Electrical Stimulation of Oral Tissue-Derived Stem Cells: Unlocking New Potential for Dental and Periodontal Regeneration
Abstract
:1. Introduction
2. Oral Tissue-Derived Mesenchymal Stem/Stromal Cells
3. Electrical Stimulation as a Relevant Tool to Modulate Cell Fate
3.1. Piezoelectric/Electrical Properties of Dental and Periodontal Tissues
3.2. ES Delivery Methods
3.3. ES Parameters
3.4. Cellular Mechanisms Affected by ES
4. Electrical Stimulation for Dental and Periodontal Tissue Regeneration Strategies
Cell Source | Method to Deliver ES | ES Parameters | Main Findings | Reference |
---|---|---|---|---|
ABMSC | EMF | 10 min/day for 4 and 14 days; 6 Gauss; 10, 50, 100 Hz. | Proliferation increased for EMF groups at 50 and 100 Hz (Day 5); ALP and mineralization enhanced in EMF group at 50 and 100 Hz (Day 14); vinculin, vimentin, and CaM expression increased for EMF groups; OC expression upregulated for EMF groups. | [199] |
DPSC | DC EF | 1 h/day for 7 days; 10, 50, 100, 150 mV/mm. | Metabolic activity decreased for 100 and 150 mV/mm; bone-specific gene expression increased: OC, RUNX2, BSP, and DMP1; collagen deposition decreased at days 7 and 14; ALP activity decreased at days 7 and 14; calcium deposition decreased at day 14. | [194] |
DPSC | mES | 2 h/day at an intermittent regimen (stimulation time: 38.62 s and rest time: 110.46 s) for 3 days; mES of 0.5, 38 and 75.5 µA. | Proliferation and OC expression increased for 38 µA stimulation condition. | [193] |
DPSC | EMF | 15 min/day for 3 days; 10 mT; 40, 60, 70, and 150 Hz; pulse waveform. | CD73, CD105, CD146 expression decreased for 60 and 70 Hz; RUNX2, DMP1, DSPP protein expression increased for 70 Hz; ALP, RUNX2, DMP1, and DSPP protein expression increased for 60 Hz; BMP2, ALP, RUNX2, OMD, DMP1 and DSPP gene expression increased for all PEMF groups; β-catenin, p-GSK-3β, and p-p38 expression increased for 70 Hz; β-catenin expression increased for 60 Hz. | [189] |
DPSC | EMF | 20 and 40 min/day for 7 days; 0.5 and 1 mT; 50 Hz; sinusoidal waveform. | Proliferation increased for EMF groups, especially for 1 mT, 20 min/day. | [195] |
DPSC | EMF | 20 and 40 min/day for 7 days; 0.5 and 1 mT; 50 Hz; sinusoidal waveform. | Proliferation and DMP1 expression increased for EMF groups. | [196] |
DPSC | DC EF on PPy films | 4 h/day for 2 and 4 days; 0.33 V/cm. | Calcium deposition, Alizarin red S staining, and BMP2, BMP3, BMP4, and BMP5 gene expressions enhanced for ES group. | [200] |
DPSC | Indirect ES on poralized P(VDF-TrFE) membranes | Membranes: P-55 (−55.05 mV), P-85 (−84.8 mV), and P-0 (unpolarized). | ALP activity increased for P-55 (day 7); mineralization increased for P-55 (day 21); BMP2, COL I, and SP7/OSX protein expression increased for P-55 (day 7); BMP2, COL I, ALP, SP7/OSX, OPN, VINCULIN, and OC protein expression increased for P-55 (day 14). | [190] |
PDLSC | EMF | 1 h/day for 4, 7, 8, 10, and 14 days; 0.6, 1.2, 1.8, 2.4, and 3.0 mT; 15 Hz; pulsed waveform. | Alizarin red S staining, ALP activity, RUNX2, ALP, and OPN gene expression increased for 1.8 and 2.4 mT; BMP9-transfected cells with PEMF increased even more these genes’ expression and ECM mineralization. | [197] |
PDLSC | EMF | 1 mT; 6 h/day; 10 or 28 days; 50 Hz; sinusoidal waveform. | Proliferation and calcium deposition, COL I, RUNX2 gene expression, and COL I, RUNX2, OPN protein expression increased for 10-day treatment group. | [198] |
5. Challenges and Future Trends
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angelova Volponi, A.; Zaugg, L.K.; Neves, V.; Liu, Y.; Sharpe, P.T. Tooth Repair and Regeneration. Curr. Oral Health Rep. 2018, 5, 295–303. [Google Scholar] [CrossRef]
- Nanci, A.; Bosshardt, D.D. Structure of Periodontal Tissues in Health and Disease. Periodontology 2000 2006, 40, 11–28. [Google Scholar] [CrossRef]
- Fehrenbach, M.J.; Popowics, T. Illustrated Dental Embryology, Histology, and Anatomy E-Book; Elsevier Health Sciences; Saunders: Philadephia, PA, USA, 2009. [Google Scholar]
- de Jong, T.; Bakker, A.D.; Everts, V.; Smit, T.H. The Intricate Anatomy of the Periodontal Ligament and Its Development: Lessons for Periodontal Regeneration. J. Periodontal Res. 2017, 52, 965–974. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Schuppan, D.; Becker, J.; Reichart, P.; Gelderblom, H.R. Distribution of Undulin, Tenascin, and Fibronectin in the Human Periodontal Ligament and Cementum: Comparative Immunoelectron Microscopy with Ultra-Thin Cryosections. J. Histochem. Cytochem. 1993, 41, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Larjava, H.; Hakkinen, L.; Rahemtulla, F. A Biochemical Analysis of Human Periodontal Tissue Proteoglycans. Biochem. J. 1992, 284, 267–274. [Google Scholar] [CrossRef]
- Peres, M.A.; Macpherson, L.M.D.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral Diseases: A Global Public Health Challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Righolt, A.J.; Jevdjevic, M.; Marcenes, W.; Listl, S. Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in 2015. J. Dent. Res. 2018, 97, 501–507. [Google Scholar] [CrossRef]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W.; Abyu, G.Y.; Alsharif, U.; et al. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990–2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Jevdjevic, M.; Listl, S. Global, Regional, and Country-Level Economic Impacts of Oral Conditions in 2019. J. Dent. Res. 2024, 104, 17–21. [Google Scholar] [CrossRef]
- Nazir, M.A. Prevalence of Periodontal Disease, Its Association with Systemic Diseases and Prevention. Int. J. Health Sci. 2017, 11, 72–80. [Google Scholar]
- Botelho, J.; Machado, V.; Leira, Y.; Proença, L.; Chambrone, L.; Mendes, J.J. Economic Burden of Periodontitis in the United States and Europe: An Updated Estimation. J. Periodontol. 2022, 93, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.H.; Gronthos, S.; Bartold, P.M. Stem Cells and Periodontal Regeneration. Aust. Dent. J. 2008, 53, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Rams, T.E.; Degener, J.E.; van Winkelhoff, A.J. Antibiotic Resistance in Human Chronic Periodontitis Microbiota. J. Periodontol. 2014, 85, 160–169. [Google Scholar] [CrossRef]
- Haque, M.M.; Yerex, K.; Kelekis-Cholakis, A.; Duan, K. Advances in Novel Therapeutic Approaches for Periodontal Diseases. BMC Oral Health 2022, 22, 492. [Google Scholar] [CrossRef]
- Herrera, D.; Sanz, M.; Jepsen, S.; Needleman, I.; Roldán, S. A Systematic Review on the Effect of Systemic Antimicrobials as an Adjunct to Scaling and Root Planing in Periodontitis Patients. J. Clin. Periodontol. 2002, 29, 136–159. [Google Scholar] [CrossRef] [PubMed]
- Narem, R.; Sambanis, A. Tissue Engineering: From Biology to Biological Structures. Tissue Eng. 1995, 1, 3–13. [Google Scholar] [CrossRef]
