Inactivation and Elimination of Centrioles During Development in the Genus Drosophila: Current Insights and Open Questions
Abstract
1. Introduction
2. The Stem Cell Niche of the Drosophila Testis: Somatic and Germline Centrioles with Different Fates
3. Oogenesis: The Main Example of Centriole Elimination
4. The Sperm Centriole: An Immortal Contribution?
5. How Many Centrioles at Fertilization? The PCL Hypothesis
6. Polyspermy: Elimination of Redundant Sperm Centrioles
7. Parthenogenesis: Too Many Centrioles Do Not Affect the Embryonic Development
8. Yolk Centrosomes: Different Fates in the Same Cytoplasm
9. Ommatidial Differentiation: A Tale of Useless Centrioles
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Ana1 | Anastral spindle 1 |
Asl | Asterless |
CLRs | Cilium-like regions |
Cnn | Centrosomin |
CySCs | Cyst stem cells |
GSCs | Germline stem cells |
ncMTOCs | Non-centrosomal microtubule organizing centers |
PCM | Pericentriolar material |
Plk4 | Polo-like kinase 4 |
Plp | Pericentrin-like protein |
Sas | Spindle assembly abnormal |
Spd2 | Spindle defective 2 |
References
- Bornens, M.; Azimzadeh, J. Origin and Evolution of the Centrosome. In Eukaryotic Membranes and Cytoskeleton; Advances in Experimental Medicine and Biology; Springer: New York, NY, USA, 2007; Volume 607, pp. 119–129. ISBN 978-0-387-74020-1. [Google Scholar]
- Ito, D.; Bettencourt-Dias, M. Centrosome Remodelling in Evolution. Cells 2018, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Avidor-Reiss, T.; Turner, K. The Evolution of Centriole Structure: Heterochrony, Neoteny, and Hypermorphosis. In The Golgi Apparatus and Centriole; Kloc, M., Ed.; Results and Problems in Cell Differentiation; Springer International Publishing: Cham, Switzerland, 2019; Volume 67, pp. 3–15. ISBN 978-3-030-23172-9. [Google Scholar]
- LeGuennec, M.; Klena, N.; Aeschlimann, G.; Hamel, V.; Guichard, P. Overview of the Centriole Architecture. Curr. Opin. Struct. Biol. 2021, 66, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yan, Y.; Fu, J. Nine-fold Symmetry of Centriole: The Joint Efforts of Its Core Proteins. BioEssays 2022, 44, 2100262. [Google Scholar] [CrossRef] [PubMed]
- Nabais, C.; Peneda, C.; Bettencourt-Dias, M. Evolution of Centriole Assembly. Curr. Biol. 2020, 30, R494–R502. [Google Scholar] [CrossRef]
- Joukov, V.; De Nicolo, A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019, 8, 701. [Google Scholar] [CrossRef]
- Breslow, D.K.; Holland, A.J. Mechanism and Regulation of Centriole and Cilium Biogenesis. Annu. Rev. Biochem. 2019, 88, 691–724. [Google Scholar] [CrossRef]
- Qi, F.; Zhou, J. Multifaceted Roles of Centrosomes in Development, Health, and Disease. J. Mol. Cell Biol. 2021, 13, 611–621. [Google Scholar] [CrossRef]
- Aljiboury, A.; Hehnly, H. The Centrosome—Diverse Functions in Fertilization and Development across Species. J. Cell Sci. 2023, 136, jcs261387. [Google Scholar] [CrossRef]
- Fu, J.; Hagan, I.M.; Glover, D.M. The Centrosome and Its Duplication Cycle. Cold Spring Harb. Perspect. Biol. 2015, 7, a015800. [Google Scholar] [CrossRef]
- Fırat-Karalar, E.N.; Stearns, T. The Centriole Duplication Cycle. Phil. Trans. R. Soc. B 2014, 369, 20130460. [Google Scholar] [CrossRef]
- Nigg, E.A.; Holland, A.J. Once and Only Once: Mechanisms of Centriole Duplication and Their Deregulation in Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Gönczy, P.; Hatzopoulos, G.N. Centriole Assembly at a Glance. J. Cell Sci. 2019, 132, jcs228833. [Google Scholar] [CrossRef]
- Arquint, C.; Nigg, E.A. The PLK4–STIL–SAS-6 Module at the Core of Centriole Duplication. Biochem. Soc. Trans. 2016, 44, 1253–1263. [Google Scholar] [CrossRef]
