (21) | 1.68 (h) | - | - | 0.25 (h) | 5.95 | −0.975 | * | −0.061 | 0.136 | * | 59 d | [81] |
[3H]AZ10606120 (22) | 1.4 (h) 19 (r) | - | - | 10 (h) | 2.74 | −0.515 | ** | 0.835 | 0.238 | * | 12.3 y | [82,84] |
[11C]A-740003 (23) | - | 26.9–37.5 (r) | 40 (h) 18–72.3 (r) 269 (m) | 93 (h) 138 (r) 724 (m) | 3.82 | −1.378 | - | 0.954 | 0.11 | * | 0.3 h | [88,89,90] |
[3H]A-804598 (24) | 2.4–3.1 (r) | 7.59 (r) | 10.9 (h) 9.9–28.7 (r) 8.9 (m) | 8.1 (h) | 3.83 | 0.223 | * | 1.064 | 0.053 | * | 12.3 y | [88,91] |
[18F]EFB (25) | - | - | 1820 (h) 7244 (r) 6026 (m) | - | 3.41 | −0.117 | * | 1.465 | 0.083 | * | 1.8 h | [103] |
[11C]SMW64-D16 (26) | - | 8.5 (h) | 25.7 (h) 1905 (m) | 10.5 (h) | 4.29 | 0.273 | **** | 0.073 | 0 | * | 0.3 h | [105] |
[11C]SMW139 (27) | - | 32 (h) | 24.5 (h) 158 (m) | 33.9 (h) | 4.57 | 0.42 | *** | 0.269 | 0.164 | * | 0.3 h | [105] |
[11C]GSK1482160 (28) | 1.15–5.1 (h) | 2.6–68 (h) | - | 2.1–3.2 (h) 251 (r) | 2.59 | 0.263 | *** | 0.149 | 0.369 | - | 0.3 h | [101,116,118,119,120,121,123,130] |
[18F]GSK1482160 (29) | 4.3 (h) | 2.6–68 (h) | - | 2.1–3.2 (h) 251 (r) | 2.59 | 0.263 | *** | 0.149 | 0.369 | - | 1.8 h | [101,116,118,119,120,121,123,124,130,133] |
[123I]TZ6019 (30) | 19.3 (h) | 6.3 (h) | - | 9.7 (h) | 3.91 | 0.131 | *** | 0.046 | 0.186 | * | 13 h | [130] |
[18F]IUR-1601 (31) | - | 3.7–4.3 (h) | - | 7.9–9.9 (h) | 2.93 | 0.249 | *** | 0.091 | 0.363 | * | 1.8 h | [130,132,133] |
[18F]IUR-1602 (32) | - | 23.6 (h) | - | 17.8 (h) | 3.32 | −0.039 | *** | 0.088 | 0.298 | * | 1.8 h | [132,133] |
[11C]IUR-1801 (33) | - | 54.2 (h) | - | - | 2.08 | −0.036 | *** | −0.224 | 0.358 | - | 0.3 h | [120] |
[11C]IUR-1802 (34) | - | 2.5 (h) | - | - | 2.70 | 0.261 | *** | 0.159 | 0.361 | - | 0.3 h | [120] |
[11C]IUR-1803 (35) | - | 1.9 (h) | - | - | 2.55 | 0.256 | *** | 0.161 | 0.364 | - | 0.3 h | [120] |
[11C]JNJ-54173717 (36) | - | 1.6 (r) | 4.2–7.7 (h) 7.6–10 (r) | - | 3.70 | −1.086 | ** | −0.254 | 0.084 | * | 0.3 h | [95,134] |
[3H]JNJ-54232334 (37) | 4.9 (r) | 0.5 (r) | 0.32 (h) 31.6 (r) | - | 3.45 | −1.396 | ** | −0.208 | 0.083 | * | 12.3 y | [96] |
[18F]JNJ-64413739 (38) | - | 15.9 (h) 2.7 (r) | 1.0 (h) 1.9 (r) | - | 2.19 | −1.593 | ** | −0.755 | 0.198 | * | 1.8 h | [138] |
[3H]JNJ-64413739 (39) | 7 (h) | 15.9 (h) 2.7 (r) | 1.0 (h) 1.9 (r) | - | 2.19 | −1.593 | ** | −0.755 | 0.198 | * | 12.3 y | [139] |
[18F]PTTP (40) | 12.4 (m) | 16 (h) 2.8 (r) | 4.2 (h) 6.8 (r) 4.0 (m) | - | 2.93 | −1.318 | *** | −0.383 | 0.054 | * | 1.8 h | [140,141] |
[18F]FTTM (41) | 25.3 (h) | - | - | - | 2.04 | −1.077 | ** | −0.313 | 0.126 | * | 1.8 h | [142,143] |
5. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Positron emission tomography |
SPECT | Single-photon emission computed tomography |
P2XR | P2X receptor |
AR | Adenosine receptor |
CNS | Central nervous system |
BBB | Blood–brain barrier |
DMPK | Drug metabolism and pharmacokinetics |
MS | Multiple sclerosis |
LPS | Lipopolysaccharide |
EAE | Experimental autoimmune encephalomyelitis |
AD | Alzheimer’s disease |
PD | Parkinson’s disease |
ASL | Amyotrophic lateral sclerosis |
References
- Schmid, R.; Evans, R.J. ATP-Gated P2X Receptor Channels: Molecular Insights into Functional Roles. Annu. Rev. Physiol. 2019, 81, 43–62. [Google Scholar] [CrossRef] [PubMed]
- IJzerman, A.P.; Jacobson, K.A.; Muller, C.E.; Cronstein, B.N.; Cunha, R.A. International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacol. Rev. 2022, 74, 340–372. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.; Vultaggio-Poma, V.; Falzoni, S.; Giuliani, A.L. Extracellular ATP: A powerful inflammatory mediator in the central nervous system. Neuropharmacology 2023, 224, 109333. [Google Scholar] [CrossRef]
- von Kugelgen, I. Molecular pharmacology of P2Y receptor subtypes. Biochem. Pharmacol. 2021, 187, 114361. [Google Scholar] [CrossRef]
- Illes, P.; Muller, C.E.; Jacobson, K.A.; Grutter, T.; Nicke, A.; Fountain, S.J.; Kennedy, C.; Schmalzing, G.; Jarvis, M.F.; Stojilkovic, S.S.; et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br. J. Pharmacol. 2021, 178, 489–514. [Google Scholar] [CrossRef]
- Zheng, Q.H. Radioligands targeting purinergic P2X7 receptor. Bioorg. Med. Chem. Lett. 2020, 30, 127169. [Google Scholar] [CrossRef]
- Di Virgilio, F.; Vultaggio-Poma, V.; Falzoni, S.; Giuliani, A.L. The Coming of Age of the P2X7 Receptor in Diagnostic Medicine. Int. J. Mol. Sci. 2023, 24, 9465. [Google Scholar] [CrossRef]
- Chen, Z.; Haider, A.; Chen, J.; Xiao, Z.; Gobbi, L.; Honer, M.; Grether, U.; Arnold, S.E.; Josephson, L.; Liang, S.H. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J. Med. Chem. 2021, 64, 17656–17689. [Google Scholar] [CrossRef]
- Zarrinmayeh, H.; Territo, P.R. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol. Imaging 2020, 19, 1536012120927609. [Google Scholar] [CrossRef]
- Schmidt, S.; Isaak, A.; Junker, A. Spotlight on P2X7 Receptor PET Imaging: A Bright Target or a Failing Star? Int. J. Mol. Sci. 2023, 24, 1374. [Google Scholar] [CrossRef]
- Montilla, A.; Mata, G.P.; Matute, C.; Domercq, M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int. J. Mol. Sci. 2020, 21, 5562. [Google Scholar] [CrossRef] [PubMed]
- Levin, R.M.; Jacoby, R.; Wein, A.J. Radioligand binding of 3H-ATP to membranes derived from rabbit urinary bladder: A preliminary report. Neurourol. Urodyn. 1982, 1, 227–232. [Google Scholar] [CrossRef]
