Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy
Abstract
1. Introduction
2. Molecular Regulation of HSPs
2.1. The Regulation of HSP Transcription by the HSF Family
2.1.1. HSF1
2.1.2. HSF2
2.1.3. HSF3
2.1.4. HSF4
2.2. The Regulation HSP90 by Cochaperones
3. The Role of Other Transcription Factors in Modulating HSP Gene Expression via STAT and NF-IL6 Pathways
4. Levels of Molecular Chaperones in Normal and Pathological Conditions
4.1. Cardiovascular Diseases
4.2. Neurodegeneration Diseases
4.3. Cancer Diseases
4.4. Autoimmune and Inflammatory Diseases
5. Models of HSPs Expression Modulation
5.1. Physical Models
5.2. Pharmacological Models
5.3. Genetic Models
6. Mouse Transgenic Models
6.1. Overexpression/Underexpression (Knock-In and Knock-Down)
6.2. Suppression of Expression (Knock-Out, CRISPR-Cas9, and Humanized Mice)
6.3. Regulated Expression
6.4. Tissue-Specific Promoters
6.5. Cre-loxP and FLP-FRT Systems
6.6. Tamoxifen-Inducible Expression System
6.7. PDX Mice Models and Their Use
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
17-AAG | 17-allylamino-17-demethoxy-geldanamycin |
17-DMAG | 17-Dimethylaminoethylamino-17-demethoxygeldanamycin |
ATP | Adenosine triphosphate |
Bip | Binding immunoglobulin protein |
CK2 | Casein kinase 2 |
DNA | Deoxyribonucleic acid |
Grp75 | 75 kDa glucose-regulated protein |
Grp78 | 78 kDa glucose-regulated protein |
GSK3β | glycogen synthase kinase 3β |
HSE | heat shock element |
HSPs | heat shock proteins |
HSR | heat shock response |
IFN-γ | Interferon-gamma |
IL-6 | interleukin 6 |
JAKs | Janus kinases |
JNK | c-jun N-terminal kinase |
LIF | leukemia inhibitory factor |
mRNA | messenger RNA |
NF-IL6 | nuclear factor IL-6 |
P53 | Tumor protein P53 |
RNA | Ribonucleic acid |
siRNA | Double-stranded interfering RNA |
SIRT1 | silent mating type information regulation 2 homolog |
STAT | signal transducer and activator of transcription |
TNF-α | tumor necrosis factor α |
TRiC | T-complex protein ring complex |
References
- Tissieres, A.; Mitchell, H.K.; Tracy, U.M. Protein synthesis in salivary glands of Drosophila melanogaster: Relation to chromosome puffs. J. Mol. Biol. 1974, 84, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Welch, W.J. Mammalian stress response: Cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol. Rev. 1992, 72, 1063–1081. [Google Scholar] [CrossRef] [PubMed]
- Hendrick, J.P.; Hartl, F.U. Molecular chaperone functions of heat-shock protein. Annu. Rev. Biochem. 1993, 62, 349–384. [Google Scholar] [CrossRef] [PubMed]
- Welch, W.J. How cells respond to stress. Sci. Am. 1993, 268, 56–64. [Google Scholar] [CrossRef]
- Morimoto, R.I.; Kline, M.P.; Bimston, D.N.; Cotto, J.J. The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperone. Essays Biochem. 1997, 32, 17–29. [Google Scholar]
- Morimoto, R.I.; Santoro, M.G. Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat. Biotechnol. 1998, 16, 833–838. [Google Scholar] [CrossRef]
- Hu, C.; Yang, J.; Qi, Z.; Wu, H.; Wang, B.; Zou, F.; Mei, H.; Liu, J.; Wang, W.; Liu, Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022, 3, 161. [Google Scholar] [CrossRef]
- McKay, D.B. Structure and mechanism of 70-kDa heat-shock-related protein. Adv. Protein Che. 1993, 44, 67–98. [Google Scholar]
- Rassow, J.; von Ahsen, O.; Bomer, U.; Pfanner, N. Molecular chaperones: Towards a characterization of the heat-shock protein 70 family. Trends Cell Bio. 1997, 7, 129–133. [Google Scholar]
- O’Malley, K.; Mauron, A.; Barchas, J.D.; Kedes, L. Constitutively expressed rat mRNA encoding a 70-kilodalton heat-shock-like protei. Mol. Cell Bio. 1985, 5, 3476–3483. [Google Scholar]
- Dworniczak, B.; Mirault, M.E. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protei. Nucleic. Acids Re. 1987, 15, 5181–5197. [Google Scholar] [CrossRef] [PubMed]
- Hunt, C.; Morimoto, R.I. Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp7. Proc. Natl. Acad. Sci. USA 1985, 82, 6455–6459. [Google Scholar] [CrossRef] [PubMed]
- Voellmy, R.; Ahmed, A.; Schiller, P.; Bromley, P.; Rungger, D. Isolation and functional analysis of a human 70,000-dalton heat shock protein gene segmen. Proc. Natl. Acad. Sci. USA 1985, 82, 4949–4953. [Google Scholar] [CrossRef]
- Wu, B.; Hunt, C.; Morimoto, R. Structure and expression of the human gene encoding major heat shock protein HSP7. Mol. Cell Bio. 1985, 5, 330–341. [Google Scholar]
- Leung, T.K.; Rajendran, M.Y.; Monfries, C.; Hall, C.; Lim, L. The human heat-shock protein family: Expression of a novel heat-inducible HSP70 (HSP70B′) and isolation of its cDNA and genomic DNA. Biochem. J. 1990, 267, 125–132. [Google Scholar] [CrossRef]
- Milner, C.M.; Campbell, R.D. Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics 1990, 32, 242–251. [Google Scholar] [CrossRef]
- Munro, S.; Pelham, H.R. An Hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 1986, 46, 291–300. [Google Scholar] [CrossRef]
- Ting, J.; Lee, A.S. Human gene encoding the 78,000-dalton glucose-regulated protein and its pseudogene: Structure, conservation, and regulation. DNA 1988, 7, 275–286. [Google Scholar] [CrossRef]
- Engman, D.M.; Kirchhoff, L.V.; Donelson, J.E. Molecular cloning of mtp70, a mitochondrial member of the hsp70 family. Mol. Cell Bio. 1989, 9, 5163–5168. [Google Scholar]