- Ohta, M.; Watanabe, K.; Ashikawa, T.; Nozaki, Y.; Yoshiba, S.; Kimura, A.; Kitagawa, D. Bimodal Binding of STIL to Plk4 Controls Proper Centriole Copy Number. Cell Rep. 2018, 23, 3160–3169.e4. [Google Scholar] [CrossRef]
- Moyer, T.C.; Holland, A.J. PLK4 Promotes Centriole Duplication by Phosphorylating STIL to Link the Procentriole Cartwheel to the Microtubule Wall. eLife 2019, 8, e46054. [Google Scholar] [CrossRef] [PubMed]
- Banterle, N.; Gönczy, P. Centriole Biogenesis: From Identifying the Characters to Understanding the Plot. Annu. Rev. Cell Dev. Biol. 2017, 33, 23–49. [Google Scholar] [CrossRef]
- Uzbekov, R.E.; Avidor-Reiss, T. Principal Postulates of Centrosomal Biology. Version 2020. Cells 2020, 9, 2156. [Google Scholar] [CrossRef] [PubMed]
- Kalbfuss, N.; Gönczy, P. Towards Understanding Centriole Elimination. Open Biol. 2023, 13, 230222. [Google Scholar] [CrossRef]
- Basto, R.; Lau, J.; Vinogradova, T.; Gardiol, A.; Woods, C.G.; Khodjakov, A.; Raff, J.W. Flies without Centrioles. Cell 2006, 125, 1375–1386. [Google Scholar] [CrossRef]
- Stevens, N.R.; Raposo, A.A.S.F.; Basto, R.; St Johnston, D.; Raff, J.W. From Stem Cell to Embryo without Centrioles. Curr. Biol. 2007, 17, 1498–1503. [Google Scholar] [CrossRef]
- Bettencourt-Dias, M.; Hildebrandt, F.; Pellman, D.; Woods, G.; Godinho, S.A. Centrosomes and Cilia in Human Disease. Trends Genet. 2011, 27, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.A.; Hildebrandt, F. Ciliopathies. Cold Spring Harb. Perspect. Biol. 2017, 9, a028191. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.S.; Holland, A.J. The Impact of Mitotic Errors on Cell Proliferation and Tumorigenesis. Genes. Dev. 2018, 32, 620–638. [Google Scholar] [CrossRef] [PubMed]
- Ryniawec, J.M.; Rogers, G.C. Centrosome Instability: When Good Centrosomes Go Bad. Cell. Mol. Life Sci. 2021, 78, 6775–6795. [Google Scholar] [CrossRef]
- Farcy, S.; Hachour, H.; Bahi-Buisson, N.; Passemard, S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023, 12, 1807. [Google Scholar] [CrossRef]
- Fernandes-Mariano, C.; Bugalhão, J.N.; Santos, D.; Bettencourt-Dias, M. Centrosome Biogenesis and Maintenance in Homeostasis and Disease. Curr. Opin. Cell Biol. 2025, 94, 102485. [Google Scholar] [CrossRef]
- Shin, B.; Kim, M.S.; Lee, Y.; Jung, G.I.; Rhee, K. Generation and Fates of Supernumerary Centrioles in Dividing Cells. Mol. Cells 2021, 44, 699–705. [Google Scholar] [CrossRef]
- Chavali, P.L.; Pütz, M.; Gergely, F. Small Organelle, Big Responsibility: The Role of Centrosomes in Development and Disease. Phil. Trans. R. Soc. B 2014, 369, 20130468. [Google Scholar] [CrossRef]
- Cosenza, M.R.; Cazzola, A.; Rossberg, A.; Schieber, N.L.; Konotop, G.; Bausch, E.; Slynko, A.; Holland-Letz, T.; Raab, M.S.; Dubash, T.; et al. Asymmetric Centriole Numbers at Spindle Poles Cause Chromosome Missegregation in Cancer. Cell Rep. 2017, 20, 1906–1920. [Google Scholar] [CrossRef]
- Tillery, M.M.L.; Blake-Hedges, C.; Zheng, Y.; Buchwalter, R.A.; Megraw, T.L. Centrosomal and Non-Centrosomal Microtubule-Organizing Centers (MTOCs) in Drosophila Melanogaster. Cells 2018, 7, 121. [Google Scholar] [CrossRef]
- Januschke, J.; Gervais, L.; Gillet, L.; Keryer, G.; Bornens, M.; Guichet, A. The Centrosome-Nucleus Complex and Microtubule Organization in the Drosophila Oocyte. Development 2006, 133, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Clark, I.E.; Jan, L.Y.; Jan, Y.N. Reciprocal Localization of Nod and Kinesin Fusion Proteins Indicates Microtubule Polarity in the Drosophila Oocyte, Epithelium, Neuron and Muscle. Development 1997, 124, 461–470. [Google Scholar] [CrossRef]