- Levin, R.M.; Jacoby, R.; Wein, A.J. High-affinity, divalent ion-specific binding of 3H-ATP to homogenate derived from rabbit urinary bladder. Comparison with divalent-ion ATPase activity. Mol. Pharmacol. 1983, 23, 1–7. [Google Scholar] [CrossRef]
- Yegutkin, G.G.; Burnstock, G. Steady-state binding of [3H]ATP to rat liver plasma membranes and competition by various purinergic agonists and antagonists. Biochim. Biophys. Acta 1998, 1373, 227–236. [Google Scholar] [CrossRef]
- Bo, X.N.; Burnstock, G. [3H]-α,β-methylene ATP, a radioligand labelling P2-purinoceptors. J. Auton. Nerv. Syst. 1989, 28, 85–88. [Google Scholar] [CrossRef]
- Bo, X.; Burnstock, G. Species differences in characteristics and distribution of [3H]-α,β-methylene ATP binding sites in urinary bladder and urethra of rat, guinea-pig and rabbit. Eur. J. Pharmacol. 1992, 216, 59–66. [Google Scholar] [CrossRef]
- Bo, X.; Burnstock, G. Characterization and autoradiographic localization of [3H]α,β-methylene adenosine 5′-triphosphate binding sites in human urinary bladder. Br. J. Urol. 1995, 76, 297–302. [Google Scholar] [CrossRef]
- Zhao, M.; Bo, X.; Neely, C.F.; Burnstock, G. Characterization and autoradiographic localization of [3H]α,β-methylene ATP binding sites in cat urinary bladder. Gen. Pharmacol. 1996, 27, 509–512. [Google Scholar] [CrossRef]
- Bo, X.N.; Burnstock, G. High- and low-affinity binding sites for [3H]-α,β-methylene ATP in rat urinary bladder membranes. Br. J. Pharmacol. 1990, 101, 291–296. [Google Scholar] [CrossRef]
- Bo, X.; Burnstock, G. Triphosphate, the key structure of the ATP molecule responsible for interaction with P2X-purinoceptors. Gen. Pharmacol. 1993, 24, 637–640. [Google Scholar] [CrossRef]
- Bo, X.; Fischer, B.; Maillard, M.; Jacobson, K.A.; Burnstock, G. Comparative studies on the affinities of ATP derivatives for P2X-purinoceptors in rat urinary bladder. Br. J. Pharmacol. 1994, 112, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ziganshin, A.U.; Hoyle, C.H.; Bo, X.; Lambrecht, G.; Mutschler, E.; Baumert, H.G.; Burnstock, G. PPADS selectively antagonizes P2X-purinoceptor-mediated responses in the rabbit urinary bladder. Br. J. Pharmacol. 1993, 110, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.D.; Humphrey, P.P. Distribution and characterisation of [3H]α,β-methylene ATP binding sites in the rat. Naunyn Schmiedebergs Arch. Pharmacol. 1993, 348, 608–617. [Google Scholar] [CrossRef]
- Bo, X.; Burnstock, G. Distribution of [3H]α,β-methylene ATP binding sites in rat brain and spinal cord. Neuroreport 1994, 5, 1601–1604. [Google Scholar] [CrossRef]
- Bo, X.; Simon, J.; Burnstock, G.; Barnard, E.A. Solubilization and molecular size determination of the P2X purinoceptor from rat vas deferens. J. Biol. Chem. 1992, 267, 17581–17587. [Google Scholar] [CrossRef]
- Michel, A.D.; Humphrey, P.P. Effects of metal cations on [3H]α,β-methylene ATP binding in rat vas deferens. Naunyn Schmiedeberg’s Arch. Pharmacol. 1994, 350, 113–122. [Google Scholar] [CrossRef]
- Khakh, B.S.; Michel, A.; Humphrey, P.P. Estimates of antagonist affinities at P2X purinoceptors in rat vas deferens. Eur. J. Pharmacol. 1994, 263, 301–309. [Google Scholar] [CrossRef]
- Michel, A.D.; Lundstrom, K.; Buell, G.N.; Surprenant, A.; Valera, S.; Humphrey, P.P. The binding characteristics of a human bladder recombinant P2X purinoceptor, labelled with [3H]-α,βmeATP, [35S]-ATPγS or [33P]-ATP. Br. J. Pharmacol. 1996, 117, 1254–1260. [Google Scholar] [CrossRef]
- Michel, A.D.; Humphrey, P.P. High affinity P2x-purinoceptor binding sites for [35S]-adenosine 5′-O-[3-thiotriphosphate] in rat vas deferens membranes. Br. J. Pharmacol. 1996, 117, 63–70. [Google Scholar] [CrossRef]
- Bo, X.; Burnstock, G. Heterogeneous distribution of [3H]α,β-methylene ATP binding sites in blood vessels. J. Vasc. Res. 1993, 30, 87–101. [Google Scholar] [CrossRef]
- Michel, A.D.; Chau, N.M.; Fan, T.P.; Frost, E.E.; Humphrey, P.P. Evidence that [3H]-α,β-methylene ATP may label an endothelial-derived cell line 5′-nucleotidase with high affinity. Br. J. Pharmacol. 1995, 115, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Bo, X.; Burnstock, G. Distribution of [3H]α,β-methylene ATP binding sites in pulmonary blood vessels of different species. Pulm. Pharmacol. 1996, 9, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Sexton, A.; Xiang, Z.; Nori, S.L.; Burnstock, G. Pharmacological and histochemical evidence for P2X receptors in human umbilical vessels. Eur. J. Pharmacol. 1998, 353, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Bo, X.; Karoon, P.; Nori, S.L.; Bardini, M.; Burnstock, G. P2X purinoceptors in postmortem human cerebral arteries. J. Cardiovasc. Pharmacol. 1998, 31, 794–799. [Google Scholar] [CrossRef]
- Mockett, B.G.; Bo, X.; Housley, G.D.; Thorne, P.R.; Burnstock, G. Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea. Hear. Res. 1995, 84, 177–193. [Google Scholar] [CrossRef]
- Butlen, D.; Bernard, C.; Ferrary, E. Pharmacological characterization of ATP receptors in ampulla from frog semicircular canal. Am. J. Physiol. 1998, 275, R253–R261. [Google Scholar] [CrossRef]
- Balcar, V.J.; Li, Y.; Killinger, S.; Bennett, M.R. Autoradiography of P2X ATP receptors in the rat brain. Br. J. Pharmacol. 1995, 115, 302–306. [Google Scholar] [CrossRef]
- Tuyau, M.; Hansen, M.A.; Coleman, M.J.; Dampney, R.A.; Balcar, V.J.; Bennett, M.R. Autoradiography of [3H]α,β-methylene-ATP binding sites in medulla oblongata and spinal cord of the rat. Neurochem. Int. 1997, 30, 159–169. [Google Scholar] [CrossRef]