- Mizzen, L.A.; Chang, C.; Garrels, J.I.; Welch, W.J. Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J. Biol. Chem. 1989, 264, 20664–20675. [Google Scholar] [CrossRef]
- Agarraberes, F.A.; Terlecky, S.R.; Dice, J.F. An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J. Cell Biol. 1997, 137, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.R.; Martin, R.L.; Hansen, W.J.; Beckmann, R.P.; Welch, W.J. The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP- dependent fashion. J. Cell Biol. 1993, 120, 1101–1112. [Google Scholar] [CrossRef] [PubMed]
- Akerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: Integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 2010, 11, 545–555. [Google Scholar] [CrossRef]
- Dayalan Naidu, S.; Dinkova-Kostova, A.T. Regulation of the mammalian heat shock factor 1. FEBS J. 2017, 284, 1606–1627. [Google Scholar] [CrossRef]
- Stephanou, A.; Latchman, D.S. Transcriptional modulation of heat-shock protein gene expression. Biochem. Res. Int. 2011, 1, 238601. [Google Scholar] [CrossRef]
- Wilkerson, D.C.; Skaggs, H.S.; Sarge, K.D. HSF2 binds to the Hsp90, Hsp27, and c-Fos promoters constitutively and modulates their expression. Cell Stress Chaperones 2007, 12, 283–290. [Google Scholar] [CrossRef]
- Kanei-Ishii, C.; Tanikawa, J.; Nakai, A.; Morimoto, R.I.; Ishii, S. Activation of heat shock transcription factor 3 by c-Myb in the absence of cellular stress. Science 1997, 277, 246–248. [Google Scholar] [CrossRef]
- Tanikawa, J.; Ichikawa-Iwata, E.; Kanei-Ishii, C.; Nakai, A.; Matsuzawa, S.-I.; Reed, J.C.; Ishii, S. p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. J. Biol. Chem. 2000, 275, 15578–15585. [Google Scholar] [CrossRef]
- Nakai, A.; Tanabe, M.; Kawazoe, Y.; Inazawa, J.; Morimoto, R.I.; Nagata, K. HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 1997, 17, 469–481. [Google Scholar] [CrossRef]
- Tanabe, M.; Sasai, N.; Nagata, K.; Liu, X.-D.; Liu, P.C.C.; Thiele, D.J.; Nakai, A. The mammalian HSF4 gene generates both an activator and a repressor of heat shock genes by alternative splicing. J. Biol. Chem. 1999, 274, 27845–27856. [Google Scholar] [CrossRef]
- Gu, J.; He, Y.; He, C.; Zhang, Q.; Huang, Q.; Bai, S.; Wang, R.; You, Q.; Wang, L. Advances in the structures, mechanisms and targeting of molecular chaperones. Signal Transduct. Target. Ther. 2025, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Stephanou, A.; Amin, V.; Isenberg, D.A.; Akira, S.; Kishimoto, T.; Latchman, D.S. Interleukin 6 activates heat-shock protein 90β gene expression. Biochem. J. 1997, 321, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Stephanou, A.; Isenberg, D.A.; Akira, S.; Kishimoto, T.; Latchman, D.S. NF-IL6 and STAT3 signalling pathways co-operate to mediate the activation of the Hsp90β gene by interleukin6 but have opposite effects on its inducibility by heat shock. Biochem. J. 1998, 330, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Stephanou, A.; Isenberg, D.A.; Nakajima, K.; Latchman, D.S. Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90β gene promoters. J. Biol. Chem. 1999, 274, 1723–1728. [Google Scholar] [CrossRef]
- Basset, C.A.; Conway de Macario, E.; Leone, L.G.; Macario, A.J.L.; Leone, A. The chaperone system in cancer therapies: Hsp90. J. Mol. Histol. 2023, 54, 105–118. [Google Scholar] [CrossRef]
- Christians, E.S.; Mustafi, S.B.; Benjamin, I.J. Chaperones and cardiac misfolding protein diseases. Curr. Protein Pept. Sci. 2014, 15, 189–204. [Google Scholar] [CrossRef]
- Penna, C.; Sorge, M.; Femminò, S.; Pagliaro, P.; Brancaccio, M. Redox Aspects of Chaperones in Cardiac Function. Front. Physiol. 2018, 9, 216. [Google Scholar] [CrossRef]
- Willis, M.S.; Patterson, C. Hold me tight: Role of the heat shock protein family of chaperones in cardiac disease. Circulation 2010, 122, 1740–1751. [Google Scholar] [CrossRef]
- Ranek, M.J.; Stachowski, M.J.; Kirk, J.A.; Willis, M.S. The role of heat shock proteins and co-chaperones in heart failure. Philos. Trans. R. Soc. Lond B Biol. Sci. 2018, 373, 20160530. [Google Scholar] [CrossRef]
- Wright, B.H.; Corton, J.M.; El-Nahas, A.M.; Wood, R.F.; Pockley, A.G. Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessel. 2000, 15, 18–22. [Google Scholar] [CrossRef]
- Chaudhuri, T.K.; Paul, S. Protein-misfolding diseases and chaperone-based therapeutic approaches. FEBS J. 2006, 273, 1331–1349. [Google Scholar] [CrossRef] [PubMed]
- Broadley, S.A.; Hartl, F.U. The role of molecular chaperones in human misfolding diseases. FEBS Lett. 2009, 583, 2647–2653. [Google Scholar] [CrossRef] [PubMed]
- Muronetz, V.I.; Kudryavtseva, S.S.; Leisi, E.V.; Kurochkina, L.P.; Barinova, K.V.; Schmalhausen, E.V. Regulation by Different Types of Chaperones of Amyloid Transformation of Proteins Involved in the Development of Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 2747. [Google Scholar] [CrossRef] [PubMed]
- Tittelmeier, J.; Nachman, E.; Nussbaum-Krammer, C. Molecular Chaperones: A Double-Edged Sword in Neurodegenerative Diseases. Front. Aging Neurosci. 2020, 12, 581374. [Google Scholar] [CrossRef]
- Calderwood, S.K.; Murshid, A. Molecular Chaperone Accumulation in Cancer and Decrease in Alzheimer’s Disease: The Potential Roles of HSF1. Front. Neurosci. 2017, 11, 192. [Google Scholar] [CrossRef]