- Rolls, M.M.; Satoh, D.; Clyne, P.J.; Henner, A.L.; Uemura, T.; Doe, C.Q. Polarity and Intracellular Compartmentalization of Drosophila Neurons. Neural Dev. 2007, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, T.; Koizumi, M.; Hayashi, S. Sustained Elongation of Sperm Tail Promoted by Local Remodeling of Giant Mitochondria in Drosophila. Curr. Biol. 2011, 21, 805–814. [Google Scholar] [CrossRef]
- Chen, J.V.; Buchwalter, R.A.; Kao, L.-R.; Megraw, T.L. A Splice Variant of Centrosomin Converts Mitochondria to Microtubule-Organizing Centers. Curr. Biol. 2017, 27, 1928–1940.e6. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Buchwalter, R.A.; Zheng, C.; Wight, E.M.; Chen, J.V.; Megraw, T.L. A Perinuclear Microtubule-Organizing Centre Controls Nuclear Positioning and Basement Membrane Secretion. Nat. Cell Biol. 2020, 22, 297–309. [Google Scholar] [CrossRef]
- Schoenfelder, K.P.; Montague, R.A.; Paramore, S.V.; Lennox, A.L.; Mahowald, A.P.; Fox, D.T. Indispensable Pre-Mitotic Endocycles Promote Aneuploidy in the Drosophila Rectum. Development 2014, 141, 3551–3560. [Google Scholar] [CrossRef]
- Nashchekin, D.; Fernandes, A.R.; St Johnston, D. Patronin/Shot Cortical Foci Assemble the Noncentrosomal Microtubule Array That Specifies the Drosophila Anterior-Posterior Axis. Dev. Cell 2016, 38, 61–72. [Google Scholar] [CrossRef]
- Booth, A.J.R.; Blanchard, G.B.; Adams, R.J.; Röper, K. A Dynamic Microtubule Cytoskeleton Directs Medial Actomyosin Function during Tube Formation. Dev. Cell 2014, 29, 562–576. [Google Scholar] [CrossRef]
- Brodu, V.; Baffet, A.D.; Le Droguen, P.-M.; Casanova, J.; Guichet, A. A Developmentally Regulated Two-Step Process Generates a Noncentrosomal Microtubule Network in Drosophila Tracheal Cells. Dev. Cell 2010, 18, 790–801. [Google Scholar] [CrossRef]
- Tucker, J.B.; Milner, M.J.; Currie, D.A.; Muir, J.W.; Forrest, D.A.; Spencer, M.J. Centrosomal Microtubule-Organizing Centres and a Switch in the Control of Protofilament Number for Cell Surface-Associated Microtubules during Drosophila Wing Morphogenesis. Eur. J. Cell Biol. 1986, 41, 279–289. [Google Scholar]
- Harumoto, T.; Ito, M.; Shimada, Y.; Kobayashi, T.J.; Ueda, H.R.; Lu, B.; Uemura, T. Atypical Cadherins Dachsous and Fat Control Dynamics of Noncentrosomal Microtubules in Planar Cell Polarity. Dev. Cell 2010, 19, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Persico, V.; Gottardo, M.; Callaini, G. The Developing Drosophila Eye—A New Model to Study Centriole Reduction. J. Cell Sci. 2018, 131, jcs211441. [Google Scholar] [CrossRef]
- Mogensen, M.M.; Tucker, J.B.; Baggaley, T.B. Multiple Plasma Membrane-Associated MTOC Systems in the Acentrosomal Cone Cells of Drosophila Ommatidia. Eur. J. Cell Biol. 1993, 60, 67–75. [Google Scholar]
- Kos, P.; Baumann, O. Spatial Arrangement, Polarity, and Posttranslational Modifications of the Microtubule System in the Drosophila Eye. Cell Tissue Res. 2024, 398, 123–137. [Google Scholar] [CrossRef]
- Lattao, R.; Kovács, L.; Glover, D.M. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila Melanogaster. Genetics 2017, 206, 33–53. [Google Scholar] [CrossRef]
- Zoller, R.; Schulz, C. The Drosophila Cyst Stem Cell Lineage: Partners behind the Scenes? Spermatogenesis 2012, 2, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Colozza, G.; Callaini, G. Procentriole Elongation and Recruitment of Pericentriolar Material Are Downregulated in Cyst Cells as They Enter Quiescence. J. Cell Sci. 2009, 122, 3613–3618. [Google Scholar] [CrossRef]