- Hori, S.; Kawamura, M. Characterization of α,β-methylene ATP binding sites in mouse crude synaptic membranes. Brain Res. Bull. 1997, 43, 59–63. [Google Scholar] [CrossRef]
- Schafer, R.; Reiser, G. Characterization of [35S]-ATPαS and [3H]α,β-MeATP binding sites in rat brain cortical synaptosomes: Regulation of ligand binding by divalent cations. Br. J. Pharmacol. 1997, 121, 913–922. [Google Scholar] [CrossRef]
- Worthington, R.A.; Hansen, M.A.; Bennett, M.R.; Barden, J.A.; Balcar, V.J. Ligand recognition sites on P2X receptors studied by quantitative autoradiography of [3H]α,β-methylene-ATP binding in rat brain. Biochem. Biophys. Res. Commun. 1998, 249, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.; Leff, P. How should P2X purinoceptors be classified pharmacologically? Trends Pharmacol. Sci. 1995, 16, 168–174. [Google Scholar] [CrossRef]
- Michel, A.D.; Lundstrom, K.; Buell, G.N.; Surprenant, A.; Valera, S.; Humphrey, P.P. A comparison of the binding characteristics of recombinant P2X1 and P2X2 purinoceptors. Br. J. Pharmacol. 1996, 118, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Buell, G.; Michel, A.D.; Lewis, C.; Collo, G.; Humphrey, P.P.; Surprenant, A. P2X1 receptor activation in HL60 cells. Blood 1996, 87, 2659–2664. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.D.; Miller, K.J.; Lundstrom, K.; Buell, G.N.; Humphrey, P.P. Radiolabeling of the rat P2X4 purinoceptor: Evidence for allosteric interactions of purinoceptor antagonists and monovalent cations with P2X purinoceptors. Mol. Pharmacol. 1997, 51, 524–532. [Google Scholar] [CrossRef]
- North, R.A.; Barnard, E.A. Nucleotide receptors. Curr. Opin. Neurobiol. 1997, 7, 346–357. [Google Scholar] [CrossRef]
- Radford, K.M.; Virginio, C.; Surprenant, A.; North, R.A.; Kawashima, E. Baculovirus expression provides direct evidence for heteromeric assembly of P2X2 and P2X3 receptors. J. Neurosci. 1997, 17, 6529–6533. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Jarvis, M.F.; Williams, M. Purine and pyrimidine (P2) receptors as drug targets. J. Med. Chem. 2002, 45, 4057–4093. [Google Scholar] [CrossRef]
- Kageyama, A.; Fujino, T.; Taki, Y.; Kato, Y.; Nozawa, Y.; Ito, Y.; Yamada, S. Alteration of muscarinic and purinergic receptors in urinary bladder of rats with cyclophosphamide-induced interstitial cystitis. Neurosci. Lett. 2008, 436, 81–84. [Google Scholar] [CrossRef]
- Ito, Y.; Seki, M.; Nishioka, Y.; Kimura, M.; Yasuda, A.; Kirimoto, T.; Yasuda, T.; Yamada, S. Pharmacological effects of Hachi-mi-jio-gan extract (Harncare) on the contractile response and on pharmacologically relevant receptors in the rat bladder. Yakugaku Zasshi 2009, 129, 957–964. [Google Scholar] [CrossRef]
- Yoshida, A.; Kageyama, A.; Fujino, T.; Nozawa, Y.; Yamada, S. Loss of muscarinic and purinergic receptors in urinary bladder of rats with hydrochloric acid-induced cystitis. Urology 2010, 76, 1017.e7–1017.e12. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Masuda, E.; Kugaya, H.; Osano, A.; Ito, Y.; Yamada, S. Effects of Saw Palmetto Extract on Urodynamic Parameters, Bladder Muscarinic and Purinergic Receptors and Urinary Cytokines in Rats with Cyclophosphamide-Induced Cystitis. Low. Urin. Tract. Symptoms 2014, 6, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Ogoda, M.; Ito, Y.; Fuchihata, Y.; Onoue, S.; Yamada, S. Characterization of muscarinic and P2X receptors in the urothelium and detrusor muscle of the rat bladder. J. Pharmacol. Sci. 2016, 131, 58–63. [Google Scholar] [CrossRef]
- Yoshizawa, T.; Hayashi, Y.; Yoshida, A.; Yoshida, S.; Ito, Y.; Yamaguchi, K.; Yamada, S.; Takahashi, S. Concomitant alteration in number and affinity of P2X and muscarinic receptors are associated with bladder dysfunction in early stage of diabetic rats. Int. Urol. Nephrol. 2018, 50, 451–458. [Google Scholar] [CrossRef]
- Varani, K.; Surprenant, A.; Vincenzi, F.; Tosi, A.; Gessi, S.; Merighi, S.; Borea, P.A. Binding thermodynamic characterization of human P2X(1) and P2X(3) purinergic receptors. Biochem. Pharmacol. 2008, 75, 1198–1208. [Google Scholar] [CrossRef]
- Trujillo, C.A.; Nery, A.A.; Martins, A.H.; Majumder, P.; Gonzalez, F.A.; Ulrich, H. Inhibition mechanism of the recombinant rat P2X2 receptor in glial cells by suramin and TNP-ATP. Biochemistry 2006, 45, 224–233. [Google Scholar] [CrossRef]
- Virginio, C.; Robertson, G.; Surprenant, A.; North, R.A. Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol. Pharmacol. 1998, 53, 969–973. [Google Scholar] [CrossRef]
- Neelands, T.R.; Burgard, E.C.; Uchic, M.E.; McDonald, H.A.; Niforatos, W.; Faltynek, C.R.; Lynch, K.J.; Jarvis, M.F. 2′, 3′-O-(2,4,6,trinitrophenyl)-ATP and A-317491 are competitive antagonists at a slowly desensitizing chimeric human P2X3 receptor. Br. J. Pharmacol. 2003, 140, 202–210. [Google Scholar] [CrossRef]
- Woodbury, D.J.; Whitt, E.C.; Coffman, R.E. A review of TNP-ATP in protein binding studies: Benefits and pitfalls. Biophys. Rep. 2021, 1, 100012. [Google Scholar] [CrossRef]
- Jarvis, M.F.; Burgard, E.C.; McGaraughty, S.; Honore, P.; Lynch, K.; Brennan, T.J.; Subieta, A.; Van Biesen, T.; Cartmell, J.; Bianchi, B.; et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc. Natl. Acad. Sci. USA 2002, 99, 17179–17184. [Google Scholar] [CrossRef]