- Albakova, Z.; Mangasarova, Y.; Albakov, A.; Gorenkova, L. HSP70 and HSP90 in Cancer: Cytosolic, Endoplasmic Reticulum and Mitochondrial Chaperones of Tumorigenesis. Front. Oncol. 2022, 12, 829520. [Google Scholar] [CrossRef]
- Sannino, S.; Guerriero, C.J.; Sabnis, A.J.; Stolz, D.B.; Wallace, C.T.; Wipf, P.; Watkins, S.C.; Bivona, T.G.; Brodsky, J.L. Compensatory increases of select proteostasis networks after Hsp70 inhibition in cancer cells. J. Cell Sci. 2018, 131, 217760. [Google Scholar] [CrossRef]
- Rampelt, H.; Kirstein-Miles, J.; Nillegoda, N.B.; Chi, K.; Scholz, S.R.; Morimoto, R.I.; Bukau, B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 2012, 31, 4221–4235. [Google Scholar] [CrossRef]
- Daneri-Becerra, C.; Galigniana, M.D. Regulatory role of heat-shock proteins in autoimmune and inflammatory diseases. Integr. Mol. Med. 2016, 3, 1–12. [Google Scholar] [CrossRef]
- Routsias, J.G.; Tzioufas, A.G. The role of chaperone proteins in autoimmunity. Ann. N. Y. Acad. Sci. 2006, 1088, 52–64. [Google Scholar] [CrossRef]
- Khachatoorian, R.; French, S.W. Chaperones in hepatitis C virus infection. World J. Hepatol. 2016, 8, 9–35. [Google Scholar] [CrossRef]
- Lubkowska, A.; Pluta, W.; Strońska, A.; Lalko, A. Role of Heat Shock Proteins (HSP70 and HSP90) in Viral Infection. Int. J. Mol. Sci. 2021, 22, 9366. [Google Scholar] [CrossRef]
- Zügel, U.; Kaufmann, S.H. Role of heat shock proteins in protection from and pathogenesis of infectious diseases. Clin. Microbiol. Rev. 1999, 12, 19–39. [Google Scholar] [CrossRef]
- Żabińska, M.; Gaffke, L.; Bielańska, P.; Podlacha, M.; Rintz, E.; Cyske, Z.; Węgrzyn, G.; Pierzynowska, K. Decreased Levels of Chaperones in Mucopolysaccharidoses and Their Elevation as a Putative Auxiliary Therapeutic Approach. Pharmaceutics 2023, 15, 704. [Google Scholar] [CrossRef]
- Scalia, F.; Barone, R.; Rappa, F.; Marino Gammazza, A.; Lo Celso, F.; Lo Bosco, G.; Barone, G.; Antona, V.; Vadalà, M.; Vitale, A.M.; et al. Muscle Histopathological Abnormalities in a Patient with a CCT5 Mutation Predicted to Affect the Apical Domain of the Chaperonin Subunit. Front. Mol. Biosci. 2022, 9, 887336. [Google Scholar] [CrossRef]
- Tas, F.; Bilgin, E.; Erturk, K.; Duranyildiz, D. Clinical Significance of Circulating Serum Cellular Heat Shock Protein 90 (HSP90) Level in Patients with Cutaneous Malignant Melanoma. Asian. Pac. J. Cancer. Prev. 2017, 18, 599–601. [Google Scholar] [CrossRef]
- İn, E.; Deveci, F.; Kaman, D. Assessment of heat shock proteins and endothelial dysfunction in acute pulmonary embolism. Blood Coagul. Fibrinolysis 2016, 27, 378–383. [Google Scholar] [CrossRef]
- Pan, L.; Huang, C.; Jin, X.; Wu, J.; Jin, K.; Lin, J.; Wang, Y.; Li, J.; Yin, C.; Wang, X.; et al. Cardiac secreted HSP90α exacerbates pressure overload myocardial hypertrophy and heart failure. Redox Biol. 2025, 79, 103466. [Google Scholar] [CrossRef]
- Shetake, N.G.; Kumar, A.; Huilgol, N.; Pandey, B.N. Diagnostic potential of serum HSP90 beta for HNSCC and its therapeutic prognosis after local hyperthermia therapy. PLoS ONE 2023, 18, 0281919. [Google Scholar] [CrossRef]
- Moghadasi, N.; Andisheh-Tadbir, A.; Samiee, A.; Torabi Ardekani, S.; Khademi, B.; Malekzadeh, M.; Zare, R. Profile of Serum Heat Shock Protein-27 Level in Patients with Salivary Gland Tumor. J. Dent. 2022, 23, 251–256. [Google Scholar] [CrossRef]
- Bodzek, P.; Damasiewicz-Bodzek, A.; Janosz, I.; Witek, L.; Olejek, A. Heat shock protein 27 (HSP27) in patients with ovarian cancer. Ginekol. Pol. 2021, 92, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.K.; Girotra, M.; Singla, M.; Dutta, A.; Otis Stephen, F.; Nair, P.P.; Merchant, N.B. Serum HSP70: A novel biomarker for early detection of pancreatic cancer. Pancreas 2012, 41, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Rothammer, A.; Sage, E.K.; Werner, C.; Combs, S.E.; Multhoff, G. Increased heat shock protein 70 (Hsp70) serum levels and low NK cell counts after radiotherapy—Potential markers for predicting breast cancer recurrence? Radiat. Oncol. 2019, 14, 78. [Google Scholar] [CrossRef]
- Abe, M.; Manola, J.B.; Oh, W.K.; Parslow, D.L.; George, D.J.; Austin, C.L.; Kantoff, P.W. Plasma levels of heat shock protein 70 in patients with prostate cancer: A potential biomarker for prostate cancer. Clin. Prostate Cancer 2004, 3, 49–53. [Google Scholar] [CrossRef]
- Zhu, J.; Quyyumi, A.A.; Wu, H.; Csako, G.; Rott, D.; Zalles-Ganley, A.; Ogunmakinwa, J.; Halcox, J.; Epstein, S.E. Increased serum levels of heat shock protein 70 are associated with low risk of coronary artery disease. Arter. Thromb. Vasc. Biol. 2003, 23, 1055–1059. [Google Scholar] [CrossRef]
- Wu, R.; Gao, W.; Dong, Z.; Su, Y.; Ji, Y.; Liao, J.; Ma, Y.; Dai, Y.; Yao, K.; Ge, J. Plasma Heat Shock Protein 70 Is Associated with the Onset of Acute Myocardial Infarction and Total Occlusion in Target Vessels. Front. Cardiovasc. Med. 2021, 8, 688702. [Google Scholar] [CrossRef]
- Lee, K.S.; Chung, J.H.; Oh, B.H.; Hong, C.H. Increased plasma levels of heat shock protein 70 in patients with vascular mild cognitive impairment. Neurosci. Lett. 2008, 436, 223–226. [Google Scholar] [CrossRef]