- Borrego-Pinto, J.; Somogyi, K.; Karreman, M.A.; König, J.; Müller-Reichert, T.; Bettencourt-Dias, M.; Gönczy, P.; Schwab, Y.; Lénárt, P. Distinct Mechanisms Eliminate Mother and Daughter Centrioles in Meiosis of Starfish Oocytes. J. Cell Biol. 2016, 212, 815–827. [Google Scholar] [CrossRef]
- Gottardo, M.; Callaini, G.; Riparbelli, M.G. Structural Characterization of Procentrioles in Drosophila Spermatids. Cytoskeleton 2015, 72, 576–584. [Google Scholar] [CrossRef]
- Gottardo, M.; Callaini, G.; Riparbelli, M.G. Klp10A Modulates the Localization of Centriole-Associated Proteins during Drosophila Male Gametogenesis. Cell Cycle 2016, 15, 3432–3441. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, S.; Callaini, G.; Andone, S.; Riparbelli, M.G.; Pernas-Alonso, R.; Hoffmann, G.; Graziani, F.; Malva, C. Nup154, a New Drosophila Gene Essential for Male and Female Gametogenesis Is Related to the Nup155 Vertebrate Nucleoporin Gene. J. Cell Biol. 1998, 142, 1195–1207. [Google Scholar] [CrossRef] [PubMed]
- Hétié, P.; de Cuevas, M.; Matunis, E. Conversion of Quiescent Niche Cells to Somatic Stem Cells Causes Ectopic Niche Formation in the Drosophila Testis. Cell Rep. 2014, 7, 715–721. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Persico, V.; Dallai, R.; Callaini, G. Centrioles and Ciliary Structures during Male Gametogenesis in Hexapoda: Discovery of New Models. Cells 2020, 9, 744. [Google Scholar] [CrossRef]
- Jana, S.C. Centrosome Structure and Biogenesis: Variations on a Theme? Semin. Cell Dev. Biol. 2021, 110, 123–138. [Google Scholar] [CrossRef]
- Pierron, M.; Woglar, A.; Busso, C.; Jha, K.; Mikeladze-Dvali, T.; Croisier, M.; Gönczy, P. Centriole Elimination during Caenorhabditis Elegans Oogenesis Initiates with Loss of the Central Tube Protein SAS-1. EMBO J. 2023, 42, e115076. [Google Scholar] [CrossRef]
- Jana, S.C.; Mendonça, S.; Machado, P.; Werner, S.; Rocha, J.; Pereira, A.; Maiato, H.; Bettencourt-Dias, M. Differential Regulation of Transition Zone and Centriole Proteins Contributes to Ciliary Base Diversity. Nat. Cell Biol. 2018, 20, 928–941. [Google Scholar] [CrossRef]
- Avidor-Reiss, T.; Carr, A.; Fishman, E.L. The Sperm Centrioles. Mol. Cell Endocrinol. 2020, 518, 110987. [Google Scholar] [CrossRef]
- Uzbekov, R.; Singina, G.N.; Shedova, E.N.; Banliat, C.; Avidor-Reiss, T.; Uzbekova, S. Centrosome Formation in the Bovine Early Embryo. Cells 2023, 12, 1335. [Google Scholar] [CrossRef]
- Manandhar, G.; Schatten, H.; Sutovsky, P. Centrosome Reduction During Gametogenesis and Its Significance1. Biol. Reprod. 2005, 72, 2–13. [Google Scholar] [CrossRef]
- Huettner, A.F. Maturation and Fertilization in Drosophila Melanogaster. J. Morphol. 1924, 39, 249–265. [Google Scholar] [CrossRef]
- Spradling, A.C. Developmental Genetics of Oogenesis. In The Development of Drosophila Melanogaster, 1st ed.; Bate, M., Martinez-Arias, A., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1993; Volume 1, pp. 1–70. [Google Scholar]
- Mahowald, A.P.; Strassheim, J.M. Intercellular Migration of Centrioles in the Germarium of Drosophila melanogaster. J. Cell Biol. 1970, 45, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Bolívar, J.; Huynh, J.R.; López-Schier, H.; González, C.; St Johnston, D.; González-Reyes, A. Centrosome Migration into the Drosophila Oocyte Is Independent of BicD and Egl, and of the Organisation of the Microtubule Cytoskeleton. Development 2001, 128, 1889–1897. [Google Scholar] [CrossRef]
- Pimenta-Marques, A.; Bento, I.; Lopes, C.A.M.; Duarte, P.; Jana, S.C.; Bettencourt-Dias, M. A Mechanism for the Elimination of the Female Gamete Centrosome in Drosophila melanogaster. Science 2016, 353, aaf4866. [Google Scholar] [CrossRef]