- McGaraughty, S.; Wismer, C.T.; Zhu, C.Z.; Mikusa, J.; Honore, P.; Chu, K.L.; Lee, C.H.; Faltynek, C.R.; Jarvis, M.F. Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br. J. Pharmacol. 2003, 140, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Fukui, M.; Nakagawa, T.; Minami, M.; Satoh, M.; Kaneko, S. Inhibitory role of supraspinal P2X3/P2X2/3 subtypes on nociception in rats. Mol. Pain 2006, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Sharp, C.J.; Reeve, A.J.; Collins, S.D.; Martindale, J.C.; Summerfield, S.G.; Sargent, B.S.; Bate, S.T.; Chessell, I.P. Investigation into the role of P2X(3)/P2X(2/3) receptors in neuropathic pain following chronic constriction injury in the rat: An electrophysiological study. Br. J. Pharmacol. 2006, 148, 845–852. [Google Scholar] [CrossRef]
- Wang, Y.; Li, G.; Liang, S.; Zhang, A.; Xu, C.; Gao, Y.; Zhang, C.; Wan, F. Role of P2X(3) receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton. Neurosci. 2008, 139, 30–37. [Google Scholar] [CrossRef]
- Mansoor, S.E.; Lu, W.; Oosterheert, W.; Shekhar, M.; Tajkhorshid, E.; Gouaux, E. X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 2016, 538, 66–71. [Google Scholar] [CrossRef]
- Jarvis, M.F.; Bianchi, B.; Uchic, J.T.; Cartmell, J.; Lee, C.H.; Williams, M.; Faltynek, C. [3H]A-317491, a novel high-affinity non-nucleotide antagonist that specifically labels human P2X2/3 and P2X3 receptors. J. Pharmacol. Exp. Ther. 2004, 310, 407–416. [Google Scholar] [CrossRef]
- McGaraughty, S.; Honore, P.; Wismer, C.T.; Mikusa, J.; Zhu, C.Z.; McDonald, H.A.; Bianchi, B.; Faltynek, C.R.; Jarvis, M.F. Endogenous opioid mechanisms partially mediate P2X3/P2X2/3-related antinociception in rat models of inflammatory and chemogenic pain but not neuropathic pain. Br. J. Pharmacol. 2005, 146, 180–188. [Google Scholar] [CrossRef]
- Wei, Z.-L.; Kincaid, J.; Kelly, M.G.; O’Mahony, D.; Kaub, C. Pyrid-2yl Fused Heterocyclic Compounds, and Compositions and Uses Thereof. Patent WO/2008/123963, 16 October 2008. [Google Scholar]
- Marucci, G.; Dal Ben, D.; Buccioni, M.; Marti Navia, A.; Spinaci, A.; Volpini, R.; Lambertucci, C. Update on novel purinergic P2X3 and P2X2/3 receptor antagonists and their potential therapeutic applications. Expert Opin. Ther. Pat. 2019, 29, 943–963. [Google Scholar] [CrossRef]
- Spinaci, A.; Buccioni, M.; Dal Ben, D.; Marucci, G.; Volpini, R.; Lambertucci, C. P2X3 Receptor Ligands: Structural Features and Potential Therapeutic Applications. Front. Pharmacol. 2021, 12, 653561. [Google Scholar] [CrossRef]
- Ford, A.P.; Gever, J.R.; Nunn, P.A.; Zhong, Y.; Cefalu, J.S.; Dillon, M.P.; Cockayne, D.A. Purinoceptors as therapeutic targets for lower urinary tract dysfunction. Br. J. Pharmacol. 2006, 147 (Suppl. S2), S132–S143. [Google Scholar] [CrossRef]
- Gever, J.R.; Soto, R.; Henningsen, R.A.; Martin, R.S.; Hackos, D.H.; Panicker, S.; Rubas, W.; Oglesby, I.B.; Dillon, M.P.; Milla, M.E.; et al. AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. Br. J. Pharmacol. 2010, 160, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Gefapixant: First Approval. Drugs 2022, 82, 691–695. [Google Scholar] [CrossRef] [PubMed]
- Federico, S. Towards P2X4 Positron Emission Tomography Tracing. J. Med. Chem. 2025, 68, 6961–6964. [Google Scholar] [CrossRef] [PubMed]
- Bidula, S.; Nadzirin, I.B.; Cominetti, M.; Hickey, H.; Cullum, S.A.; Searcey, M.; Schmid, R.; Fountain, S.J. Structural Basis of the Negative Allosteric Modulation of 5-BDBD at Human P2X4 Receptors. Mol. Pharmacol. 2022, 101, 33–44. [Google Scholar] [CrossRef]
- Coddou, C.; Sandoval, R.; Hevia, M.J.; Stojilkovic, S.S. Characterization of the antagonist actions of 5-BDBD at the rat P2X4 receptor. Neurosci. Lett. 2019, 690, 219–224. [Google Scholar] [CrossRef]
- Wang, M.; Gao, M.; Meyer, J.A.; Peters, J.S.; Zarrinmayeh, H.; Territo, P.R.; Hutchins, G.D.; Zheng, Q.H. Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor. Bioorg. Med. Chem. 2017, 25, 3835–3844. [Google Scholar] [CrossRef]
- Nagel, J.; Tormakangas, O.; Kuokkanen, K.; El-Tayeb, A.; Messinger, J.; Abdelrahman, A.; Bous, C.; Schiedel, A.C.; Muller, C.E. Preparation and preliminary evaluation of a tritium-labeled allosteric P2X4 receptor antagonist. Purinergic Signal. 2024, 20, 645–656. [Google Scholar] [CrossRef]
- Erlitz, K.S.; Prinz, A.K.; Wagner, S.; Massa, J.; Dunker, C.; Hohl, M.; Griep, A.; McManus, R.M.; Schelhaas, S.; Koch, O.; et al. Naphtho[1,2-b][1,4]diazepinedione-Based P2X4 Receptor Antagonists from Structure-Activity Relationship Studies toward PET Tracer Development. J. Med. Chem. 2025, 68, 6965–7002. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Pavani, M.G.; Tabrizi, M.A.; Moorman, A.R.; Di Virgilio, F.; Cattabriga, E.; Pancaldi, C.; Gessi, S.; Borea, P.A. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor. Bioorg. Med. Chem. Lett. 2004, 14, 5709–5712. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, J.; Tewari, M.; Rensing, D.T.; Egan, T.M.; Perlmutter, J.S.; Tu, Z. Synthesis and in vitro evaluation of novel compounds and discovery of a promising iodine-125 radioligand for purinergic P2X7 receptor (P2X7R). Bioorg. Med. Chem. 2025, 118, 118054. [Google Scholar] [CrossRef]
- Michel, A.D.; Chambers, L.J.; Clay, W.C.; Condreay, J.P.; Walter, D.S.; Chessell, I.P. Direct labelling of the human P2X7 receptor and identification of positive and negative cooperativity of binding. Br. J. Pharmacol. 2007, 151, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Michel, A.D.; Fonfria, E. Agonist potency at P2X7 receptors is modulated by structurally diverse lipids. Br. J. Pharmacol. 2007, 152, 523–537. [Google Scholar] [CrossRef]