- Bartold, P.M.; McCulloch, C.A.G.; Narayanan, A.S.; Pitaru, S. Tissue Engineering: A New Paradigm for Periodontal Regeneration Based on Molecular and Cell Biology. Periodontology 2000, 24, 253. [Google Scholar] [CrossRef]
- Lin, W.-L.; McCulloch, C.A.G.; Cho, M.-I. Differentiation of Periodontal Ligament Fibroblasts into Osteoblasts during Socket Healing after Tooth Extraction in the Rat. Anat. Rec. 1994, 240, 492–506. [Google Scholar] [CrossRef]
- Gould, T.R.L. Ultrastructural Characteristics of Progenitor Cell Populations in the Periodontal Ligament. J. Dent. Res. 1983, 62, 873–876. [Google Scholar] [CrossRef]
- Gould, T.R.L.; Melcher, A.H.; Brunette, D.M. Migration and Division of Progenitor Cell Populations in Periodontal Ligament after Wounding. J. Periodontal Res. 1980, 15, 20–42. [Google Scholar] [CrossRef]
- Levin, M. Molecular Bioelectricity: How Endogenous Voltage Potentials Control Cell Behavior and Instruct Pattern Regulation In Vivo. Mol. Biol. Cell 2014, 25, 3835–3850. [Google Scholar] [CrossRef] [PubMed]
- Serena, E.; Figallo, E.; Tandon, N.; Cannizzaro, C.; Gerecht, S.; Elvassore, N.; Vunjak-Novakovic, G. Electrical Stimulation of Human Embryonic Stem Cells: Cardiac Differentiation and the Generation of Reactive Oxygen Species. Exp. Cell Res. 2009, 315, 3611–3619. [Google Scholar] [CrossRef] [PubMed]
- Eischen-Loges, M.; Oliveira, K.M.C.; Bhavsar, M.B.; Barker, J.H.; Leppik, L. Pretreating Mesenchymal Stem Cells with Electrical Stimulation Causes Sustained Long-Lasting pro-Osteogenic Effects. PeerJ 2018, 2018, e4959. [Google Scholar] [CrossRef] [PubMed]
- Leppik, L.; Zhihua, H.; Mobini, S.; Thottakkattumana Parameswaran, V.; Eischen-Loges, M.; Slavici, A.; Helbing, J.; Pindur, L.; Oliveira, K.M.C.; Bhavsar, M.B.; et al. Combining Electrical Stimulation and Tissue Engineering to Treat Large Bone Defects in a Rat Model. Sci. Rep. 2018, 8, 6307. [Google Scholar] [CrossRef]
- Mobini, S.; Leppik, L.; Parameswaran, V.T.; Barker, J.H. In Vitro Effect of Direct Current Electrical Stimulation on Rat Mesenchymal Stem Cells. PeerJ 2017, 2017, e2821. [Google Scholar] [CrossRef]
- Wang, X.; Gao, Y.; Shi, H.; Liu, N.; Zhang, W.; Li, H. Influence of the Intensity and Loading Time of Direct Current Electric Field on the Directional Migration of Rat Bone Marrow Mesenchymal Stem Cells. Front. Med. 2016, 10, 286–296. [Google Scholar] [CrossRef]
- Yuan, X.; Arkonac, D.E.; Chao, P.H.G.; Vunjak-Novakovic, G. Electrical Stimulation Enhances Cell Migration and Integrative Repair in the Meniscus. Sci. Rep. 2014, 4, 3674. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Kang, E.T.; Neoh, K.G. Electrical Stimulation of Adipose-Derived Mesenchymal Stem Cells in Conductive Scaffolds and the Roles of Voltage-Gated Ion Channels. Acta Biomater. 2016, 32, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSC) In Vitro and In Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of Multipotent Postnatal Stem Cells from Human Periodontal Ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Morsczeck, C.; Götz, W.; Schierholz, J.; Zeilhofer, F.; Kühn, U.; Möhl, C.; Sippel, C.; Hoffmann, K.H. Isolation of Precursor Cells (PCs) from Human Dental Follicle of Wisdom Teeth. Matrix Biol. 2005, 24, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, T.; Suardita, K.; Ishii, M.; Sugiyama, M.; Igarashi, A.; Oda, R.; Nishimura, M.; Saito, M.; Nakagawa, K.; Yamanaka, K.; et al. Alveolar Bone Marrow as a Cell Source for Regenerative Medicine: Differences Between Alveolar and Iliac Bone Marrow Stromal Cells. J. Bone Miner. Res. 2005, 20, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Sonoyama, W.; Liu, Y.; Fang, D.; Yamaza, T.; Seo, B.M.; Zhang, C.; Liu, H.; Gronthos, S.; Wang, C.Y.; Shi, S.; et al. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine. PLoS ONE 2006, 1, e79. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, E.; Yagi, K.; Kojima, M.; Yagyuu, T.; Ohshima, A.; Sobajima, S.; Tadokoro, M.; Katsube, Y.; Isoda, K.; Kondoh, M.; et al. Multipotent Cells from the Human Third Molar: Feasibility of Cell-Based Therapy for Liver Disease. Differentiation 2008, 76, 495–505. [Google Scholar] [CrossRef]
- Zhang, Q.; Shi, S.; Liu, Y.; Uyanne, J.; Shi, Y.; Shi, S.; Le, A.D. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis. J. Immunol. 2009, 183, 7787–7798. [Google Scholar] [CrossRef]
- Liu, J.; Yu, F.; Sun, Y.; Jiang, B.; Zhang, W.; Yang, J.; Xu, G.T.; Liang, A.; Liu, S. Concise Reviews: Characteristics and Potential Applications of Human Dental Tissue-Derived Mesenchymal Stem Cells. Stem Cells 2015, 33, 627–638. [Google Scholar] [CrossRef]
- Park, J.C.; Kim, J.C.; Kim, Y.T.; Choi, S.H.; Cho, K.S.; Im, G., II; Kim, B.S.; Kim, C.S. Acquisition of Human Alveolar Bone-Derived Stromal Cells Using Minimally Irrigated Implant Osteotomy: In Vitro and In Vivo Evaluations. J. Clin. Periodontol. 2012, 39, 495–505. [Google Scholar] [CrossRef]
- Pekovits, K.; Kröpfl, J.M.; Stelzer, I.; Payer, M.; Hutter, H.; Dohr, G. Human Mesenchymal Progenitor Cells Derived from Alveolar Bone and Human Bone Marrow Stromal Cells: A Comparative Study. Histochem. Cell Biol. 2013, 140, 611–621. [Google Scholar] [CrossRef]
- Mason, S.; Tarle, S.A.; Osibin, W.; Kinfu, Y.; Kaigler, D. Standardization and Safety of Alveolar Bone–Derived Stem Cell Isolation. J. Dent. Res. 2013, 93, 55–61. [Google Scholar] [CrossRef]
- Wang, L.; Shen, H.; Zheng, W.; Tang, L.; Yang, Z.; Gao, Y.; Yang, Q.; Wang, C.; Duan, Y.; Jin, Y. Characterization of Stem Cells from Alveolar Periodontal Ligament. Tissue Eng. Part A 2010, 17, 1015–1026. [Google Scholar] [CrossRef]
- Luan, X.; Ito, Y.; Dangaria, S.; Diekwisch, T.G.H. Dental Follicle Progenitor Cell Heterogeneity in the Developing Mouse Periodontium. Stem Cells Dev. 2006, 15, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Pan, J.; Wu, P.; Huang, R.; Du, W.; Zhou, Y.; Wan, M.; Fan, Y.; Xu, X.; Zhou, X.; et al. Dental Follicle Cells: Roles in Development and Beyond. Stem Cells Int. 2019, 2019, 9159605. [Google Scholar] [CrossRef] [PubMed]
- Shoi, K.; Aoki, K.; Ohya, K.; Takagi, Y.; Shimokawa, H. Characterization of Pulp and Follicle Stem Cells from Impacted Supernumerary Maxillary Incisors. Pediatr. Dent. 2014, 36, 79–84. [Google Scholar]
- Yildirim, S.; Zibandeh, N.; Genc, D.; Ozcan, E.M.; Goker, K.; Akkoc, T. The Comparison of the Immunologic Properties of Stem Cells Isolated from Human Exfoliated Deciduous Teeth, Dental Pulp, and Dental Follicles. Stem Cells Int. 2016, 2016, 4682875. [Google Scholar] [CrossRef]