- Schatten, G. The Centrosome and Its Mode of Inheritance: The Reduction of the Centrosome during Gametogenesis and Its Restoration during Fertilization. Dev. Biol. 1994, 165, 299–335. [Google Scholar] [CrossRef] [PubMed]
- Fechter, J.; Schöneberg, A.; Schatten, G. Excision and Disassembly of Sperm Tail Microtubules during Sea Urchin Fertilization: Requirements for Microtubule Dynamics. Cell Motil. Cytoskelet. 1996, 35, 281–288. [Google Scholar] [CrossRef]
- Sutovsky, P.; Schatten, G. Paternal Contributions to the Mammalian Zygote: Fertilization after Sperm-Egg Fusion. In International Review of Cytology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 195, pp. 1–65. ISBN 978-0-12-364599-9. [Google Scholar]
- Simerly, C.; Wu, G.-J.; Zoran, S.; Ord, T.; Rawlins, R.; Jones, J.; Navara, C.; Gerrity, M.; Rinehart, J.; Binor, Z.; et al. The Paternal Inheritance of the Centrosome, the Cell’s Microtubule-Organizing Center, in Humans, and the Implications for Infertility. Nat. Med. 1995, 1, 47–52. [Google Scholar] [CrossRef]
- Perotti, M.E. The Mitochondrial Derivative of the Spermatozoon of Drosophila before and after Fertilization. J. Ultrastruct. Res. 1973, 44, 181–198. [Google Scholar] [CrossRef]
- Karr, T.L.; Swanson, W.J.; Snook, R.R. The Evolutionary Significance of Variation in Sperm–Egg Interactions. In Sperm Biology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 305–365. ISBN 978-0-12-372568-4. [Google Scholar]
- Loppin, B.; Dubruille, R.; Horard, B. The Intimate Genetics of Drosophila Fertilization. Open Biol. 2015, 5, 150076. [Google Scholar] [CrossRef]
- Snook, R.R.; Karr, T.L. Only Long Sperm Are Fertilization-Competent in Six Sperm-Heteromorphic Drosophila Species. Curr. Biol. 1998, 8, 291–294. [Google Scholar] [CrossRef]
- Pitnick, S.; Karr, T.L. Paternal Products and By-Products in Drosophila Development. Proc. Biol. Sci. 1998, 265, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Foe, V.E.; Odell, G.M.; Edgar, B.A. Mitosis and Morphogenesis in the Drosophila Embryo: Point and Counterpoint. In The Development of Drosophila Melanogaster; Cold Spring Harbor Press: Cold Spring Harbor, NY, USA, 1993; pp. 149–300. [Google Scholar]
- Lassy, C.W.; Karr, T.L. Cytological Analysis of Fertilization and Early Embryonic Development in Incompatible Crosses of Drosophila Simulans. Mech. Dev. 1996, 57, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Callaini, G. Detachment of the Basal Body from the Sperm Tail Is Not Required to Organize Functional Centrosomes during Drosophila Embryogenesis. Cytoskeleton 2010, 67, 251–258. [Google Scholar] [CrossRef]
- Riparbelli, M.G.; Callaini, G.; Megraw, T.L. Assembly and Persistence of Primary Cilia in Dividing Drosophila Spermatocytes. Dev. Cell 2012, 23, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Varmark, H.; Llamazares, S.; Rebollo, E.; Lange, B.; Reina, J.; Schwarz, H.; Gonzalez, C. Asterless Is a Centriolar Protein Required for Centrosome Function and Embryo Development in Drosophila. Curr. Biol. 2007, 17, 1735–1745. [Google Scholar] [CrossRef]
- Blachon, S.; Gopalakrishnan, J.; Omori, Y.; Polyanovsky, A.; Church, A.; Nicastro, D.; Malicki, J.; Avidor-Reiss, T. Drosophila Asterless and Vertebrate Cep152 Are Orthologs Essential for Centriole Duplication. Genetics 2008, 180, 2081–2094. [Google Scholar] [CrossRef]
- Pimenta-Marques, A.; Perestrelo, T.; Reis-Rodrigues, P.; Duarte, P.; Ferreira-Silva, A.; Lince-Faria, M.; Bettencourt-Dias, M. Ana1/CEP295 Is an Essential Player in the Centrosome Maintenance Program Regulated by Polo Kinase and the PCM. EMBO Rep. 2024, 25, 102–127. [Google Scholar] [CrossRef]