- Lechner, P.; Buck, D.; Sick, L.; Hemmer, B.; Multhoff, G. Serum heat shock protein 70 levels as a biomarker for inflammatory processes in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2018, 4, 2055217318767192. [Google Scholar] [CrossRef]
- Najafizadeh, S.R.; Ghazizadeh, Z.; Nargesi, A.A.; Mahdavi, M.; Abtahi, S.; Mirmiranpour, H.; Nakhjavani, M. Analysis of serum heat shock protein 70 (HSPA1A) concentrations for diagnosis and disease activity monitoring in patients with rheumatoid arthritis. Cell Stress Chaperones 2015, 20, 537–543. [Google Scholar] [CrossRef]
- Adday, W.T.; Al-Shakour, A.A.; Taher, S.A.; Taresh, W. Evaluation of serum levels of heat shock protein 70 in patients with psoriasis in Basra, Iraq. Prz. Menopauzalny 2024, 23, 64–68. [Google Scholar] [CrossRef]
- Orfanelli, T.; Giannopoulos, S.; Zografos, E.; Athanasiou, A.; Bongiovanni, A.M.; Doulaveris, G.; Moo, T.A.; LaPolla, D.; Bakoyiannis, C.N.; Theodoropoulos, G.E.; et al. Alterations of the 70 kDa heat shock protein (HSP70) and sequestosome-1 (p62) in women with breast cancer. Sci. Rep. 2021, 11, 22220. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulos, A.; Samt, A.K.; Guder, C.; Taylor, N.; Roberts, E.; Herf, H.; Messner, V.; Trill, A.; Holzmann, K.L.K.; Kiechle, M.; et al. Hsp70-A Universal Biomarker for Predicting Therapeutic Failure in Human Female Cancers and a Target for CTC Isolation in Advanced Cancers. Biomedicines 2023, 11, 2276. [Google Scholar] [CrossRef] [PubMed]
- Macario, A.J.; Grippo, T.M.; Conway de Macario, E. Genetic disorders involving molecular-chaperone genes: A perspective. Genet. Med. 2005, 7, 3–12. [Google Scholar] [CrossRef]
- Hadden, M.K.; Lubbers, D.J.; Blagg, B.S. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Curr. Top. Med. Chem. 2006, 6, 1173–1182. [Google Scholar] [CrossRef]
- Li, Y.P.; Shan, G.Z.; Peng, Z.G.; Zhu, J.H.; Meng, S.; Zhang, T.; Gao, L.Y.; Tao, P.Z.; Gao, R.M.; Li, Y.H.; et al. Synthesis and biological evaluation of heat-shock protein 90 inhibitors: Geldanamycin derivatives with broad antiviral activities. Antivir. Chem. Chemother. 2010, 20, 259–268. [Google Scholar] [CrossRef]
- Gorska, M.; Popowska, U.; Sielicka-Dudzin, A.; Kuban-Jankowska, A.; Sawczuk, W.; Knap, N.; Cicero, G.; Wozniak, F. Geldanamycin and its derivatives as Hsp90 inhibitors. Front. Biosci. 2012, 17, 2269–2277. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, J.; Zhang, J.; He, L.; Gong, J.; Long, C. Pifithrin-μ is efficacious against non-small cell lung cancer via inhibition of heat shock protein 70. Oncol. Rep. 2017, 37, 313–322. [Google Scholar] [CrossRef]
- Brandt, G.E.; Schmidt, M.D.; Prisinzano, T.E.; Blagg, B.S. Gedunin, a novel hsp90 inhibitor: Semisynthesis of derivatives and preliminary structure-activity relationships. J. Med. Chem. 2008, 51, 6495–6502. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Choi, S.; Kim, S.; Lee, J.H.; Park, A.R.; Yu, N.H.; Yoon, H.; Bae, C.H.; Yeo, J.H.; Choi, G.J.; et al. The Hsp90 Inhibitor, Monorden, Is a Promising Lead Compound for the Development of Novel Fungicides. Front. Plant Sci. 2020, 11, 371. [Google Scholar] [CrossRef]
- Martin, C.J.; Gaisser, S.; Challis, I.R.; Carletti, I.; Wilkinson, B.; Gregory, M.; Prodromou, C.; Roe, S.M.; Pearl, L.H.; Boyd, S.M.; et al. Molecular characterization of macbecin as an Hsp90 inhibitor. J. Med. Chem. 2008, 51, 2853–2857. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Gaisser, S.; Nur-E-Alam, M.; Sheehan, L.S.; Vousden, W.A.; Gaitatzis, N.; Peck, G.; Coates, N.J.; Moss, S.J.; Radzom, M.; et al. Optimizing natural products by biosynthetic engineering: Discovery of nonquinone Hsp90 inhibitors. J. Med. Chem. 2008, 51, 5494–5497. [Google Scholar] [CrossRef]
- Filone, C.M.; Caballero, I.S.; Dower, K.; Mendillo, M.L.; Cowley, G.S.; Santagata, S.; Rozelle, D.K.; Yen, J.; Rubins, K.H.; Hacohen, N.; et al. The master regulator of the cellular stress response (HSF1) is critical for orthopoxvirus infection. PLoS Pathog. 2014, 10, 1003904. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Guo, D.; Weng, L.; Wang, S.; Ma, Z.; Yang, Y.; Wang, P.; Wang, J.; Cai, Z. Tumor-derived exosomes educate dendritic cells to promote tumor metastasis via HSP72/HSP105-TLR2/TLR4 pathway. Oncoimmunology 2017, 6, 1362527. [Google Scholar] [CrossRef] [PubMed]
- Koishi, M.; Yokota, S.; Mae, T.; Nishimura, Y.; Kanamori, S.; Horii, N.; Shibuya, K.; Sasai, K.; Hiraoka, M. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo. Clin. Cancer Res. 2001, 7, 215–219. [Google Scholar] [PubMed]
- Huang, K.H.; Veal, J.M.; Fadden, R.P.; Rice, J.W.; Eaves, J.; Strachan, J.P.; Barabasz, A.F.; Foley, B.E.; Barta, T.E.; Ma, W.; et al. Discovery of novel 2-aminobenzamide inhibitors of heat shock protein 90 as potent, selective and orally active antitumor agents. J. Med. Chem. 2009, 52, 4288–4305. [Google Scholar] [CrossRef]
- Lamoureux, F.; Thomas, C.; Yin, M.J.; Kuruma, H.; Fazli, L.; Gleave, M.E.; Zoubeidi, A. A novel HSP90 inhibitor delays castrate-resistant prostate cancer without altering serum PSA levels and inhibits osteoclastogenesis. Clin. Cancer Res. 2011, 17, 2301–2313. [Google Scholar] [CrossRef]
- Sharp, S.Y.; Prodromou, C.; Boxall, K.; Powers, M.V.; Holmes, J.L.; Box, G.; Matthews, T.P.; Cheung, K.M.; Kalusa, A.; James, K.; et al. Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol. Cancer Ther. 2007, 6, 1198–1211. [Google Scholar] [CrossRef]