- Kémoun, P.; Laurencin-Dalicieux, S.; Rue, J.; Farges, J.C.; Gennero, I.; Conte-Auriol, F.; Briand-Mesange, F.; Gadelorge, M.; Arzate, H.; Narayanan, A.S.; et al. Human Dental Follicle Cells Acquire Cementoblast Features under Stimulation by BMP-2/-7 and Enamel Matrix Derivatives (EMD) In Vitro. Cell Tissue Res. 2007, 329, 283–294. [Google Scholar] [CrossRef]
- Völlner, F.; Ernst, W.; Driemel, O.; Morsczeck, C. A Two-Step Strategy for Neuronal Differentiation In Vitro of Human Dental Follicle Cells. Differentiation 2009, 77, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Patil, R.; Kumar, B.M.; Lee, W.J.; Jeon, R.H.; Jang, S.J.; Lee, Y.M.; Park, B.W.; Byun, J.H.; Ahn, C.S.; Kim, J.W.; et al. Multilineage Potential and Proteomic Profiling of Human Dental Stem Cells Derived from a Single Donor. Exp. Cell Res. 2014, 320, 92–107. [Google Scholar] [CrossRef]
- Jo, Y.Y.; Lee, H.J.; Kook, S.Y.; Choung, H.W.; Park, J.Y.; Chung, J.H.; Choung, Y.H.; Kim, E.S.; Yang, H.C.; Choung, P.H. Isolation and Characterization of Postnatal Stem Cells from Human Dental Tissues. Tissue Eng. 2007, 13, 767–773. [Google Scholar] [CrossRef]
- Honda, M.J.; Imaizumi, M.; Tsuchiya, S.; Morsczeck, C. Dental Follicle Stem Cells and Tissue Engineering. J. Oral Sci. 2010, 52, 541–552. [Google Scholar] [CrossRef]
- Mori, G.; Ballini, A.; Carbone, C.; Oranger, A.; Brunetti, G.; di Benedetto, A.; Rapone, B.; Cantore, S.; Di Comite, M.; Colucci, S.; et al. Osteogenic Differentiation of Dental Follicle Stem Cells. Int. J. Med. Sci. 2012, 9, 480. [Google Scholar] [CrossRef]
- Bi, R.; Lyu, P.; Song, Y.; Li, P.; Song, D.; Cui, C.; Fan, Y. Function of Dental Follicle Progenitor/Stem Cells and Their Potential in Regenerative Medicine: From Mechanisms to Applications. Biomolecules 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulos, I.; Brizuela, C.; Khoury, M. Gingival Mesenchymal Stem Cells Outperform Haploidentical Dental Pulp-Derived Mesenchymal Stem Cells in Proliferation Rate, Migration Ability, and Angiogenic Potential. Cell Transplant. 2018, 27, 967–978. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem Cell Properties of Human Dental Pulp Stem Cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Laino, G.; d’Aquino, R.; Graziano, A.; Lanza, V.; Carinci, F.; Naro, F.; Pirozzi, G.; Papaccio, G. A New Population of Human Adult Dental Pulp Stem Cells: A Useful Source of Living Autologous Fibrous Bone Tissue (LAB). J. Bone Miner. Res. 2005, 20, 1394–1402. [Google Scholar] [CrossRef]
- d’Aquino, R.; Graziano, A.; Sampaolesi, M.; Laino, G.; Pirozzi, G.; De Rosa, A.; Papaccio, G. Human Postnatal Dental Pulp Cells Co-Differentiate into Osteoblasts and Endotheliocytes: A Pivotal Synergy Leading to Adult Bone Tissue Formation. Cell Death Differ. 2007, 14, 1162–1171. [Google Scholar] [CrossRef]
- Armiñán, A.; Gandía, C.; Bartual, M.; García-Verdugo, J.M.; Lledó, E.; Mirabet, V.; Llop, M.; Barea, J.; Montero, J.A.; Sepúlveda, P. Cardiac Differentiation Is Driven by NKX2. 5 and GATA4 Nuclear Translocation in Tissue-Specific Mesenchymal Stem Cells. Stem Cells Dev. 2009, 18, 907–917. [Google Scholar] [CrossRef]
- Arthur, A.; Rychkov, G.; Shi, S.; Koblar, S.A.; Gronthos, S. Adult Human Dental Pulp Stem Cells Differentiate Toward Functionally Active Neurons Under Appropriate Environmental Cues. Stem Cells 2008, 26, 1787–1795. [Google Scholar] [CrossRef]
- Stevens, A.; Zuliani, T.; Olejnik, C.; LeRoy, H.; Obriot, H.; Kerr-Conte, J.; Formstecher, P.; Bailliez, Y.; Polakowska, R.R. Human Dental Pulp Stem Cells Differentiate into Neural Crest-Derived Melanocytes and Have Label-Retaining and Sphere-Forming Abilities. Stem Cells Dev. 2008, 17, 1175–1184. [Google Scholar] [CrossRef]
- Nakamura, S.; Yamada, Y.; Katagiri, W.; Sugito, T.; Ito, K.; Ueda, M. Stem Cell Proliferation Pathways Comparison between Human Exfoliated Deciduous Teeth and Dental Pulp Stem Cells by Gene Expression Profile from Promising Dental Pulp. J. Endod. 2009, 35, 1536–1542. [Google Scholar] [CrossRef]
- Sloan, A.J.; Waddington, R.J. Dental Pulp Stem Cells: What, Where, How? Int. J. Paediatr. Dent. 2009, 19, 61–70. [Google Scholar] [CrossRef]
- Assem, M.; Kamal, S.; Sabry, D.; Soliman, N.; Aly, R.M. Preclinical Assessment of the Proliferation Capacity of Gingival and Periodontal Ligament Stem Cells from Diabetic Patients. Open Access Maced. J. Med. Sci. 2018, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, N.; Xie, H.; Jin, Y. Characterization of Mesenchymal Stem Cells from Human Normal and Hyperplastic Gingiva. J. Cell Physiol. 2011, 226, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yu, M.; Yan, X.; Wen, Y.; Zeng, Q.; Yue, W.; Yang, P.; Pei, X. Gingiva-Derived Mesenchymal Stem Cell-Mediated Therapeutic Approach for Bone Tissue Regeneration. Stem Cells Dev. 2011, 20, 2093–2102. [Google Scholar] [CrossRef]
- Marynka-Kalmani, K.; Treves, S.; Yafee, M.; Rachima, H.; Gafni, Y.; Cohen, M.A.; Pitaru, S. The Lamina Propria of Adult Human Oral Mucosa Harbors a Novel Stem Cell Population. Stem Cells 2010, 28, 984–995. [Google Scholar] [CrossRef]
- Mitrano, T.I.; Grob, M.S.; Carrión, F.; Nova-Lamperti, E.; Luz, P.A.; Fierro, F.S.; Quintero, A.; Chaparro, A.; Sanz, A. Culture and Characterization of Mesenchymal Stem Cells From Human Gingival Tissue. J. Periodontol. 2010, 81, 917–925. [Google Scholar] [CrossRef]
- Van Pham, P.; Tran, N.Y.; Phan, N.L.C.; Vu, N.B.; Phan, N.K. Vitamin C Stimulates Human Gingival Stem Cell Proliferation and Expression of Pluripotent Markers. In Vitro Cell Dev. Biol. Anim. 2016, 52, 218–227. [Google Scholar] [CrossRef]
- Fawzy El-Sayed, K.M.; Dörfer, C.E. Gingival Mesenchymal Stem/Progenitor Cells: A Unique Tissue Engineering Gem. Stem Cells Int. 2016, 2016, 7154327. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Y.; Hou, Y.; Song, P.; Zhou, M.; Nie, M.; Liu, X. Modulation of Proliferation and Differentiation of Gingiva-derived Mesenchymal Stem Cells by Concentrated Growth Factors: Potential Implications in Tissue Engineering for Dental Regeneration and Repair. Int. J. Mol. Med. 2019, 44, 37–46. [Google Scholar] [CrossRef]
- Shi, S.; Miura, M.; Seo, B.M.; Robey, P.G.; Bartold, P.M.; Gronthos, S. The Efficacy of Mesenchymal Stem Cells to Regenerate and Repair Dental Structures. Orthod. Craniofac. Res. 2005, 8, 191–199. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Kapila, Y.; Lotz, J.; Kapila, S. Multiple Differentiation Capacity of STRO-1+/CD146+ PDL Mesenchymal Progenitor Cells. Stem Cells Dev. 2008, 18, 487–496. [Google Scholar] [CrossRef]
- Zhu, W.; Liang, M. Periodontal Ligament Stem Cells: Current Status, Concerns, and Future Prospects. Stem Cells Int. 2015, 2015, 972313. [Google Scholar] [CrossRef] [PubMed]