- Prigent, C.; Uzbekov, R. Duplication and Segregation of Centrosomes during Cell Division. Cells 2022, 11, 2445. [Google Scholar] [CrossRef] [PubMed]
- Blachon, S.; Cai, X.; Roberts, K.A.; Yang, K.; Polyanovsky, A.; Church, A.; Avidor-Reiss, T. A Proximal Centriole-like Structure Is Present in Drosophila Spermatids and Can Serve as a Model to Study Centriole Duplication. Genetics 2009, 182, 133–144. [Google Scholar] [CrossRef]
- Mottier-Pavie, V.; Megraw, T.L. Drosophila Bld10 Is a Centriolar Protein That Regulates Centriole, Basal Body, and Motile Cilium Assembly. Mol. Biol. Cell 2009, 20, 2605–2614. [Google Scholar] [CrossRef]
- Khire, A.; Vizuet, A.A.; Davila, E.; Avidor-Reiss, T. Asterless Reduction during Spermiogenesis Is Regulated by Plk4 and Is Essential for Zygote Development in Drosophila. Curr. Biol. 2015, 25, 2956–2963. [Google Scholar] [CrossRef] [PubMed]
- Khire, A.; Jo, K.H.; Kong, D.; Akhshi, T.; Blachon, S.; Cekic, A.R.; Hynek, S.; Ha, A.; Loncarek, J.; Mennella, V.; et al. Centriole Remodeling during Spermiogenesis in Drosophila. Curr. Biol. 2016, 26, 3183–3189. [Google Scholar] [CrossRef]
- Jo, K.H.; Jaiswal, A.; Khanal, S.; Fishman, E.L.; Curry, A.N.; Avidor-Reiss, T. Poc1B and Sas-6 Function Together during the Atypical Centriole Formation in Drosophila Melanogaster. Cells 2019, 8, 841. [Google Scholar] [CrossRef] [PubMed]
- Blachon, S.; Khire, A.; Avidor-Reiss, T. The Origin of the Second Centriole in the Zygote of Drosophila Melanogaster. Genetics 2014, 197, 199–205. [Google Scholar] [CrossRef]
- Buglak, D.B.; Holmes, K.H.M.; Galletta, B.J.; Rusan, N.M. The Proximal Centriole-like Structure Maintains Nucleus-Centriole Architecture in Sperm. J. Cell Sci. 2024, 137, jcs262311. [Google Scholar] [CrossRef]
- Dallai, R.; Mercati, D.; Lino-Neto, J.; Dias, G.; Lupetti, P. Evidence of a Procentriole during Spermiogenesis in the Coccinellid Insect Adalia Decempunctata (L): An Ultrastructural Study. Arthropod Struct. Dev. 2017, 46, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Fishman, E.L.; Jo, K.; Ha, A.; Royfman, R.; Zinn, A.; Krishnamurthy, M.; Avidor-Reiss, T. Atypical Centrioles Are Present in Tribolium Sperm. Open Biol. 2017, 7, 160334. [Google Scholar] [CrossRef]
- Yamashiki, N.; Kawamura, N. Behavior of Centrioles during Meiosis in the Male Silkworm, Bombyx mori (Lepidoptera). Dev. Growth Differ. 1998, 40, 619–630. [Google Scholar] [CrossRef]
- Wolf, K.; Kyburg, J. The Restructuring of the Flagellar Base and the Flagellar Necklace during Spermatogenesis of Ephestia kuehniella Z. (Pyralidae, Lepidoptera). Cell Tissue Res. 1989, 256. [Google Scholar] [CrossRef]
- Gottardo, M.; Callaini, G.; Riparbelli, M.G. Procentriole Assembly without Centriole Disengagement: A Paradox of Male Gametogenesis. J. Cell Sci. 2014, 127, 3434–3439. [Google Scholar] [CrossRef]
- Avidor-Reiss, T. Rapid Evolution of Sperm Produces Diverse Centriole Structures That Reveal the Most Rudimentary Structure Needed for Function. Cells 2018, 7, 67. [Google Scholar] [CrossRef]
- Jaffe, L.A.; Gould, M. Polyspermy-Preventing Mechanisms. In Biology of Fertilization; Academic Press: New York, NY, USA, 1985; Volume 3, pp. 223–250. [Google Scholar]
- Iwao, Y.; Kimoto, C.; Fujimoto, A.; Suda, A.; Hara, Y. Physiological Polyspermy: Selection of a Sperm Nucleus for the Development of Diploid Genomes in Amphibians. Mol. Reprod. Devel. 2020, 87, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Snook, R.R.; Hosken, D.J.; Karr, T.L. The Biology and Evolution of Polyspermy: Insights from Cellular and Functional Studies of Sperm and Centrosomal Behavior in the Fertilized Egg. Reproduction 2011, 142, 779–792. [Google Scholar] [CrossRef]