- Williamson, D.S.; Borgognoni, J.; Clay, A.; Daniels, Z.; Dokurno, P.; Drysdale, M.J.; Foloppe, N.; Francis, G.L.; Graham, C.J.; Howes, R.; et al. Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J. Med. Chem. 2009, 52, 1510–1513. [Google Scholar] [CrossRef]
- Fewell, S.W.; Smith, C.M.; Lyon, M.A.; Dumitrescu, T.P.; Wipf, P.; Day, B.W.; Brodsky, J.L. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J. Biol. Chem. 2004, 279, 51131–51140. [Google Scholar] [CrossRef]
- Howe, M.K.; Bodoor, K.; Carlson, D.A.; Hughes, P.F.; Alwarawrah, Y.; Loiselle, D.R.; Jaeger, A.M.; Darr, D.B.; Jordan, J.L.; Hunter, L.M.; et al. Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem. Biol. 2014, 21, 1648–1659. [Google Scholar] [CrossRef]
- Craig, E.; Huang, P.; Aron, R.; Andrew, A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol. Biochem. Pharmacol. 2006, 156, 1–21. [Google Scholar] [PubMed]
- Adam, C.; Baeurle, A.; Brodsky, J.L.; Wipf, P.; Schrama, D.; Becker, J.C.; Houben, R.; Sherman, M. The HSP70 modulator MAL3-101 inhibits Merkel cell carcinoma. PLoS ONE 2014, 9, 92041. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.M.; Chovatiya, R.J.; Jameson, N.E.; Turner, D.M.; Zhu, G.; Werner, S.; Huryn, D.M.; Pipas, J.M.; Day, B.W.; Wipf, P.; et al. Pyrimidinone-peptoid hybrid molecules with distinct effects on molecular chaperone function and cell proliferation. Bioorg. Med. Chem. 2008, 16, 3291–3301. [Google Scholar] [CrossRef] [PubMed]
- Chiang, A.N.; Valderramos, J.-C.; Balachandran, R.; Chovatiya, R.J.; Mead, B.P.; Schneider, C.; Bell, S.L.; Klein, M.G.; Huryn, D.M.; Chen, X.S.; et al. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg. Med. Chem. 2009, 17, 1527–1533. [Google Scholar] [CrossRef]
- Wisén, S.; Bertelsen, E.B.; Thompson, A.D.; Patury, S.; Ung, P.; Chang, L.; Evans, C.G.; Walter, G.M.; Wipf, P.; Carlson, H.A.; et al. Binding of a small molecule at a protein–protein interface regulates the chaperone activity of hsp70–hsp40. ACS Chem. Biol. 2010, 5, 611–622. [Google Scholar] [CrossRef]
- Kawada, M.; Masuda, T.; Ishizuka, M.; Takeuchi, T. 15-Deoxyspergualin inhibits Akt kinase activation and phosphatidylcholine synthesis. J. Biol. Chem. 2002, 277, 27765–27771. [Google Scholar] [CrossRef]
- Tran, P.L.; Kim, S.-A.; Choi, H.S.; Yoon, J.-H.; Ahn, S.-G. Epigallocatechin-3-gallate suppresses the expression of HSP70 and HSP90 and exhibits anti-tumor activity in vitro and in vivo. BMC Cancer 2010, 10, 276. [Google Scholar] [CrossRef]
- Yuan, Z.-P.; Chen, L.-J.; Fan, L.-Y.; Tang, M.-H.; Yang, G.-L.; Yang, H.-S.; Du, X.-B.; Wang, G.-Q.; Yao, W.-X.; Zhao, Q.-M.; et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin. Cancer Res. 2006, 12, 3193–3199. [Google Scholar] [CrossRef]
- Rastogi, S.; Joshi, A.; Sato, N.; Lee, S.; Lee, M.J.; Trepel, J.B.; Neckers, L. An update on the status of HSP90 inhibitors in cancer clinical trials. Cell Stress Chaperones 2024, 29, 519–539. [Google Scholar] [CrossRef]
- Liu, J.; Shu, H.; Xia, Q.; You, Q.; Wang, L. Recent developments of HSP90 inhibitors: An updated patent review (2020–present). Expert Opin. Ther. Pat. 2024, 34, 1–15. [Google Scholar] [CrossRef]
- Yurchenko, E.A.; Menchinskaya, E.S.; Polonik, S.G.; Agafonova, I.G.; Guzhova, I.V.; Margulis, B.A.; Aminin, D.L. Hsp70 induction and anticancer activity of U-133, the acetylated trisglucosydic derivative of echinochrome. Med. Chem. 2015, 5, 263–271. [Google Scholar] [CrossRef]
- Ekimova, I.V.; Plaksina, D.V.; Pastukhov, Y.F.; Lapshina, K.V.; Lazarev, V.F.; Mikhaylova, E.R.; Polonik, S.G.; Pani, B.; Margulis, B.A.; Guzhova, I.V.; et al. New HSF1 inducer as a therapeutic agent in a rodent model of Parkinson’s disease. Exp. Neurol. 2018, 306, 199–208. [Google Scholar] [CrossRef]
- Dimitrovska, M.; Dervisevik, M.; Cipanovska, N.; Gerazova, K.; Dinevska-Kjovkarovska, S.; Miova, B. Physiological and pharmacological inductors of HSP70 enhance the antioxidative defense mechanisms of the liver and pancreas in diabetic rats. Can. J. Physiol. Pharmacol. 2018, 96, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Joshi, V.; Mishra, R.; Upadhyay, A.; Amanullah, A.; Poluri, K.M.; Singh, S.; Kumar, A.; Mishra, A. Polyphenolic flavonoid (myricetin) upregulated proteasomal degradation mechanisms: Eliminates neurodegenerative proteins aggregation. J. Cell. Physiol. 2019, 234, 20900–20914. [Google Scholar] [CrossRef]
- Deane, C.A.; Brown, I.R. Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperon. 2016, 21, 837–848. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Papavassiliou, A.G. 17-AAG: Mechanisms of antitumour activity. Expert Opin. Investig. Drugs 2005, 14, 1471–1474. [Google Scholar] [CrossRef]
- Babchia, N.; Calipel, A.; Mouriaux, F.; Faussat, A.M.; Mascarelli, F. 17-AAG and 17-DMAG-induced inhibition of cell proliferation through B-Raf downregulation in WT B-Raf-expressing uveal melanoma cell lines. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2348–2356. [Google Scholar] [CrossRef]