- Nagatomo, K.; Komaki, M.; Sekiya, I.; Sakaguchi, Y.; Noguchi, K.; Oda, S.; Muneta, T.; Ishikawa, I. Stem Cell Properties of Human Periodontal Ligament Cells. J. Periodontal Res. 2006, 41, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wang, S.; Wang, J.; Jin, F. Periodontitis Promotes the Proliferation and Suppresses the Differentiation Potential of Human Periodontal Ligament Stem Cells. Int. J. Mol. Med. 2015, 36, 915–922. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Ding, G.; Fang, D.; Zhang, C.; Bartold, P.M.; Gronthos, S.; Shi, S.; Wang, S. Periodontal Ligament Stem Cell-Mediated Treatment for Periodontitis in Miniature Swine. Stem Cells 2008, 26, 1065–1073. [Google Scholar] [CrossRef]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Robey, P.G.; Shi, S. SHED: Stem Cells from Human Exfoliated Deciduous Teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef]
- Chen, K.; Xiong, H.; Huang, Y.; Liu, C. Comparative Analysis of in Vitro Periodontal Characteristics of Stem Cells from Apical Papilla (SCAP) and Periodontal Ligament Stem Cells (PDLSCs). Arch. Oral Biol. 2013, 58, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Abe, S.; Yamaguchi, S.; Amagasa, T. Multilineage Cells from Apical Pulp of Human Tooth with Immature Apex. Oral Sci. Int. 2007, 4, 45–58. [Google Scholar] [CrossRef]
- Sonoyama, W.; Liu, Y.; Yamaza, T.; Tuan, R.S.; Wang, S.; Shi, S.; Huang, G.T.J. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. J. Endod. 2008, 34, 166–171. [Google Scholar] [CrossRef]
- Wang, J.; Liu, B.; Gu, S.; Liang, J. Effects of Wnt/β-Catenin Signalling on Proliferation and Differentiation of Apical Papilla Stem Cells. Cell Prolif. 2012, 45, 121–131. [Google Scholar] [CrossRef]
- Kang, J.; Fan, W.; Deng, Q.; He, H.; Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Res. Int. 2019, 2019, 6104738. [Google Scholar] [CrossRef]
- Wang, X.; Sha, X.J.; Li, G.H.; Yang, F.S.; Ji, K.; Wen, L.Y.; Liu, S.Y.; Chen, L.; Ding, Y.; Xuan, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth and Dental Pulp Stem Cells. Arch. Oral Biol. 2012, 57, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Suchánek, J.; Visek, B.; Soukup, T.; El-Din Mohamed, S.K.; Ivancakova, R.; Mokry, J.; Aboul-Ezz, E.H.A.; Omran, A. Stem Cells from Human Exfoliated Deciduous Teeth—Isolation, Long Term Cultivation and Phenotypical Analysis. Acta Med. 2010, 53, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Kunimatsu, R.; Nakajima, K.; Awada, T.; Tsuka, Y.; Abe, T.; Ando, K.; Hiraki, T.; Kimura, A.; Tanimoto, K. Comparative Characterization of Stem Cells from Human Exfoliated Deciduous Teeth, Dental Pulp, and Bone Marrow–Derived Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2018, 501, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Kerkis, I.; Kerkis, A.; Dozortsev, D.; Stukart-Parsons, G.C.; Gomes Massironi, S.M.; Pereira, L.V.; Caplan, A.I.; Cerruti, H.F. Isolation and Characterization of a Population of Immature Dental Pulp Stem Cells Expressing OCT-4 and Other Embryonic Stem Cell Markers. Cells Tissues Organs 2007, 184, 105–116. [Google Scholar] [CrossRef]
- Cordeiro, M.M.; Dong, Z.; Kaneko, T.; Zhang, Z.; Miyazawa, M.; Shi, S.; Smith, A.J.; Nör, J.E. Dental Pulp Tissue Engineering with Stem Cells from Exfoliated Deciduous Teeth. J. Endod. 2008, 34, 962–969. [Google Scholar] [CrossRef]
- Ishkitiev, N.; Yaegaki, K.; Calenic, B.; Nakahara, T.; Ishikawa, H.; Mitiev, V.; Haapasalo, M. Deciduous and Permanent Dental Pulp Mesenchymal Cells Acquire Hepatic Morphologic and Functional Features In Vitro. J. Endod. 2010, 36, 469–474. [Google Scholar] [CrossRef]
- Tsutsui, T.W. Dental Pulp Stem Cells: Advances to Applications. Stem Cells Cloning 2020, 13, 33–42. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, T.; Chen, P.; Wang, L.; Wang, J.; Wang, D.; Guo, W.; Zhou, Y.; Li, Q.; Du, H. Stem Cells from Human Exfoliated Deciduous Teeth Promote Hair Regeneration in Mouse. Cell Transplant. 2021, 30, 9636897211042927. [Google Scholar] [CrossRef]
- Annibali, S.; Cristalli, M.P.; Tonoli, F.; Polimeni, A. Stem Cells Derived from Human Exfoliated Deciduous Teeth: A Narrative Synthesis of Literature. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2863–2881. [Google Scholar]
- Yang, X.; Ma, Y.; Guo, W.; Yang, B.; Tian, W. Stem Cells from Human Exfoliated Deciduous Teeth as an Alternative Cell Source in Bio-Root Regeneration. Theranostics 2019, 9, 2694. [Google Scholar] [CrossRef]
- Takeda, T.; Tezuka, Y.; Horiuchi, M.; Hosono, K.; Iida, K.; Hatakeyama, D.; Miyaki, S.; Kunisada, T.; Shibata, T.; Tezuka, K. Characterization of Dental Pulp Stem Cells of Human Tooth Germs. J. Dent. Res. 2008, 87, 676–681. [Google Scholar] [CrossRef] [PubMed]
- Yalvac, M.E.; Ramazanoglu, M.; Rizvanov, A.A.; Sahin, F.; Bayrak, O.F.; Salli, U.; Palotás, A.; Kose, G.T. Isolation and Characterization of Stem Cells Derived from Human Third Molar Tooth Germs of Young Adults: Implications in Neo-Vascularization, Osteo-, Adipo- and Neurogenesis. Pharmacogenomics J. 2010, 10, 105–113. [Google Scholar] [CrossRef]
- Yalvac, M.E.; Ramazanoglu, M.; Gumru, O.Z.; Sahin, F.; Palotás, A.; Rizvanov, A.A. Comparison and Optimisation of Transfection of Human Dental Follicle Cells, a Novel Source of Stem Cells, with Different Chemical Methods and Electro-Poration. Neurochem. Res. 2009, 34, 1272–1277. [Google Scholar] [CrossRef]
- Yalvac, M.E.; Ramazanoglu, M.; Tekguc, M.; Bayrak, O.F.; Shafigullina, A.K.; Salafutdinov, I.I.; Blatt, N.L.; Kiyasov, A.P.; Sahin, F.; Palotas, A.; et al. Human Tooth Germ Stem Cells Preserve Neuro-Protective Effects after Long-Term Cryo-Preservation. Curr. Neurovasc. Res. 2010, 7, 49–58. [Google Scholar] [CrossRef]
- Yalvaç, M.E.; Yilmaz, A.; Mercan, D.; Aydin, S.; Dogan, A.; Arslan, A.; Demir, Z.; Salafutdinov, I.I.; Shafigullina, A.K.; Sahin, F.; et al. Differentiation and Neuro-Protective Properties of Immortalized Human Tooth Germ Stem Cells. Neurochem. Res. 2011, 36, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Doǧan, A.; Yalvaç, M.E.; Şahin, F.; Kabanov, A.V.; Palotás, A.; Rizvanov, A.A. Differentiation of Human Stem Cells Is Promoted by Amphiphilic Pluronic Block Copolymers. Int. J. Nanomed. 2012, 7, 4849–4860. [Google Scholar] [CrossRef]
- Guven, E.P.; Yalvac, M.E.; Sahin, F.; Yazici, M.M.; Rizvanov, A.A.; Bayirli, G. Effect of Dental Materials Calcium Hydroxide–Containing Cement, Mineral Trioxide Aggregate, and Enamel Matrix Derivative on Proliferation and Differentiation of Human Tooth Germ Stem Cells. J. Endod. 2011, 37, 650–656. [Google Scholar] [CrossRef]
- Yamada, Y.; Ito, K.; Nakamura, S.; Ueda, M.; Nagasaka, T. Promising Cell-Based Therapy for Bone Regeneration Using Stem Cells from Deciduous Teeth, Dental Pulp, and Bone Marrow. Cell Transplant. 2011, 20, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Nakamura, S.; Ito, K.; Sugito, T.; Yoshimi, R.; Nagasaka, T.; Ueda, M. A Feasibility of Useful Cell-Based Therapy by Bone Regeneration with Deciduous Tooth Stem Cells, Dental Pulp Stem Cells, or Bone-Marrow-Derived Mesenchymal Stem Cells for Clinical Study Using Tissue Engineering Technology. Tissue Eng. Part A 2010, 16, 1891–1900. [Google Scholar] [CrossRef]