- Michel, A.D.; Chambers, L.J.; Walter, D.S. Negative and positive allosteric modulators of the P2X7 receptor. Br. J. Pharmacol. 2008, 153, 737–750. [Google Scholar] [CrossRef]
- Michel, A.D.; Clay, W.C.; Ng, S.W.; Roman, S.; Thompson, K.; Condreay, J.P.; Hall, M.; Holbrook, J.; Livermore, D.; Senger, S. Identification of regions of the P2X7 receptor that contribute to human and rat species differences in antagonist effects. Br. J. Pharmacol. 2008, 155, 738–751. [Google Scholar] [CrossRef]
- Michel, A.D.; Ng, S.W.; Roman, S.; Clay, W.C.; Dean, D.K.; Walter, D.S. Mechanism of action of species-selective P2X7 receptor antagonists. Br. J. Pharmacol. 2009, 156, 1312–1325. [Google Scholar] [CrossRef]
- Honore, P.; Donnelly-Roberts, D.; Namovic, M.T.; Hsieh, G.; Zhu, C.Z.; Mikusa, J.P.; Hernandez, G.; Zhong, C.; Gauvin, D.M.; Chandran, P.; et al. A-740003 [N-(1-{[(cyanoimino)(5-quinolinylamino) methyl]amino}-2,2-dimethylpropyl)-2-(3,4-dimethoxyphenyl)acetamide], a novel and selective P2X7 receptor antagonist, dose-dependently reduces neuropathic pain in the rat. J. Pharmacol. Exp. Ther. 2006, 319, 1376–1385. [Google Scholar] [CrossRef]
- Able, S.L.; Fish, R.L.; Bye, H.; Booth, L.; Logan, Y.R.; Nathaniel, C.; Hayter, P.; Katugampola, S.D. Receptor localization, native tissue binding and ex vivo occupancy for centrally penetrant P2X7 antagonists in the rat. Br. J. Pharmacol. 2011, 162, 405–414. [Google Scholar] [CrossRef]
- Donnelly-Roberts, D.L.; Namovic, M.T.; Han, P.; Jarvis, M.F. Mammalian P2X7 receptor pharmacology: Comparison of recombinant mouse, rat and human P2X7 receptors. Br. J. Pharmacol. 2009, 157, 1203–1214. [Google Scholar] [CrossRef]
- Janssen, B.; Vugts, D.J.; Funke, U.; Spaans, A.; Schuit, R.C.; Kooijman, E.; Rongen, M.; Perk, L.R.; Lammertsma, A.A.; Windhorst, A.D. Synthesis and initial preclinical evaluation of the P2X7 receptor antagonist [11C]A-740003 as a novel tracer of neuroinflammation. J. Label. Comp. Radiopharm. 2014, 57, 509–516. [Google Scholar] [CrossRef]
- Donnelly-Roberts, D.L.; Namovic, M.T.; Surber, B.; Vaidyanathan, S.X.; Perez-Medrano, A.; Wang, Y.; Carroll, W.A.; Jarvis, M.F. [3H]A-804598 ([3H]2-cyano-1-[(1S)-1-phenylethyl]-3-quinolin-5-ylguanidine) is a novel, potent, and selective antagonist radioligand for P2X7 receptors. Neuropharmacology 2009, 56, 223–229. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Wang, Q.; Ao, H.; Shoblock, J.R.; Lord, B.; Aluisio, L.; Fraser, I.; Nepomuceno, D.; Neff, R.A.; Welty, N.; et al. Pharmacological characterization of a novel centrally permeable P2X7 receptor antagonist: JNJ-47965567. Br. J. Pharmacol. 2013, 170, 624–640. [Google Scholar] [CrossRef] [PubMed]
- Letavic, M.A.; Lord, B.; Bischoff, F.; Hawryluk, N.A.; Pieters, S.; Rech, J.C.; Sales, Z.; Velter, A.I.; Ao, H.; Bonaventure, P.; et al. Synthesis and Pharmacological Characterization of Two Novel, Brain Penetrating P2X7 Antagonists. ACS Med. Chem. Lett. 2013, 4, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Lord, B.; Aluisio, L.; Shoblock, J.R.; Neff, R.A.; Varlinskaya, E.I.; Ceusters, M.; Lovenberg, T.W.; Carruthers, N.; Bonaventure, P.; Letavic, M.A.; et al. Pharmacology of a novel central nervous system-penetrant P2X7 antagonist JNJ-42253432. J. Pharmacol. Exp. Ther. 2014, 351, 628–641. [Google Scholar] [CrossRef]
- Rudolph, D.A.; Alcazar, J.; Ameriks, M.K.; Anton, A.B.; Ao, H.; Bonaventure, P.; Carruthers, N.I.; Chrovian, C.C.; De Angelis, M.; Lord, B.; et al. Novel methyl substituted 1-(5,6-dihydro-[1,2,4]triazolo[4,3-a]pyrazin-7(8H)-yl)methanones are P2X7 antagonists. Bioorg. Med. Chem. Lett. 2015, 25, 3157–3163. [Google Scholar] [CrossRef] [PubMed]
- Lord, B.; Ameriks, M.K.; Wang, Q.; Fourgeaud, L.; Vliegen, M.; Verluyten, W.; Haspeslagh, P.; Carruthers, N.I.; Lovenberg, T.W.; Bonaventure, P.; et al. A novel radioligand for the ATP-gated ion channel P2X7: [3H] JNJ-54232334. Eur. J. Pharmacol. 2015, 765, 551–559. [Google Scholar] [CrossRef]
- Savall, B.M.; Wu, D.; De Angelis, M.; Carruthers, N.I.; Ao, H.; Wang, Q.; Lord, B.; Bhattacharya, A.; Letavic, M.A. Synthesis, SAR, and Pharmacological Characterization of Brain Penetrant P2X7 Receptor Antagonists. ACS Med. Chem. Lett. 2015, 6, 671–676. [Google Scholar] [CrossRef]
- Swanson, D.M.; Savall, B.M.; Coe, K.J.; Schoetens, F.; Koudriakova, T.; Skaptason, J.; Wall, J.; Rech, J.; Deng, X.; De Angelis, M.; et al. Identification of (R)-(2-Chloro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyridin-2-yl)-4-methyl-6,7-dihydro-1H-imidazo [4,5-c]pyridin-5(4H)-yl)methanone (JNJ 54166060), a Small Molecule Antagonist of the P2X7 receptor. J. Med. Chem. 2016, 59, 8535–8548. [Google Scholar] [CrossRef]
- Chrovian, C.C.; Soyode-Johnson, A.; Ao, H.; Bacani, G.M.; Carruthers, N.I.; Lord, B.; Nguyen, L.; Rech, J.C.; Wang, Q.; Bhattacharya, A.; et al. Novel Phenyl-Substituted 5,6-Dihydro-[1,2,4]triazolo[4,3-a]pyrazine P2X7 Antagonists with Robust Target Engagement in Rat Brain. ACS Chem. Neurosci. 2016, 7, 490–497. [Google Scholar] [CrossRef]
- Letavic, M.A.; Savall, B.M.; Allison, B.D.; Aluisio, L.; Andres, J.I.; De Angelis, M.; Ao, H.; Beauchamp, D.A.; Bonaventure, P.; Bryant, S.; et al. 4-Methyl-6,7-dihydro-4H-triazolo[4,5-c]pyridine-Based P2X7 Receptor Antagonists: Optimization of Pharmacokinetic Properties Leading to the Identification of a Clinical Candidate. J. Med. Chem. 2017, 60, 4559–4572. [Google Scholar] [CrossRef]