- Callaini, G.; Riparbelli, M.G. Fertilization inDrosophila Melanogaster:Centrosome Inheritance and Organization of the First Mitotic Spindle. Dev. Biol. 1996, 176, 199–208. [Google Scholar] [CrossRef]
- Hildreth, P.E.; Lucchesi, J.C. Fertilization in Drosophila. Dev. Biol. 1963, 6, 262–278. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Giordano, R.; Callaini, G. Centrosome Inheritance in the Parthenogenetic Egg of the Collembolan Folsomia Candida. Cell Tissue Res. 2006, 326, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Tagu, D.; Bonhomme, J.; Callaini, G. Aster Self-Organization at Meiosis: A Conserved Mechanism in Insect Parthenogenesis? Dev. Biol. 2005, 278, 220–230. [Google Scholar] [CrossRef]
- Tram, U.; Sullivan, W. Reciprocal Inheritance of Centrosomes in the Parthenogenetic Hymenopteran Nasonia Vitripennis. Curr. Biol. 2000, 10, 1413–1419. [Google Scholar] [CrossRef]
- Riparbelli, M.G.; Stouthamer, R.; Dallai, R.; Callaini, G. Microtubule Organization during the Early Development of the Parthenogenetic Egg of the HymenopteranMuscidifurax Uniraptor. Dev. Biol. 1998, 195, 89–99. [Google Scholar] [CrossRef]
- Riparbelli, M.G.; Callaini, G. Drosophila Parthenogenesis: A Model for de Novo Centrosome Assembly. Dev. Biol. 2003, 260, 298–313. [Google Scholar] [CrossRef]
- Eisman, R.; Kaufman, T.C. Cytological Investigation of the Mechanism of Parthenogenesis in Drosophila Mercatorum. Fly 2007, 1, 317–329. [Google Scholar] [CrossRef]
- Hirai, K.; Inoue, Y.H.; Matsuda, M. Mitotic Progression and Dual Spindle Formation Caused by Spindle Association of de Novo-Formed Microtubule-Organizing Centers in Parthenogenetic Embryos of Drosophila Ananassae. Genetics 2023, 223, iyac178. [Google Scholar] [CrossRef] [PubMed]
- Riparbelli, M.G.; Gottardo, M.; Callaini, G. Parthenogenesis in Insects: The Centriole Renaissance. In Oocytes; Kloc, M., Ed.; Results and Problems in Cell Differentiation; Springer International Publishing: Cham, Switzerland, 2017; Volume 63, pp. 435–479. ISBN 978-3-319-60854-9. [Google Scholar]
- Nabais, C.; Pessoa, D.; de-Carvalho, J.; van Zanten, T.; Duarte, P.; Mayor, S.; Carneiro, J.; Telley, I.A.; Bettencourt-Dias, M. Plk4 Triggers Autonomous de Novo Centriole Biogenesis and Maturation. J. Cell Biol. 2021, 220, e202008090. [Google Scholar] [CrossRef]
- Peel, N.; Stevens, N.R.; Basto, R.; Raff, J.W. Overexpressing Centriole-Replication Proteins in Vivo Induces Centriole Overduplication and de Novo Formation. Curr. Biol. 2007, 17, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Martins, A.; Riparbelli, M.; Callaini, G.; Glover, D.M.; Bettencourt-Dias, M. Revisiting the Role of the Mother Centriole in Centriole Biogenesis. Science 2007, 316, 1046–1050. [Google Scholar] [CrossRef] [PubMed]
- Dzhindzhev, N.S.; Yu, Q.D.; Weiskopf, K.; Tzolovsky, G.; Cunha-Ferreira, I.; Riparbelli, M.; Rodrigues-Martins, A.; Bettencourt-Dias, M.; Callaini, G.; Glover, D.M. Asterless Is a Scaffold for the Onset of Centriole Assembly. Nature 2010, 467, 714–718. [Google Scholar] [CrossRef]
- Bownes, M. Ovarian Yolk-Protein Synthesis in Drosophila Melanogaster. J. Insect Physiol. 1982, 28, 953–960. [Google Scholar] [CrossRef]
- Walker, J.J.; Lee, K.K.; Desai, R.N.; Erickson, J.W. The Drosophila Melanogaster Sex Determination Gene sisA Is Required in Yolk Nuclei for Midgut Formation. Genetics 2000, 155, 191–202. [Google Scholar] [CrossRef]
- Foe, V.E.; Alberts, B.M. Studies of Nuclear and Cytoplasmic Behaviour during the Five Mitotic Cycles That Precede Gastrulation in Drosophila Embryogenesis. J. Cell Sci. 1983, 61, 31–70. [Google Scholar] [CrossRef]