- Hu, J.; Cao, Y.; Xie, Y.; Wang, H.; Fan, Z.; Wang, J.; Zhang, C.; Wang, J.; Wu, C.T.; Wang, S. Periodontal Regeneration in Swine after Cell Injection and Cell Sheet Transplantation of Human Dental Pulp Stem Cells Following Good Manufacturing Practice. Stem Cell Res. Ther. 2016, 7, 130. [Google Scholar] [CrossRef]
- Santos, M.S.; Carvalho, M.S.; Silva, J.C. Recent Advances on Electrospun Nanofibers for Periodontal Regeneration. Nanomaterials 2023, 13, 1307. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.; Liu, Y.; Wang, W.; Wei, F.; Liu, D.; Fan, Z.; An, Y.; Zhang, C.; Wang, S. Allogeneic Periodontal Ligament Stem Cell Therapy for Periodontitis in Swine. Stem Cells 2010, 28, 1829–1838. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.M.; Gao, L.N.; Tian, B.M.; Zhang, X.Y.; Zhang, Y.J.; Dong, G.Y.; Lu, H.; Chu, Q.; Xu, J.; Yu, Y.; et al. Treatment of Periodontal Intrabony Defects Using Autologous Periodontal Ligament Stem Cells: A Randomized Clinical Trial. Stem Cell Res. Ther. 2016, 7, 33. [Google Scholar] [CrossRef]
- Heng, W.; Bhavsar, M.; Han, Z.; Barker, J.H. Effects of Electrical Stimulation on Stem Cells. Curr. Stem Cell Res. Ther. 2020, 15, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Titushkin, I.; Cho, M. Regulation of Mesenchymal Stem Cell Adhesion and Orientation in 3D Collagen Scaffold by Electrical Stimulus. Bioelectrochemistry 2006, 69, 133–141. [Google Scholar] [CrossRef]
- Radisic, M.; Park, H.; Shing, H.; Consi, T.; Schoen, F.J.; Langer, R.; Freed, L.E.; Vunjak-Novakovic, G. Functional Assembly of Engineered Myocardium by Electrical Stimulation of Cardiac Myocytes Cultured on Scaffolds. Proc. Natl. Acad. Sci. USA 2004, 101, 18129–18134. [Google Scholar] [CrossRef]
- Balint, R.; Cassidy, N.J.; Cartmell, S.H. Electrical Stimulation: A Novel Tool for Tissue Engineering. Tissue Eng. Part B Rev. 2012, 19, 48–57. [Google Scholar] [CrossRef]
- Fukada, E.; Yasuda, I. On the Piezoelectric Effect of Bone. J. Physical Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Ahn, A.C.; Grodzinsky, A.J. Relevance of Collagen Piezoelectricity to “Wolff’s Law”: A Critical Review. Med. Eng. Phys. 2009, 31, 733–741. [Google Scholar] [CrossRef]
- Chen, C.; Bai, X.; Ding, Y.; Lee, I.S. Electrical Stimulation as a Novel Tool for Regulating Cell Behavior in Tissue Engineering. Biomater. Res. 2019, 23, 25. [Google Scholar] [CrossRef]
- Guillot-Ferriols, M.; Lanceros-Méndez, S.; Gómez Ribelles, J.L.; Gallego Ferrer, G. Electrical Stimulation: Effective Cue to Direct Osteogenic Differentiation of Mesenchymal Stem Cells? Biomater. Adv. 2022, 138, 212918. [Google Scholar] [CrossRef] [PubMed]
- Hronik-Tupaj, M.; Rice, W.L.; Cronin-Golomb, M.; Kaplan, D.L.; Georgakoudi, I. Osteoblastic Differentiation and Stress Response of Human Mesenchymal Stem Cells Exposed to Alternating Current Electric Fields. Biomed. Eng. Online 2011, 10, 9. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.; Meneses, J.; Garrudo, F.F.F.; Fernandes, S.R.; Alves, N.; Ferreira, F.C.; Pascoal-Faria, P. Direct Coupled Electrical Stimulation towards Improved Osteogenic Differentiation of Human Mesenchymal Stem/Stromal Cells: A Comparative Study of Different Protocols. Sci. Rep. 2024, 14, 5458. [Google Scholar] [CrossRef]
- Hu, W.W.; Chen, T.C.; Tsao, C.W.; Cheng, Y.C. The Effects of Substrate-Mediated Electrical Stimulation on the Promotion of Osteogenic Differentiation and Its Optimization. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.A.; Kim, J.W.; Kim, J.A.; Lee, S.; Kim, S.; Suh, W.H.; Kim, H.S.; Kwon, S.; Kim, S.J.; Suh, Y.H. Biphasic Electrical Currents Stimulation Promotes Both Proliferation and Differentiation of Fetal Neural Stem Cells. PLoS ONE 2011, 6, e18738. [Google Scholar] [CrossRef]
- Young Park, S.; Park, J.; Hyun Sim, S.; Gyu Sung, M.; Kim, K.S.; Hee Hong, B.; Hong, S.; Hong, S.; Park, S.Y.; Sim, S.H.; et al. Enhanced Differentiation of Human Neural Stem Cells into Neurons on Graphene. Adv. Mater. 2011, 23, 263–267. [Google Scholar] [CrossRef]
- Du, J.; Zhen, G.; Chen, H.; Zhang, S.; Qing, L.; Yang, X.; Lee, G.; Mao, H.Q.; Jia, X. Optimal Electrical Stimulation Boosts Stem Cell Therapy in Nerve Regeneration. Biomaterials 2018, 181, 347–359. [Google Scholar] [CrossRef]
- Genovese, J.A.; Spadaccio, C.; Chachques, E.; Schussler, O.; Carpentier, A.; Chachques, J.C.; Patel, A.N. Cardiac Pre-Differentiation of Human Mesenchymal Stem Cells by Electrostimulation. Front. Biosci. 2009, 14, 2996–3002. [Google Scholar] [CrossRef]
- Mooney, E.; Mackle, J.N.; Blond, D.J.P.; O’Cearbhaill, E.; Shaw, G.; Blau, W.J.; Barry, F.P.; Barron, V.; Murphy, J.M. The Electrical Stimulation of Carbon Nanotubes to Provide a Cardiomimetic Cue to MSCs. Biomaterials 2012, 33, 6132–6139. [Google Scholar] [CrossRef]
- Pietronave, S.; Zamperone, A.; Oltolina, F.; Colangelo, D.; Follenzi, A.; Novelli, E.; Diena, M.; Pavesi, A.; Consolo, F.; Fiore, G.B.; et al. Monophasic and Biphasic Electrical Stimulation Induces a Precardiac Differentiation in Progenitor Cells Isolated from Human Heart. Stem Cells Dev. 2013, 23, 888–898. [Google Scholar] [CrossRef]
- Pavesi, A.; Soncini, M.; Zamperone, A.; Pietronave, S.; Medico, E.; Redaelli, A.; Prat, M.; Fiore, G.B. Electrical Conditioning of Adipose-Derived Stem Cells in a Multi-Chamber Culture Platform. Biotechnol. Bioeng. 2014, 111, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Sauer, H.; Rahimi, G.; Hescheler, J.; Wartenberg, M. Effects of Electrical Fields on Cardiomyocyte Differentiation of Embryonic Stem Cells. J. Cell. Biochem. 1999, 75, 710–723. [Google Scholar] [CrossRef]
- Hernández, D.; Millard, R.; Sivakumaran, P.; Wong, R.C.B.; Crombie, D.E.; Hewitt, A.W.; Liang, H.; Hung, S.S.C.; Pébay, A.; Shepherd, R.K.; et al. Electrical Stimulation Promotes Cardiac Differentiation of Human Induced Pluripotent Stem Cells. Stem Cells Int. 2016, 2016, 1718041. [Google Scholar] [CrossRef] [PubMed]
- Mardani, M.; Roshankhah, S.; Hashemibeni, B.; Salahshoor, M.; Naghsh, E.; Esfandiari, E. Induction of Chondrogenic Differentiation of Human Adipose-Derived Stem Cells by Low Frequency Electric Field. Adv. Biomed. Res. 2016, 5, 97. [Google Scholar]
- Kwon, H.J.; Lee, G.S.; Chun, H. Electrical Stimulation Drives Chondrogenesis of Mesenchymal Stem Cells in the Absence of Exogenous Growth Factors. Sci. Rep. 2016, 6, 39302. [Google Scholar] [CrossRef]