- Homerin, G.; Jawhara, S.; Dezitter, X.; Baudelet, D.; Dufrenoy, P.; Rigo, B.; Millet, R.; Furman, C.; Rage, G.; Lipka, E.; et al. Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. J. Med. Chem. 2020, 63, 2074–2094. [Google Scholar] [CrossRef]
- Hopper, A.T.; Juhl, M.; Hornberg, J.; Badolo, L.; Kilburn, J.P.; Thougaard, A.; Smagin, G.; Song, D.; Calice, L.; Menon, V.; et al. Synthesis and Characterization of the Novel Rodent-Active and CNS-Penetrant P2X7 Receptor Antagonist Lu AF27139. J. Med. Chem. 2021, 64, 4891–4902. [Google Scholar] [CrossRef] [PubMed]
- Fantoni, E.R.; Dal Ben, D.; Falzoni, S.; Di Virgilio, F.; Lovestone, S.; Gee, A. Design, synthesis and evaluation in an LPS rodent model of neuroinflammation of a novel 18F-labelled PET tracer targeting P2X7. EJNMMI Res. 2017, 7, 31. [Google Scholar] [CrossRef]
- Baxter, A.; Bent, J.; Bowers, K.; Braddock, M.; Brough, S.; Fagura, M.; Lawson, M.; McInally, T.; Mortimore, M.; Robertson, M.; et al. Hit-to-Lead studies: The discovery of potent adamantane amide P2X7 receptor antagonists. Bioorg. Med. Chem. Lett. 2003, 13, 4047–4050. [Google Scholar] [CrossRef]
- Wilkinson, S.M.; Barron, M.L.; O’Brien-Brown, J.; Janssen, B.; Stokes, L.; Werry, E.L.; Chishty, M.; Skarratt, K.K.; Ong, J.A.; Hibbs, D.E.; et al. Pharmacological Evaluation of Novel Bioisosteres of an Adamantanyl Benzamide P2X7 Receptor Antagonist. ACS Chem. Neurosci. 2017, 8, 2374–2380. [Google Scholar] [CrossRef]
- Janssen, B.; Vugts, D.J.; Wilkinson, S.M.; Ory, D.; Chalon, S.; Hoozemans, J.J.M.; Schuit, R.C.; Beaino, W.; Kooijman, E.J.M.; van den Hoek, J.; et al. Identification of the allosteric P2X7 receptor antagonist [11C]SMW139 as a PET tracer of microglial activation. Sci. Rep. 2018, 8, 6580. [Google Scholar] [CrossRef]
- Janssen, B.; Ory, D.; Wilkinson, S.M.; Vugts, D.J.; Kooijman, E.J.; Verbeek, J.; Funke, U.; Molenaar, G.T.; Kruijer, O.S.; Lammertsma, A.A.; et al. Initial evaluation of P2X7R antagonists [11C]A-740003 and [11C]SMW64-D16 as PET tracers of microglial activation in neuroinflammation. J. Label. Compd. Radiopharm. 2015, 58, S277. [Google Scholar] [CrossRef]
- Aarnio, R.; Alzghool, O.M.; Wahlroos, S.; O’Brien-Brown, J.; Kassiou, M.; Solin, O.; Rinne, J.O.; Forsback, S.; Haaparanta-Solin, M. Novel plasma protein binding analysis method for a PET tracer and its radiometabolites: A case study with [11C]SMW139 to explain the high uptake of radiometabolites in mouse brain. J. Pharm. Biomed. Anal. 2022, 219, 114860. [Google Scholar] [CrossRef]
- Brumberg, J.; Aarnio, R.; Forsberg, A.; Marjamaki, P.; Kerstens, V.; Moein, M.M.; Nag, S.; Wahlroos, S.; Kassiou, M.; Windhorst, A.D.; et al. Quantification of the purinergic P2X7 receptor with [11C]SMW139 improves through correction for brain-penetrating radiometabolites. J. Cereb. Blood Flow Metab. 2023, 43, 258–268. [Google Scholar] [CrossRef]
- Alzghool, O.M.; Aarnio, R.; Helin, J.S.; Wahlroos, S.; Keller, T.; Matilainen, M.; Solis, J.; Danon, J.J.; Kassiou, M.; Snellman, A.; et al. Glial reactivity in a mouse model of beta-amyloid deposition assessed by PET imaging of P2X7 receptor and TSPO using [11C]SMW139 and [18F]F-DPA. EJNMMI Res. 2024, 14, 25. [Google Scholar] [CrossRef]
- Moein, M.M.; Toth, M.; Tari, L.; Varrone, A.; Abdel-Rehim, M.; Halldin, C. New approach in radiometabolite analysis of positron emission tomography (PET) radioligands; lead-shielded microextraction by packed sorbent as a tool for in vivo radiometabolite analysis of [11C]SMW139 in rat plasma. Talanta 2020, 208, 120449. [Google Scholar] [CrossRef]
- Beaino, W.; Janssen, B.; Kooijman, E.; Vos, R.; Schuit, R.C.; O’Brien-Brown, J.; Kassiou, M.; van Het Hof, B.; Vugts, D.J.; de Vries, H.E.; et al. PET imaging of P2X7R in the experimental autoimmune encephalomyelitis model of multiple sclerosis using [11C]SMW139. J. Neuroinflamm. 2020, 17, 300. [Google Scholar] [CrossRef] [PubMed]
- Hagens, M.H.J.; Golla, S.S.V.; Janssen, B.; Vugts, D.J.; Beaino, W.; Windhorst, A.D.; O’Brien-Brown, J.; Kassiou, M.; Schuit, R.C.; Schwarte, L.A.; et al. The P2X7 receptor tracer [11C]SMW139 as an in vivo marker of neuroinflammation in multiple sclerosis: A first-in man study. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Lehto, J.; Aarnio, R.; Tuisku, J.; Sucksdorff, M.; Koivumaki, E.M.; Nylund, M.; Helin, S.; Rajander, J.; Danon, J.; Gilchrist, J.; et al. P2X7-receptor binding in new-onset and secondary progressive MS—A [11C]SMW139 PET study. EJNMMI Res. 2024, 14, 123. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trial: Multimodal Imaging of MS Reveals the Smoldering Inflammation (PLAQ-MS). Available online: https://clinicaltrials.gov/study/NCT04126772 (accessed on 31 May 2025).
- Abdi, M.H.; Beswick, P.J.; Billinton, A.; Chambers, L.J.; Charlton, A.; Collins, S.D.; Collis, K.L.; Dean, D.K.; Fonfria, E.; Gleave, R.J.; et al. Discovery and structure-activity relationships of a series of pyroglutamic acid amide antagonists of the P2X7 receptor. Bioorg. Med. Chem. Lett. 2010, 20, 5080–5084. [Google Scholar] [CrossRef]
- Clinical Trial: First Time in Human Study Evaluating the Safety, Tolerability, Pharmacokinetics, Pharmacodynamics and the Effect of Food of Single Assending Doses of GSK1482160. Available online: https://clinicaltrials.gov/study/NCT00849134 (accessed on 31 May 2025).