- Jez, J.M.; Chen, J.C.; Rastelli, G.; Stroud, R.M.; Santi, D.V. Crystal structure and molecular modeling of 17-DMAG in complex with human Hsp90. Chem. Biol. 2003, 10, 361–368. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Kwak, S.Y.; Kwon, Y.; Lee, Y.S.; Na, Y. Synthesis and biological effect of chrom-4-one derivatives as functional inhibitors of heat shock protein 27. Eur. J. Med. Chem. 2017, 139, 892–900. [Google Scholar] [CrossRef]
- Yasuda, H.; Shichinohe, H.; Kuroda, S.; Ishikawa, T.; Iwasaki, Y. Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res. 2005, 1032, 176–182. [Google Scholar] [CrossRef]
- Roe, S.M.; Prodromou, C.; O′Brien, R.; Ladbury, J.E.; Piper, P.W.; Pearl, L.H. Structural basis for inhibition of the hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 1999, 42, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Brough, P.A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J.E.; Cheung, K.M.; Collins, I.; Davies, N.G.; Drysdale, M.J.; et al. 4,5-diarylisoxazole hsp90 chaperone inhibitors: Potential therapeutic agents for the treatment of cancer. J. Med. Chem. 2008, 51, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Patury, S.; Miyata, Y.; Gestwicki, J.E. Pharmacological targeting of the Hsp70 chaperone. Curr. Top. Med. Chem. 2009, 9, 1337–1351. [Google Scholar] [CrossRef]
- Maczynska, J.; Choromanska, A.; Kutkowska, J.; Kotulska, M.; Zalewski, M.; Zalewski, J.; Kulbacka, J.; Saczko, J. Effect of electrochemotherapy with betulinic acid or cisplatin on regulation of heat shock proteins in metastatic human carcinoma cells in vitro. Oncol. Rep. 2019, 41, 3444–3454. [Google Scholar] [CrossRef]
- Gibson, G. A Primer of Genome Science, 3rd ed.; Sinauer: Sunderland, MA, USA, 2009; pp. 301–302. [Google Scholar]
- Summerton, J.E. Morpholino, siRNA, and S-DNA compared: Impact of structure and mechanism of action on off-target effects and sequence specificity. Curr. Top. Med. Chem. 2007, 7, 651–660. [Google Scholar] [CrossRef]
- Antonietta, C.; Solomon, L.M. Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 107, pp. 63–98. [Google Scholar]
- Lampreht Tratar, U.; Horvat, S.; Cemazar, M. Transgenic Mouse Models in Cancer Research. Front. Oncol. 2018, 8, 268. [Google Scholar] [CrossRef]
- Casola, S. Mouse models for miRNA expression: The ROSA26 locus. Methods Mol. Biol. 2010, 667, 145–163. [Google Scholar] [CrossRef]
- Hohenstein, P.; Slight, J.; Ozdemir, D.; Burn, S.F.; Berry, R.; Hastie, N.D. High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. Pathogenetics 2008, 1, 3. [Google Scholar] [CrossRef]
- Tiscornia, G.; Singer, O.; Ikawa, M.; Verma, I.M. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc. Natl. Acad. Sci. USA 2003, 100, 1844–1848. [Google Scholar] [CrossRef]
- Dierich, A.; Kieffer, B.L. Knockout mouse models in pain research. Methods Mol. Med. 2004, 99, 269–299. [Google Scholar] [CrossRef]
- Sung, Y.H.; Baek, I.J.; Kim, D.H.; Jeon, J.; Lee, J.; Lee, K.; Jeong, D.; Kim, J.S.; Lee, H.W. Knockout mice created by TALEN-mediated gene targeting. Nat. Biotechnol. 2013, 31, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.; Cho, A.; Limaye, A.; Cho, K.; Khillan, J.; Kulkarni, A.B. Genome Editing in Mice Using CRISPR/Cas9 Technology. Curr. Protoc. Cell Biol. 2018, 81, 57. [Google Scholar] [CrossRef] [PubMed]
- Chuprin, J.; Buettner, H.; Seedhom, M.O.; Greiner, D.L.; Keck, J.G.; Ishikawa, F.; Shultz, L.D.; Brehm, M.A. Humanized mouse models for immuno-oncology research. Nat. Rev. Clin. Oncol. 2023, 20, 192–206. [Google Scholar] [CrossRef]
- Gerlai, R. Gene-targeting studies of mammalian behavior: Is it the mutation or the background genotype? Trends Neurosci. 1996, 19, 177–181. [Google Scholar] [CrossRef]
- Marber, M.S.; Mestril, R.; Chi, S.H.; Sayen, M.R.; Yellon, D.M.; Dillmann, W.H. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Investig. 1995, 95, 1446–1456. [Google Scholar] [CrossRef]
- Plumier, J.C.; Ross, B.M.; Currie, R.W.; Angelidis, C.E.; Kazlaris, H.; Kollias, G.; Pagoulatos, G.N. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Investig. 1995, 95, 1854–1860. [Google Scholar] [CrossRef]
- Plumier, J.C.; Krueger, A.M.; Currie, R.W.; Kontoyiannis, D.; Kollias, G.; Pagoulatos, G.N. Transgenic mice expressing the human inducible Hsp70 have hippocampal neurons resistant to ischemic injury. Cell Stress Chaperones 1997, 2, 162–167. [Google Scholar] [CrossRef]
- McArdle, A.; Dillmann, W.H.; Mestril, R.; Faulkner, J.A.; Jackson, M.J. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 2004, 18, 355–357. [Google Scholar] [CrossRef]
- Kim, Y.K.; Suarez, J.; Hu, Y.; McDonough, P.M.; Boer, C.; Dix, D.J.; Dillmann, W.H. Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 2006, 113, 2589–2597. [Google Scholar] [CrossRef]
- Gurskiy, Y.G.; Garbuz, D.G.; Soshnikova, N.V.; Krasnov, A.N.; Deikin, A.; Lazarev, V.F.; Sverchinskyi, D.; Margulis, B.A.; Zatsepina, O.G.; Karpov, V.L.; et al. The development of modified human Hsp70 (HSPA1A) and its production in the milk of transgenic mice. Cell Stress Chaperones 2016, 21, 1055–1064. [Google Scholar] [CrossRef]
- Zheng, C.; Baum, B.J. Evaluation of promoters for use in tissue-specific gene delivery. Methods Mol. Biol. 2008, 434, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Walrath, J.C.; Hawes, J.J.; Van Dyke, T.; Reilly, K.M. Genetically engineered mouse models in cancer research. Adv. Cancer Res. 2010, 106, 113–164. [Google Scholar] [CrossRef] [PubMed]