- Esfandiari, E.; Roshankhah, S.; Mardani, M.; Hashemibeni, B.; Naghsh, E.; Kazemi, M.; Salahshoor, M. The Effect of High Frequency Electric Field on Enhancement of Chondrogenesis in Human Adipose-Derived Stem Cells. Iran J. Basic Med. Sci. 2014, 17, 571. [Google Scholar]
- Vaca-González, J.J.; Clara-Trujillo, S.; Guillot-Ferriols, M.; Ródenas-Rochina, J.; Sanchis, M.J.; Ribelles, J.L.G.; Garzón-Alvarado, D.A.; Ferrer, G.G. Effect of Electrical Stimulation on Chondrogenic Differentiation of Mesenchymal Stem Cells Cultured in Hyaluronic Acid—Gelatin Injectable Hydrogels. Bioelectrochemistry 2020, 134, 107536. [Google Scholar] [CrossRef]
- Bai, H.; Forrester, J.V.; Zhao, M. DC Electric Stimulation Upregulates Angiogenic Factors in Endothelial Cells Through Activation of VEGF Receptors. Cytokine 2011, 55, 110–115. [Google Scholar] [CrossRef]
- Ud-Din, S.; Sebastian, A.; Giddings, P.; Colthurst, J.; Whiteside, S.; Morris, J.; Nuccitelli, R.; Pullar, C.; Baguneid, M.; Bayat, A. Angiogenesis Is Induced and Wound Size Is Reduced by Electrical Stimulation in an Acute Wound Healing Model in Human Skin. PLoS ONE 2015, 10, e0124502. [Google Scholar] [CrossRef]
- Beugels, J.; Molin, D.G.M.; Ophelders, D.R.M.G.; Rutten, T.; Kessels, L.; Kloosterboer, N.; de Grzymala, A.A.P.; Kramer, B.W.W.; van der Hulst, R.R.W.J.; Wolfs, T.G.A.M. Electrical Stimulation Promotes the Angiogenic Potential of Adipose-Derived Stem Cells. Sci. Rep. 2019, 9, 12076. [Google Scholar] [CrossRef]
- Saghiri, M.A.; Shekarian, M.; Samadi, F.; Briss, D.S.; Napoli, S.; Conte, M. The Impact of PH on the Piezoelectric Properties of Dentin in Root Canal Treated Teeth: Implications for Dental Materials and Oral Health. J. Endod. 2025, 51, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Qiao, W.; Yang, Z.; Orrego, S.; Neelakantan, P. Engineering Dental Tissues Using Biomaterials with Piezoelectric Effect: Current Progress and Future Perspectives. J. Funct. Biomater. 2023, 14, 8. [Google Scholar] [CrossRef]
- Braden, M.; Bairstow, A.G.; Beider, I.; Ritter, B.G. Electrical and Piezo-Electrical Properties of Dental Hard Tissues. Nature 1966, 212, 1565–1566. [Google Scholar] [CrossRef]
- Marino, A.A.; Gross, B.D. Piezoelectricity in Cementum, Dentine and Bone. Arch. Oral Biol. 1989, 34, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Gasga, J.; Galindo-Mentle, M.; Brès, E.; Vargas-Becerril, N.; Orozco, E.; Rodríguez-Gómez, A.; García-García, R. Detection of the Piezoelectricity Effect in Nanocrystals from Human Teeth. J. Phys. Chem. Solids 2020, 136, 109140. [Google Scholar] [CrossRef]
- Athenstaedt, H. Pyroelectric and Piezoelectric Behaviour of Human Dental Hard Tissues. Arch. Oral Biol. 1971, 16, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, Z.; Song, Y.; Chen, X. Piezoelectric Properties of Human Dentin and Some Influencing Factors. Dent. Mater. 2007, 23, 450–453. [Google Scholar] [CrossRef]
- Križaj, D.; Jan, J.; Valenčič, V. Modeling AC Current Conduction Through a Human Tooth. Bioelectromagnetics 2004, 25, 185–195. [Google Scholar] [CrossRef]
- Reyes-Gasga, J.; García, G.R.; Alvarez-Fregoso, O.; Chávez-Carvayar, J.A.; Vargas-Ulloa, L.E. Conductivity in Human Tooth Enamel. J. Mater. Sci. 1999, 34, 2183–2188. [Google Scholar] [CrossRef]
- Nekoofar, M.H.; Ghandi, M.M.; Hayes, S.J.; Dummer, P.M.H. The Fundamental Operating Principles of Electronic Root Canal Length Measurement Devices. Int. Endod. J. 2006, 39, 595–609. [Google Scholar] [CrossRef]
- Drolshagen, M.; Keilig, L.; Hasan, I.; Reimann, S.; Deschner, J.; Brinkmann, K.T.; Krause, R.; Favino, M.; Bourauel, C. Development of a Novel Intraoral Measurement Device to Determine the Biomechanical Characteristics of the Human Periodontal Ligament. J. Biomech. 2011, 44, 2136–2143. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Li, J.; Wang, Y.; Ye, R.; Feng, X.; Jing, Z.; Zhao, Z. Functional Role of Mechanosensitive Ion Channel Piezo1 in Human Periodontal Ligament Cells. Angle Orthod. 2015, 85, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Kaynak, D.; Meffert, R.; Günhan, M.; Mer Günhan, Ö. A Histopathologic Investigation on the Effects of Electrical Stimulation on Periodontal Tissue Regeneration in Experimental Bony Defects in Dogs. J. Periodontol. 2005, 76, 2194–2204. [Google Scholar] [CrossRef] [PubMed]
- Cosoli, G.; Scalise, L.; Cerri, G.; Russo, P.; Tricarico, G.; Tomasini, E.P. Bioimpedancemetry for the Assessment of Periodontal Tissue Inflammation: A Numerical Feasibility Study. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 682–690. [Google Scholar] [CrossRef]
- Thrivikraman, G.; Boda, S.K.; Basu, B. Unraveling the Mechanistic Effects of Electric Field Stimulation towards Directing Stem Cell Fate and Function: A Tissue Engineering Perspective. Biomaterials 2018, 150, 60–86. [Google Scholar] [CrossRef]
- Xiong, G.M.; Do, A.T.; Wang, J.K.; Yeoh, C.L.; Yeo, K.S.; Choong, C. Development of a Miniaturized Stimulation Device for Electrical Stimulation of Cells. J. Biol. Eng. 2015, 9, 14. [Google Scholar] [CrossRef]
- Srirussamee, K.; Mobini, S.; Cassidy, N.J.; Cartmell, S.H. Direct Electrical Stimulation Enhances Osteogenesis by Inducing Bmp2 and Spp1 Expressions from Macrophages and Preosteoblasts. Biotechnol. Bioeng. 2019, 116, 3421–3432. [Google Scholar] [CrossRef]
- Mobini, S.; Leppik, L.; Barker, J.H. Direct Current Electrical Stimulation Chamber for Treating Cells in Vitro. Biotechniques 2016, 60, 95–98. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Wei, C.; Chow, J.K.; Nguy, L.; Nguyen, H.K.; Schmidt, C.E. Electric Field Stimulation through a Substrate Influences Schwann Cell and Extracellular Matrix Structure. J. Neural Eng. 2013, 10, 046011. [Google Scholar] [CrossRef]
- Bizios, R.; Ullmann, K.R.; Supronowicz, P.R.; Ajayan, P.M.; Metzger, D.W.; Arulanandam, B.P. Novel Current-Conducting Composite Substrates for Exposing Osteoblasts to Alternating Current Stimulation. J. Biomed. Mater. Res. 2002, 59, 499–506. [Google Scholar] [CrossRef]
- Hartig, M.; Joos, U.; Wiesmann, H.P. Capacitively Coupled Electric Fields Accelerate Proliferation of Osteoblast-like Primary Cells and Increase Bone Extracellular Matrix Formation in Vitro. Eur. Biophys. J. 2000, 29, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.; Iqbal, S.A.; Sebastian, A.; Colthurst, J.; Bayat, A. Degenerate Wave and Capacitive Coupling Increase Human MSC Invasion and Proliferation While Reducing Cytotoxicity in an In Vitro Wound Healing Model. PLoS ONE 2011, 6, e23404. [Google Scholar] [CrossRef] [PubMed]
- Pickering, S.A.W.; Scammell, B.E. Electromagnetic Fields for Bone Healing. Int. J. Low Extrem. Wounds 2002, 1, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Kotnik, T.; Miklavčič, D. Theoretical Evaluation of Voltage Inducement on Internal Membranes of Biological Cells Exposed to Electric Fields. Biophys. J. 2006, 90, 480–491. [Google Scholar] [CrossRef]