- Ali, Z.; Laurijssens, B.; Ostenfeld, T.; McHugh, S.; Stylianou, A.; Scott-Stevens, P.; Hosking, L.; Dewit, O.; Richardson, J.C.; Chen, C. Pharmacokinetic and pharmacodynamic profiling of a P2X7 receptor allosteric modulator GSK1482160 in healthy human subjects. Br. J. Clin. Pharmacol. 2013, 75, 197–207. [Google Scholar] [CrossRef]
- Territo, P.R.; Meyer, J.A.; Peters, J.S.; Riley, A.A.; McCarthy, B.P.; Gao, M.; Wang, M.; Green, M.A.; Zheng, Q.H.; Hutchins, G.D. Characterization of 11C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation. J. Nucl. Med. 2017, 58, 458–465. [Google Scholar] [CrossRef]
- Gao, M.; Wang, M.; Meyer, J.A.; Territo, P.R.; Hutchins, G.D.; Zarrinmayeh, H.; Zheng, Q.H. Synthesis and in vitro biological evaluation of new P2X7R radioligands [11C]halo-GSK1482160 analogs. Bioorg. Med. Chem. Lett. 2019, 29, 1476–1480. [Google Scholar] [CrossRef]
- Han, J.; Liu, H.; Liu, C.; Jin, H.; Perlmutter, J.S.; Egan, T.M.; Tu, Z. Pharmacologic characterizations of a P2X7 receptor-specific radioligand, [11C]GSK1482160 for neuroinflammatory response. Nucl. Med. Commun. 2017, 38, 372–382. [Google Scholar] [CrossRef]
- Wissmann, C.L.; Wang, M.; Gao, M.; Zheng, Q.H.; Green, M.A. Development, validation and implementation of radio-HPLC methods for the P2X7-receptor-targeted [11C]GSK1482160 radiopharmaceutical. Appl. Radiat. Isot. 2018, 142, 8–11. [Google Scholar] [CrossRef]
- Green, M.; Hutchins, G.; Fletcher, J.; Territo, W.; Polson, H.; Trussell, H.; Wissmann, C.; Zheng, Q.H.; Gao, M.; Wang, M.; et al. Distribution of the P2X7-receptor-targeted [11C]GSK1482160 radiopharmaceutical in normal human subjects. J. Nucl. Med. 2018, 59, 1009. [Google Scholar]
- Huang, G.; Lu, X.; Qiu, Y.; Bi, L.; Ye, P.; Yang, M.; Shen, Y.; Jin, H.; Han, J. Hetero-aryl bromide precursor fluorine-18 radiosynthesis and preclinical evaluation of a novel positron emission tomography (PET) tracer [18F]GSK1482160. Bioorg. Med. Chem. 2022, 73, 116996. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Qiu, Y.; Huang, L.; Bi, L.; Guo, Y.; You, K.; Huang, G.; Wang, Y.; Lu, H.; Jin, H.; et al. Ankylosing spondylitis PET imaging and quantifications via P2X7 receptor-targeting radioligand [18F]GSK1482160. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3589–3601. [Google Scholar] [CrossRef]
- Qiu, Y.; Bi, L.; Huang, G.; Li, Z.; Wei, H.; Li, G.; Wei, J.; Liao, K.; Yang, M.; Ye, P.; et al. Positron emission tomography imaging of the P2X7 receptor with a novel tracer, [18F]GSK1482160, in a transgenic mouse model of Alzheimer’s disease and healthy non-human primates. Brain-X 2024, 2, e55. [Google Scholar] [CrossRef]
- Kong, Y.; Cao, L.; Wang, J.; Zhuang, J.; Liu, Y.; Bi, L.; Qiu, Y.; Hou, Y.; Huang, Q.; Xie, F.; et al. Increased Cerebral Level of P2X7R in a Tauopathy Mouse Model by PET Using [18F]GSK1482160. ACS Chem. Neurosci. 2024, 15, 2112–2120. [Google Scholar] [CrossRef]
- Zhou, W.; Yue, Q.; Yuan, Y.; Huang, Q.; He, K.; Hua, T.; Han, J.; He, Y.; Guan, Y.; Chen, L.; et al. Visualization of P2X7 Receptors in Living Human Gliomas: An 18F-GSK1482160 PET Imaging and Neuropatholopy Study. Clin. Cancer Res. 2025, 31, 2183–2195. [Google Scholar] [CrossRef]
- Jin, H.; Han, J.; Liu, H.; Yue, X.; Schoch, K.; Miller, T.; Tu, Z. A promising I-123 labeled radioligand for imaging neuroinflammation response by assessment P2X7 receptor expression. J. Nucl. Med. 2017, 58, 545. [Google Scholar]
- Jin, H.; Han, J.; Resing, D.; Liu, H.; Yue, X.; Miller, R.L.; Schoch, K.M.; Miller, T.M.; Perlmutter, J.S.; Egan, T.M.; et al. Synthesis and in vitro characterization of a P2X7 radioligand [123I]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease. Eur. J. Pharmacol. 2018, 820, 8–17. [Google Scholar] [CrossRef]
- Gao, M.; Wang, M.; Glick-Wilson, B.E.; Meyer, J.A.; Peters, J.S.; Territo, P.R.; Green, M.A.; Hutchins, G.D.; Zarrinmayeh, H.; Zheng, Q.H. Synthesis and preliminary biological evaluation of a novel P2X7R radioligand [18F]IUR-1601. Bioorg. Med. Chem. Lett. 2018, 28, 1603–1609. [Google Scholar] [CrossRef]
- Huang, G.; Qiu, Y.; Bi, L.; Wei, H.; Li, G.; Li, Z.; Ye, P.; Yang, M.; Shen, Y.; Liu, H.; et al. PET Imaging of P2X7 Receptor (P2X7R) for Neuroinflammation with Improved Radiosynthesis of Tracer [18F]4A in Mice and Non-human Primates. ACS Chem. Neurosci. 2022, 13, 3464–3476. [Google Scholar] [CrossRef]
- Gao, M.; Wang, M.; Glick-Wilson, B.E.; Meyer, J.A.; Peters, J.S.; Territo, P.R.; Green, M.A.; Hutchins, G.D.; Zarrinmayeh, H.; Zheng, Q.H. Synthesis and initial in vitro characterization of a new P2X7R radioligand [18F]IUR-1602. Appl. Radiat. Isot. 2019, 144, 10–18. [Google Scholar] [CrossRef]
- Ory, D.; Celen, S.; Gijsbers, R.; Van Den Haute, C.; Postnov, A.; Koole, M.; Vandeputte, C.; Andres, J.I.; Alcazar, J.; De Angelis, M.; et al. Preclinical Evaluation of a P2X7 Receptor-Selective Radiotracer: PET Studies in a Rat Model with Local Overexpression of the Human P2X7 Receptor and in Nonhuman Primates. J. Nucl. Med. 2016, 57, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Crabbe, M.; Van der Perren, A.; Bollaerts, I.; Kounelis, S.; Baekelandt, V.; Bormans, G.; Casteels, C.; Moons, L.; Van Laere, K. Increased P2X7 Receptor Binding Is Associated with Neuroinflammation in Acute but Not Chronic Rodent Models for Parkinson’s Disease. Front. Neurosci. 2019, 13, 799. [Google Scholar] [CrossRef] [PubMed]
- Van Weehaeghe, D.; Van Schoor, E.; De Vocht, J.; Koole, M.; Attili, B.; Celen, S.; Declercq, L.; Thal, D.R.; Van Damme, P.; Bormans, G.; et al. TSPO Versus P2X7 as a Target for Neuroinflammation: An In Vitro and In Vivo Study. J. Nucl. Med. 2020, 61, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Van Weehaeghe, D.; Koole, M.; Schmidt, M.E.; Deman, S.; Jacobs, A.H.; Souche, E.; Serdons, K.; Sunaert, S.; Bormans, G.; Vandenberghe, W.; et al. [11C]JNJ54173717, a novel P2X7 receptor radioligand as marker for neuroinflammation: Human biodistribution, dosimetry, brain kinetic modelling and quantification of brain P2X7 receptors in patients with Parkinson’s disease and healthy volunteers. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2051–2064. [Google Scholar] [CrossRef]