- Riparbelli, M.G.; Callaini, G. Assembly of Yolk Spindles in the Early Drosophila Embryo. Mech. Dev. 2003, 120, 441–454. [Google Scholar] [CrossRef]
- Gehring, W. Cell heredity and changes of determination in cultures of imaginal discs in Drosophila melanogaster. J. Embryol. Exp. Morphol. 1966, 15, 77–111. [Google Scholar] [PubMed]
- Haynie, J.L.; Bryant, P.J. Development of the Eye-antenna Imaginal Disc and Morphogenesis of the Adult Head in Drosophila melanogaster. J. Exp. Zool. 1986, 237, 293–308. [Google Scholar] [CrossRef]
- Carthew, R.W. Pattern Formation in the Drosophila Eye. Curr. Opin. Genet. Dev. 2007, 17, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.P. Building an Ommatidium One Cell at a Time. Dev. Dyn. 2012, 241, 136–149. [Google Scholar] [CrossRef]
- Wolff, T.; Ready, D.F. The Beginning of Pattern Formation in the Drosophila Compound Eye: The Morphogenetic Furrow and the Second Mitotic Wave. Development 1991, 113, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Cagan, R. Principles of Drosophila Eye Differentiation. Curr. Top. Dev. Biol. 2009, 89, 115–135. [Google Scholar] [CrossRef]
- Treisman, J.E. Retinal Differentiation in Drosophila. Wiley Interdiscip. Rev. Dev. Biol. 2013, 2, 545–557. [Google Scholar] [CrossRef]
- Fernandes, V.M.; McCormack, K.; Lewellyn, L.; Verheyen, E.M. Integrins Regulate Apical Constriction via Microtubule Stabilization in the Drosophila Eye Disc Epithelium. Cell Rep. 2014, 9, 2043–2055. [Google Scholar] [CrossRef]
- Pierron, M.; Kalbfuss, N.; Borrego-Pinto, J.; Lénárt, P.; Gönczy, P. Centriole Foci Persist in Starfish Oocytes despite Polo-like Kinase 1 Inactivation or Loss of Microtubule Nucleation Activity. Mol. Biol. Cell 2020, 31, 873–880. [Google Scholar] [CrossRef]
- Garbrecht, J.; Laos, T.; Holzer, E.; Dillinger, M.; Dammermann, A. An Acentriolar Centrosome at the C. Elegans Ciliary Base. Curr. Biol. 2021, 31, 2418–2428.e8. [Google Scholar] [CrossRef]
- Magescas, J.; Eskinazi, S.; Tran, M.V.; Feldman, J.L. Centriole-Less Pericentriolar Material Serves as a Microtubule Organizing Center at the Base of C. Elegans Sensory Cilia. Curr. Biol. 2021, 31, 2410–2417.e6. [Google Scholar] [CrossRef] [PubMed]
- Woglar, A.; Busso, C.; Garcia-Rodriguez, G.; Douma, F.; Croisier, M.; Knott, G.; Gönczy, P. Mechanisms of Axoneme and Centriole Elimination in Naegleria Gruberi. EMBO Rep. 2025, 26, 385–406. [Google Scholar] [CrossRef] [PubMed]
- Panda, P.; Ladinsky, M.S.; Glover, D.M. 9-Fold Symmetry Is Not Essential for Centriole Elongation and Formation of New Centriole-like Structures. Nat. Commun. 2024, 15, 4467. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonente, D.; Callaini, G.; Riparbelli, M.G. Inactivation and Elimination of Centrioles During Development in the Genus Drosophila: Current Insights and Open Questions. Cells 2025, 14, 865. https://doi.org/10.3390/cells14120865
Bonente D, Callaini G, Riparbelli MG. Inactivation and Elimination of Centrioles During Development in the Genus Drosophila: Current Insights and Open Questions. Cells. 2025; 14(12):865. https://doi.org/10.3390/cells14120865
Chicago/Turabian StyleBonente, Denise, Giuliano Callaini, and Maria Giovanna Riparbelli. 2025. "Inactivation and Elimination of Centrioles During Development in the Genus Drosophila: Current Insights and Open Questions" Cells 14, no. 12: 865. https://doi.org/10.3390/cells14120865
APA StyleBonente, D., Callaini, G., & Riparbelli, M. G. (2025). Inactivation and Elimination of Centrioles During Development in the Genus Drosophila: Current Insights and Open Questions. Cells, 14(12), 865. https://doi.org/10.3390/cells14120865