- Ross, C.L.; Siriwardane, M.; Almeida-Porada, G.; Porada, C.D.; Brink, P.; Christ, G.J.; Harrison, B.S. The Effect of Low-Frequency Electromagnetic Field on Human Bone Marrow Stem/Progenitor Cell Differentiation. Stem Cell Res. 2015, 15, 96–108. [Google Scholar] [CrossRef]
- McCullen, S.D.; McQuilling, J.P.; Grossfeld, R.M.; Lubischer, J.L.; Clarke, L.I.; Loboa, E.G. Application of Low-Frequency Alternating Current Electric Fields Via Interdigitated Electrodes: Effects on Cellular Viability, Cytoplasmic Calcium, and Osteogenic Differentiation of Human Adipose-Derived Stem Cells. Tissue Eng. Part C Methods 2010, 16, 1377–1386. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, L.; Feng, Z.; Yang, G. Different Effects of Monophasic Pulses and Biphasic Pulses Applied by a Bipolar Stimulation Electrode in the Rat Hippocampal CA1 Region. Biomed. Eng. Online 2021, 20, 25. [Google Scholar] [CrossRef]
- Babona-Pilipos, R.; Pritchard-Oh, A.; Popovic, M.R.; Morshead, C.M. Biphasic Monopolar Electrical Stimulation Induces Rapid and Directed Galvanotaxis in Adult Subependymal Neural Precursors. Stem Cell Res. Ther. 2015, 6, 67. [Google Scholar] [CrossRef]
- Field-Fote, E.C.; Anderson, B.; Robertson, V.J.; Spielholz, N.I. Monophasic and Biphasic Stimulation Evoke Different Responses. Muscle Nerve 2003, 28, 239–241. [Google Scholar] [CrossRef]
- Emmanuel, B.S. A Study of the Effectiveness of Monophasic Electrical Stimulation in Enhancing Neuromuscular Tissue Function. In Proceedings of the 5th International Conference on Information Technology for Education and Development (ITED 2022), Abuja, Nigeria, 1–3 November 2022. [Google Scholar] [CrossRef]
- Grill, W.M. Model-Based Analysis and Design of Waveforms for Efficient Neural Stimulation. Prog. Brain Res. 2015, 222, 147. [Google Scholar] [CrossRef]
- Wongsarnpigoon, A.; Woock, J.P.; Grill, W.M. Efficiency Analysis of Waveform Shape for Electrical Excitation of Nerve Fibers. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Foutz, T.J.; McIntyre, C.C. Evaluation of Novel Stimulus Waveforms for Deep Brain Stimulation. J. Neural Eng. 2010, 7, 066008. [Google Scholar] [CrossRef] [PubMed]
- Hsu, G.; Farahani, F.; Parra, L.C. Cutaneous Sensation of Electrical Stimulation Waveforms. Brain Stimul. 2021, 14, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Sugimoto, M.; Yoshijawa, Y.; Hiramatsu, T.; Inoue, T. Monophasic Pulsed Current Stimulation of Duty Cycle 10% Promotes Differentiation of Human Dermal Fibroblasts into Myofibroblasts. Phys. Ther. Res. 2021, 24, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Dubey, A.K.; Gupta, S.D.; Basu, B. Optimization of Electrical Stimulation Parameters for Enhanced Cell Proliferation on Biomaterial Surfaces. J. Biomed. Mater. Res. B Appl. Biomater. 2011, 98, 18–29. [Google Scholar] [CrossRef]
- Sommer, M.; Kamm, T.; Tergau, F.; Ulm, G.; Paulus, W. Repetitive Paired-Pulse Transcranial Magnetic Stimulation Affects Corticospinal Excitability and Finger Tapping in Parkinson’s Disease. Clin. Neurophysiol. 2002, 113, 944–950. [Google Scholar] [CrossRef]
- Waataja, J.J.; Tweden, K.S.; Honda, C.N. Effects of High-Frequency Alternating Current on Axonal Conduction through the Vagus Nerve. J. Neural Eng. 2011, 8, 056013. [Google Scholar] [CrossRef]
- Kim, J.; Yang, H.J.; Cho, T.H.; Lee, S.E.; Park, Y.D.; Kim, H.M.; Kim, I.S.; Seo, Y.K.; Hwang, S.J.; Kim, S.J. Enhanced Regeneration of Rabbit Mandibular Defects through a Combined Treatment of Electrical Stimulation and RhBMP-2 Application. Med. Biol. Eng. Comput. 2013, 51, 1339–1348. [Google Scholar] [CrossRef]
- Hess, R.; Jaeschke, A.; Neubert, H.; Hintze, V.; Moeller, S.; Schnabelrauch, M.; Wiesmann, H.P.; Hart, D.A.; Scharnweber, D. Synergistic Effect of Defined Artificial Extracellular Matrices and Pulsed Electric Fields on Osteogenic Differentiation of Human MSCs. Biomaterials 2012, 33, 8975–8985. [Google Scholar] [CrossRef]
- Nuccitelli, R.; Lui, K.; Kreis, M.; Athos, B.; Nuccitelli, P. Nanosecond Pulsed Electric Field Stimulation of Reactive Oxygen Species in Human Pancreatic Cancer Cells Is Ca2+-Dependent. Biochem. Biophys. Res. Commun. 2013, 435, 580–585. [Google Scholar] [CrossRef]
- Tzoneva, R. Influence of Electric Field on Cell Behavior. Electrotreatment of Cells for Biomedical Applications. Asian J. Phys. 2014, 23, 789–814. [Google Scholar]
- Khaw, J.S.; Xue, R.; Cassidy, N.J.; Cartmell, S.H. Electrical Stimulation of Titanium to Promote Stem Cell Orientation, Elongation and Osteogenesis. Acta Biomater. 2022, 139, 204–217. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, K.; Boda, S.K.; Basu, B. Synergy of Substrate Conductivity and Intermittent Electrical Stimulation towards Osteogenic Differentiation of Human Mesenchymal Stem Cells. Bioelectrochemistry 2017, 116, 52–64. [Google Scholar] [CrossRef] [PubMed]
- Yadollahpour, A.; Jalilifar, M. Electromagnetic Fields in the Treatment of Wound: A Review of Current Techniques and Future Perspective. J. Pure Appl. Microbiol. 2014, 8, 2863–2877. [Google Scholar]
- Zhu, R.; Sun, Z.; Li, C.; Ramakrishna, S.; Chiu, K.; He, L. Electrical Stimulation Affects Neural Stem Cell Fate and Function In Vitro. Exp. Neurol. 2019, 319, 112963. [Google Scholar] [CrossRef]
- Aguilar, A.A.; Ho, M.C.; Chang, E.; Carlson, K.W.; Natarajan, A.; Marciano, T.; Bomzon, Z.; Patel, C.B. Permeabilizing Cell Membranes with Electric Fields. Cancers 2021, 13, 2283. [Google Scholar] [CrossRef]
- Haddad, J.B.; Obolensky, A.G.; Shinnick, P. The Biologic Effects and the Therapeutic Mechanism of Action of Electric and Electromagnetic Field Stimulation on Bone and Cartilage: New Findings and a Review of Earlier Work. J. Altern. Complement. Med. 2007, 13, 485–490. [Google Scholar] [CrossRef]
- Kim, I.S.; Song, J.K.; Zhang, Y.L.; Lee, T.H.; Cho, T.H.; Song, Y.M.; Kim, D.K.; Kim, S.J.; Hwang, S.J. Biphasic Electric Current Stimulates Proliferation and Induces VEGF Production in Osteoblasts. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 907–916. [Google Scholar] [CrossRef]
- Berchtold, M.W.; Villalobo, A. The Many Faces of Calmodulin in Cell Proliferation, Programmed Cell Death, Autophagy, and Cancer. Biochim. Biophys. Acta Mol. Cell Res. 2014, 1843, 398–435. [Google Scholar] [CrossRef]
- Fassina, L.; Visai, L.; Benazzo, F.; Benedetti, L.; Calligaro, A.; Cusella De Angelis, M.G.; Farina, A.; Maliardi, V.; Magenes, G. Effects of Electromagnetic Stimulation on Calcified Matrix Production by SAOS-2 Cells over a Polyurethane Porous Scaffold. Tissue Eng. 2006, 12, 1985–1999. [Google Scholar] [CrossRef]