- DuPage, M.; Dooley, A.L.; Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 2009, 4, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Branda, C.S.; Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 2004, 6, 7–28. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Xiao, D. Tetracycline-inducible expression systems: New strategies and practices in the transgenic mouse modeling. Acta Biochim. Biophys. Sin. 2007, 39, 235–246. [Google Scholar] [CrossRef]
- Zhong, Z.A.; Sun, W.; Chen, H.; Zhang, H.; Lay, Y.A.E.; Lane, N.E.; Yao, W. Optimizing tamoxifen-inducible Cre/loxp system to reduce tamoxifen effect on bone turnover in long bones of young mice. Bone 2015, 81, 614–619. [Google Scholar] [CrossRef]
- Chen, H.; Xie, Y.; Zhang, M.; Huang, J.; Jiang, W.; Zhang, R.; Li, C.; Du, X.; Chen, H.; Nie, Q.; et al. An Hsp70 promoter-based mouse for heat shock-induced gene modulation. J. Mol. Med. 2024, 102, 693–707. [Google Scholar] [CrossRef]
- Lai, Y.; Wei, X.; Lin, S.; Qin, L.; Cheng, L.; Li, P. Current status and perspectives of patient-derived xenograft models in cancer research. J. Hematol. Oncol. 2017, 10, 106. [Google Scholar] [CrossRef]
- Okada, S.; Vaeteewoottacharn, K.; Kariya, R. Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models. Cells 2019, 8, 889. [Google Scholar] [CrossRef]
- Amissah, H.A.; Antwi, M.H.; Amissah, T.A.; Combs, S.E.; Shevtsov, M. More than Just Protein Folding: The Epichaperome, Mastermind of the Cancer Cell. Cells 2025, 14, 204. [Google Scholar] [CrossRef]
Pathological Conditions | Disease Conditions | Physiological Levels of Biomarker in Non-Disease Condition (ng/mL) | Levels of Biomarker in Disease Condition (ng/mL) | Source |
---|---|---|---|---|
HSP90 (serum) | ||||
Cancer diseases | Skin cancer (melanoma) | 27.07 | 49.76 | [56] |
Cardiovascular diseases | Acute pulmonary embolism | 11.54 ± 3.43 | 15.30 ± 7.11 | [57] |
HSP90α (serum) | ||||
Cardiovascular diseases | Hypertension | 5.56 ± 3.00 | 11.47 ± 7.81 | [58] |
HSP90β (serum) | ||||
Cancer diseases | Head and neck squamous cell carcinoma (HNSCC) | 23.5 ± 3.8 | 65.6 ± 13.08 | [59] |
HSP27 (serum) | ||||
Cancer diseases | Salivary gland tumor | 0.602 ± 0.575 | malignant salivary gland tumor: 3.956 ± 3.830 benign salivary gland tumor: 0.752 ± 0.485 | [60] |
Ovarian cancer | 13.65 ± 11.62 | 50.17 ± 57.59 | [61] | |
Cardiovascular diseases | Acute pulmonary embolism | 7.44 ± 1.94 | 9.95 ± 4.09 | [57] |
HSP70 (serum) | ||||
Cancer diseases | Pancreatic cancer | 0.04 | 1.68 ± 0.083 | [62] |
Breast cancer | Not reported | 2.11–2.51 | [63] | |
Prostate cancer | 0.3–0.8 | 0.5 ± 2.0 | [64] | |
Cardiovascular diseases | Coronary artery disease | 0.72 | 0.34 | [65] |
Acute myocardial infarction | Not reported | 0.26–0.76 | [66] | |
Chronic coronary syndrome | Not reported | 0.55–1.63 | [66] | |
Vascular mild cognitive impairment | 11.32 | 14.11 | [67] | |
Neurodegeneration diseases | Alzheimer’s disease | 11.32 | 10.16 | [67] |
Mild cognitive impairment | 11.32 | 10.16 | [67] | |
Multiple sclerosi | 6.0 | 8.0 | [68] | |
Clinically isolated syndrome | 6.0 | 8.2 | [68] | |
Relapsing–remitting multiple sclerosis | 6.0 | 9.3 | [68] | |
Secondary progressive multiple sclerosis | 6.0 | 7.5 | [68] | |
Primary progressive multiple sclerosi | 6.0 | 5.3 | [68] | |
Non-inflammatory neurological diseases | 6.0 | 7.3 | [68] | |
Autoimmune and inflammatory diseases | Rheumatoid arthritis | 0.12–0.42 | high disease activity: 1.66 ± 0.75 low disease activity: 0.49 ± 0.1 moderate disease activity: 0.52 ± 0.12 remission phase: 0.48 ± 0.11 | [69] |
Other diseases | Psoriasis | 2.57 ± 1.52 | 3.31 ± 1.92 | [70] |
Other inflammatory neurological diseases | 6.0 | 11 | [68] | |
HSP70 (intracellular) | ||||
Cancer diseases | Breast cancer | 44.2 | 79.3 | [71] |
HSP70 (circulating) | ||||
Cancer diseases | Not reported | Not reported | Cancer patients without chemotherapy: 783.2–802.7 Cancer patients who were treated with chemotherapy: 301.4–513.3 | [72] |
Recurrent breast cancer | Not reported | 512.4 | [72] |
Name | Description | Action | Source |
---|---|---|---|
Geldanamycin | A benzoquinone compound, ansamycin derivative. | Inhibitor of HSP90 and the family of nuclear hormone receptors. Geldanamycin and related molecules inhibit the chaperone functions of HSP90 by competing for ATP binding. | [74,75,76] |
Pifithrin-μ | A cell-permeable sulfonamide. | Potent inhibitor of HSP70. Interacts with the substrate-binding domain of the chaperone protein and disrupts its interaction with client proteins. | [77] |
Gedunin | Pentacyclic triterpenoid. | Potent inhibitor of HSP90, induces degradation of HSP90-dependent client proteins. | [78] |
Monorden (Radicicol) | Natural compound first isolated from the saprophytic fungus Monosporium bonorden. | Selective inhibitor of HSP90, interacts with the ATP-binding component, disrupting its chaperone function. | [74,79] |
Macbecin I | Antibiotic from the benzoquinone ansamycin class. Natural compound, produced by bacteria of the species Micromonospora. | Stable inhibitor of HSP90 activity, interacts with the ATP-binding domain. | [80,81] |