- Kolb, H.; Zhang, W.; Chen, G.; Xia, C.; Szardenings, K.; Bhattacharya, A.; Lord, B.; Letavic, M.; Andres, J.I. Development and Preclinical Evaluation of [18F]JNJ-64413739 as a PET Radioligand for P2X7 Receptors. Biol. Psychiatry 2017, 81, S161. [Google Scholar] [CrossRef]
- Mikkelsen, J.D.; Aripaka, S.S.; Kaad, S.; Pazarlar, B.A.; Pinborg, L.; Finsen, B.; Varrone, A.; Bang-Andersen, B.; Bastlund, J.F. Characterization of the Novel P2X7 Receptor Radioligand [3H]JNJ-64413739 in Human Brain Tissue. ACS Chem. Neurosci. 2023, 14, 111–118. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, Q.; Hu, B.; Zhang, Y.; Chen, W.; Zhu, J.; Zhao, Y.; Choi, H.S.; Shi, H.; Cheng, D. P2X7 PET Radioligand 18F-PTTP for Differentiation of Lung Tumor from Inflammation. J. Nucl. Med. 2019, 60, 930–936. [Google Scholar] [CrossRef]
- Fu, W.; Lin, Q.; Zhequan, F.; Shi, D.; Yang, T.; Cheng, D. P2X7 receptor-targeting radioligand [18F]F-PTTP longitudinal pilot PET imaging in epileptic rat models. J. Nucl. Med. 2024, 65, 241547. [Google Scholar]
- Fu, Z.; Lin, Q.; Xu, Z.; Zhao, Y.; Cheng, Y.; Shi, D.; Fu, W.; Yang, T.; Shi, H.; Cheng, D. P2X7 receptor-specific radioligand 18F-FTTM for atherosclerotic plaque PET imaging. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2595–2604. [Google Scholar] [CrossRef]
- Fu, Z.; Lin, Q.; Xu, Z.; Fu, W.; Shi, D.; Cheng, Y.; Yang, T.; Liu, G.; Shi, H.; Cheng, D. Longitudinal Positron Emission Tomography Imaging with P2X7 Receptor-Specific Radioligand 18F-FTTM in a Kainic Acid Rat Model of Temporal Lobe Epilepsy. ACS Chem. Neurosci. 2022, 13, 3512–3522. [Google Scholar] [CrossRef]
- Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Myung, Y.; de Sa, A.G.C.; Ascher, D.B. Deep-PK: Deep learning for small molecule pharmacokinetic and toxicity prediction. Nucleic Acids Res. 2024, 52, W469–W475. [Google Scholar] [CrossRef]
- Kolb, H.C.; Barret, O.; Bhattacharya, A.; Chen, G.; Constantinescu, C.; Huang, C.; Letavic, M.; Tamagnan, G.; Xia, C.A.; Zhang, W.; et al. Preclinical Evaluation and Nonhuman Primate Receptor Occupancy Study of 18F-JNJ-64413739, a PET Radioligand for P2X7 Receptors. J. Nucl. Med. 2019, 60, 1154–1159. [Google Scholar] [CrossRef]
- Koole, M.; Schmidt, M.E.; Hijzen, A.; Ravenstijn, P.; Vandermeulen, C.; Van Weehaeghe, D.; Serdons, K.; Celen, S.; Bormans, G.; Ceusters, M.; et al. 18F-JNJ-64413739, a Novel PET Ligand for the P2X7 Ion Channel: Radiation Dosimetry, Kinetic Modeling, Test-Retest Variability, and Occupancy of the P2X7 Antagonist JNJ-54175446. J. Nucl. Med. 2019, 60, 683–690. [Google Scholar] [CrossRef]
- Mertens, N.; Schmidt, M.E.; Hijzen, A.; Van Weehaeghe, D.; Ravenstijn, P.; Depre, M.; de Hoon, J.; Van Laere, K.; Koole, M. Minimally invasive quantification of cerebral P2X7R occupancy using dynamic [18F]JNJ-64413739 PET and MRA-driven image derived input function. Sci. Rep. 2021, 11, 16172. [Google Scholar] [CrossRef]
- Clinical Trial: A Study to Investigate P2X7 Receptor Occupancy by JNJ-54175446 with the Newly Developed P2X7 Receptor Positron Emission Tomography (PET) Tracer 18F-JNJ-64413739. Available online: https://clinicaltrials.gov/study/NCT03088644 (accessed on 25 May 2025).
- Clinical Trial: A Positron Emission Tomography (PET) Study to Investigate P2X7 Receptor Occupancy by JNJ-55308942 Using [18F]-JNJ-64413739. Available online: https://clinicaltrials.gov/study/NCT03437590 (accessed on 23 May 2025).
- Berdyyeva, T.; Xia, C.; Taylor, N.; He, Y.; Chen, G.; Huang, C.; Zhang, W.; Kolb, H.; Letavic, M.; Bhattacharya, A.; et al. PET Imaging of the P2X7 Ion Channel with a Novel Tracer [18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Mol. Imaging Biol. 2019, 21, 871–878. [Google Scholar] [CrossRef]
- Morgan, J.; Moreno, O.; Alves, M.; Baz, Z.; Menendez Mendez, A.; Leister, H.; Melia, C.; Smith, J.; Visekruna, A.; Nicke, A.; et al. Increased uptake of the P2X7 receptor radiotracer 18F-JNJ-64413739 in the brain and peripheral organs according to the severity of status epilepticus in male mice. Epilepsia 2023, 64, 511–523. [Google Scholar] [CrossRef]
- Alves, M.; de Diego-Garcia, L.; Vegliante, G.; Moreno, O.; Gil, B.; Ramos-Cabrer, P.; Mitra, M.; Martin, A.F.; Menendez-Mendez, A.; Wang, Y.; et al. P2X7R antagonism suppresses long-lasting brain hyperexcitability following traumatic brain injury in mice. Theranostics 2025, 15, 1399–1419. [Google Scholar] [CrossRef]
- Hu, B.; Mou, T.; Wang, J.; Yun, M.; Jia, H.; Zhang, X. A Novel P2X7-targeted Nanobody Radiotracer 99mTc-1c81 for SPECT Imaging of Atherosclerotic Plaques. J. Nucl. Med. 2024, 65, 241678. [Google Scholar]
- Andrejew, R.; Oliveira-Giacomelli, A.; Ribeiro, D.E.; Glaser, T.; Arnaud-Sampaio, V.F.; Lameu, C.; Ulrich, H. The P2X7 Receptor: Central Hub of Brain Diseases. Front. Mol. Neurosci. 2020, 13, 124. [Google Scholar] [CrossRef] [PubMed]
- Pegoraro, A.; Grignolo, M.; Ruo, L.; Ricci, L.; Adinolfi, E. P2X7 Variants in Pathophysiology. Int. J. Mol. Sci. 2024, 25, 6673. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Ben, D.; Buccioni, M.; Lambertucci, C.; Francucci, B.; Smirnov, A.; Spinaci, A.; Marucci, G.; Volpini, R. Radioligands Targeting the Purinergic P2X Receptors. Cells 2025, 14, 984. https://doi.org/10.3390/cells14130984
Dal Ben D, Buccioni M, Lambertucci C, Francucci B, Smirnov A, Spinaci A, Marucci G, Volpini R. Radioligands Targeting the Purinergic P2X Receptors. Cells. 2025; 14(13):984. https://doi.org/10.3390/cells14130984
Chicago/Turabian StyleDal Ben, Diego, Michela Buccioni, Catia Lambertucci, Beatrice Francucci, Aleksei Smirnov, Andrea Spinaci, Gabriella Marucci, and Rosaria Volpini. 2025. "Radioligands Targeting the Purinergic P2X Receptors" Cells 14, no. 13: 984. https://doi.org/10.3390/cells14130984
APA StyleDal Ben, D., Buccioni, M., Lambertucci, C., Francucci, B., Smirnov, A., Spinaci, A., Marucci, G., & Volpini, R. (2025). Radioligands Targeting the Purinergic P2X Receptors. Cells, 14(13), 984. https://doi.org/10.3390/cells14130984