Heat Shock Protein Inhibitor I | Benzylidene lactam compound. | Interacts with the substrate-binding domain and prevents the synthesis of inducible heat shock proteins: HSP40, HSP70, HSP72, and HSP105. | [82,83] |
Heat Shock Protein Inhibitor II | Metabolite of Heat Shock Protein Inhibitor I. | Interacts with the ATP-binding domain of heat shock proteins and prevents their synthesis, particularly HSP90. | [84] |
PF-04929113 | Mesylate | Selective and potent inhibitor of HSP70 and HSP90, targets the ATP-binding site. | [85,86] |
VER–50589 | Isoxazole compound. | Selective HSP90 inhibitor, interacts with the substrate-binding domain | [87] |
VER–155008 | Derived from adenosine. | Inhibitor of HSP70, binds to Hsc70 and Grp78, and is selective for HSP 90beta. | [88] |
NSC 630668-R/1 MAL3-101 DMT3132 DMT3024 MAL2-11B 15-deoxyspergualin (DSG) | Dihydropyrimidine derivative. | Inhibitors of HSP70, interact with the ATP-binding domain. | [89,90,91,92,93,94,95,96] |
Epigallocatechin-3-gallate (EGCG) | Natural compound, derived from green tea leaves. | Inhibitor of HSP90, inducer of HSP70. Interacts with the ATP-binding domain of HSP70. Suppresses GRP78. | [97] |
Quercetin (3,3’,4’,5,7-pentahydroxyflavone) | Natural substance from the flavonoid group, first isolated from oak bark. | Inhibitor of HSP70. | [98] |
Onalespib (AT13387) | Synthetic NTD ATP binding site competitor. | Inhibitor of HSP90. | [99,100] |
Luminespib (NVP-AUY922) | Resorcinylic isoxazole amide. | A third-generation inhibitor of HSP90, upregulated HSP72, binds with high affinity to the HSP90 NTD ATP pocket. | [99,100] |
HS-196 and HS-201 | A near-infrared fluorescent molecule linked to the human HSP90i analog-SNX-5422 (HS-196). A theragnostic version of the HSP90-binding drug HS201 was developed by replacing the near IR molecule with the photosensitizing molecule verteporfin. | Selectively and competitively binds to upregulated HSP90. | [99,100] |
Gamitrinib | TPP hexafluorophosphate. | Mitochondrial matrix inhibitor that links GA HSP-90 inhibitor 17-AAG to triphenyl phosphonium, which is an efficient mitochondrial import carrier-based mitochondrial matrix targeted HSP90. | [99,100] |
Zelavespib (PU-H71) | Purine-based compound. | Inhibitor of Hsp90 with potential antineoplastic activity. Specifically inhibits active Hsp90, thereby inhibiting its chaperone function. | [99,100] |
SNX-5422 | Synthetic, novel, small molecule inhibitor. | Direct inhibitor of HSP90. | [99,100] |
Ganetespib (STA-9090) | Second-generation, resorcinol derivative. | Inhibitor of Hsp90, that binds to the NTD ATP pocket of HSP90. | [99,100] |
XL888 | Bioavailable, small-molecule inhibitor. | Potent and orally active inhibitor of HSP90. | [99,100] |
Pimitespib (TAS-116) | Novel, small-molecule inhibitor. | Selectively ATP-competitive inhibits cytosolic HSP90 isoforms α and β and not the endoplasmic reticulum and mitochondrial paralogs (GRP94 and TRAP1). | [99,100] |
PEN-866 | Miniaturized drug conjugate linked to SN-38, the active metabolite of irinotecan. | Inhibitor of Hsp90. Targets and is retained in the tumor due to its binding to HSP90. | [99,100] |
Name | Description | Action | Source |
---|---|---|---|
U-133 | Water-soluble derivative of naphthoquinone echinochrome 1, isolated from the sea urchin Scaphechinus mirabilis. | Inducer of HSP70. | [101,102] |
Aspirin | Acetylsalicylic acid. | Inducer of HSP70. | [103] |
Myricetin | Flavonoid, plant polyphenol. | Increases intracellular levels of HSF-1 and HSP70. | [104] |
Celastrol | Quinone methide isolated from the grape Tripterygium wilfordii. | Enhances HSF-1, which in turn leads to the induction of HSP70. | [105] |
Name | Description | Action | Source |
---|---|---|---|
Synthetic analogs and derivatives of geldanamycin: 17-AAG (Tanespimycin) 17-DMAG | Cyclic amides of aminocarboxylic acids. | Inhibitor of HSP90, inducer of HSP70. | [106,107,108] |
J2 | Heterocyclic organic compound. | Inhibitor of HSP27, induces abnormal dimer formation of HSP27 and suppresses the production of giant HSP27 polymers, thereby inhibiting its chaperone function. | [109] |
NVP-AUY922 AT-13387 GGA (geranylgeranylacetone) | Resorcinases: radicicol-based compounds. | Inducer of HSP70, inhibitor of HSP90, interacts with the ATP-binding domain of HSP90. | [110,111,112] |
Models | Advantages | Disadvantages |
---|---|---|
Physical models |
|
|
Pharmacological models |
|
|
Genetic models |
|
|
Mouse transgenic models |
|
|
PDX mice models |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, E.; Sokolenko, A.; Combs, S.E.; Shevtsov, M. Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy. Cells 2025, 14, 979. https://doi.org/10.3390/cells14130979
Mikhailova E, Sokolenko A, Combs SE, Shevtsov M. Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy. Cells. 2025; 14(13):979. https://doi.org/10.3390/cells14130979
Chicago/Turabian StyleMikhailova, Elena, Alexandra Sokolenko, Stephanie E. Combs, and Maxim Shevtsov. 2025. "Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy" Cells 14, no. 13: 979. https://doi.org/10.3390/cells14130979
APA StyleMikhailova, E., Sokolenko, A., Combs, S. E., & Shevtsov, M. (2025). Modulation of Heat Shock Proteins Levels in Health and Disease: An Integrated Perspective in Diagnostics and Therapy. Cells, 14(13), 979. https://doi.org/10.3390/cells14130979