- Zhao, M.; Bai, H.; Wang, E.; Forrester, J.V.; McCaig, C.D. Electrical Stimulation Directly Induces Pre-Angiogenic Responses in Vascular Endothelial Cells by Signaling through VEGF Receptors. J. Cell Sci. 2004, 117, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Nuccitelli, R. A Role for Endogenous Electric Fields in Wound Healing. Curr. Top. Dev. Biol. 2003, 58, 1–26. [Google Scholar]
- Aaron, R.K.; McK Ciombor, D.; Keeping, H.; Wang, S.; Capuano, A.; Polk, C. Power Frequency Fields Promote Cell Differentiation Coincident with an Increase in Transforming Growth Factor-b 1 Expression. Bioelectromagnetics 1999, 20, 453–458. [Google Scholar] [CrossRef]
- Aaron, R.K.; Wang, S.; Ciombor, D.M.K. Upregulation of Basal TGFβ1 Levels by EMF Coincident with Chondrogenesis—Implications for Skeletal Repair and Tissue Engineering. J. Orthop. Res. 2002, 20, 233–240. [Google Scholar] [CrossRef]
- Zhou, L.L.; Liu, W.; Wu, Y.M.; Sun, W.L.; Dörfer, C.E.; Fawzy El-Sayed, K.M. Oral mesenchymal stem/progenitor cells: The immunomodulatory masters. Stem Cells Int. 2020, 2020, 1327405. [Google Scholar] [CrossRef]
- Liu, N.; Shi, S.; Deng, M.; Tang, L.; Zhang, G.; Liu, N.; Ding, B.; Liu, W.; Liu, Y.; Shi, H.; et al. High levels of β-catenin signaling reduce osteogenic differentiation of stem cells in inflammatory microenvironments through inhibition of the noncanonical Wnt pathway. J. Bone Miner Res. 2011, 26, 2082–2095. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.M.; Nam, M.H.; Kim, Y.M.; Seo, Y.K. Increasing Odontoblast-like Differentiation from Dental Pulp Stem Cells Through Increase of β-Catenin/p-GSK-3β Expression by Low-Frequency Electromagnetic Field. Biomedicines 2021, 9, 1049. [Google Scholar] [CrossRef]
- Zhang, F.; Yan, X.; Wu, M.; Chen, Y.; Zhao, H.; Zhang, C.; Dang, P.; Wei, L.; Zhu, F.; Chen, Y.; et al. Modulating Lineage Specification in Stem Cell Differentiation via Bioelectrical Stimulation Intensity Matching. Adv. Mater. Interfaces 2024, 11, 2300609. [Google Scholar] [CrossRef]
- Fathi, E.; Farahzadi, R. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PLoS ONE 2017, 12, e0173877. [Google Scholar] [CrossRef]
- Ferroni, L.; Gardin, C.; Dolkart, O.; Salai, M.; Barak, S.; Piattelli, A.; Amir-Barak, H.; Zavan, B. Pulsed electromagnetic fields increase osteogenetic commitment of MSCs via the mTOR pathway in TNF-α mediated inflammatory conditions: An in-vitro study. Sci. Rep. 2018, 8, 5108. [Google Scholar] [CrossRef]
- Im, A.L.; Kim, J.; Lim, K.; Seonwoo, H.; Cho, W.; Choung, P.H.; Chung, J.H. Effects of Micro-Electrical Stimulation on Regulation of Behavior of Electro-Active Stem Cells. J. Biosyst. Eng. 2013, 32, 113–120. [Google Scholar] [CrossRef]
- Oliveira, K.M.C.; Leppik, L.; Keswani, K.; Rajeev, S.; Bhavsar, M.B.; Henrich, D.; Barker, J.H. Electrical Stimulation Decreases Dental Pulp Stem Cell Osteo-/Odontogenic Differentiation. Biores. Open Access 2020, 9, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Samiei, M.; Aghazadeh, Z.; Abdolahinia, E.D.; Vahdati, A.; Daneshvar, S.; Noghani, A. The Effect of Electromagnetic Fields on Survival and Proliferation Rate of Dental Pulp Stem Cells. Acta Odontol. Scand. 2020, 78, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Ahrabi, M.; Samiei, M.; Roshangar, L.; Ahrabi, B.; Hashemi, B.; Shahi, S.; Rahimi Darehchi, N. The Effect of Low-Frequency Pulsed Electromagnetic Fields on the Differentiation of Permanent Dental Pulp Stem Cells into Odontoblasts. Iran Endod. J. 2023, 18, 218. [Google Scholar] [CrossRef]
- Wang, T.; Wang, P.; Cao, Z.; Wang, X.; Wang, D.; Shen, Y.; Jing, D.; Luo, E.; Tang, W. Effects of BMP9 and Pulsed Electromagnetic Fields on the Proliferation and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells. Bioelectromagnetics 2017, 38, 63–77. [Google Scholar] [CrossRef]
- Costantini, E.; Marconi, G.D.; Fonticoli, L.; Aielli, L.; Trubiani, O.; Rajan, T.S.; Pizzicannella, J.; Reale, M.; Diomede, F. Improved Osteogenic Differentiation by Extremely Low Electromagnetic Field Exposure: Possible Application for Bone Engineering. Histochem. Cell Biol. 2022, 158, 369–381. [Google Scholar] [CrossRef]
- Lim, K.; Hexiu, J.; Kim, J.; Seonwoo, H.; Cho, W.J.; Choung, P.H.; Chung, J.H. Effects of Electromagnetic Fields on Osteogenesis of Human Alveolar Bone-Derived Mesenchymal Stem Cells. Biomed. Res. Int. 2013, 2013, 296019. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Chen, C.H.; Kuo, H.W.; Yen, T.L.; Mao, Y.Y.; Hu, W.W. Electrical Stimulation through Conductive Substrate to Enhance Osteo-Differentiation of Human Dental Pulp-Derived Stem Cells. Appl. Sci. 2019, 9, 3938. [Google Scholar] [CrossRef]
- Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive Natural Polymer-Based Hydrogels. Biomaterials 2016, 111, 40–54. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, N.; Ma, M. Electroconductive Hydrogels for Biomedical Applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019, 11, e1568. [Google Scholar] [CrossRef]
- Rodrigues, F.; Rodrigues da Silva, M.; Silva, F.S.; Madeira, S.; Carvalho, Ó. Electric Current Application on Dental Implant Biofilms: Review. J. Funct. Biomater. 2024, 15, 197. [Google Scholar] [CrossRef] [PubMed]
- Jayasree, A.; Cartmell, S.; Ivanovski, S.; Gulati, K. Electrically Stimulated Dental Implants Triggers Soft-Tissue Integration and Bactericidal Functions. Adv. Funct. Mater. 2024, 34, 2311027. [Google Scholar] [CrossRef]
- Min, Q.; Gao, Y.; Wang, Y. Bioelectricity in Dental Medicine: A Narrative Review. Biomed. Eng. Online 2024, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Titushkin, I.; Cho, M. Regulation of Cell Cytoskeleton and Membrane Mechanics by Electric Field: Role of Linker Proteins. Biophys. J. 2009, 96, 717–728. [Google Scholar] [CrossRef] [PubMed]
- Durand, D.M. Electrical Stimulation of Excitable Tissue. In Biomedical Engineering Fundamentals; CRC Press: Boca Raton, FL, USA, 2014; pp. 49-1–49-18. [Google Scholar] [CrossRef]
- Zhou, X.; Li, G.; Wu, D.; Liang, H.; Zhang, W.; Zeng, L.; Zhu, Q.; Lai, P.; Wen, Z.; Yang, C.; et al. Recent Advances of Cellular Stimulation with Triboelectric Nanogenerators. Exploration 2023, 3, 20220090. [Google Scholar] [CrossRef]
- Liu, X.; Wan, X.; Sui, B.; Hu, Q.; Liu, Z.; Ding, T.; Zhao, J.; Chen, Y.; Wang, Z.L.; Li, L. Piezoelectric Hydrogel for Treatment of Periodontitis through Bioenergetic Activation. Bioact. Mater. 2024, 35, 346–361. [Google Scholar] [CrossRef]
- Roldan, L.; Montoya, C.; Solanki, V.; Cai, K.Q.; Yang, M.; Correa, S.; Orrego, S. A Novel Injectable Piezoelectric Hydrogel for Periodontal Disease Treatment. ACS Appl. Mater. Interfaces 2023, 15, 43441–43454. [Google Scholar] [CrossRef]
- Hashimoto, H. Effect of Micro-Pulsed Electricity on Experimental Tooth Movement. Orthod. Waves 1990, 49, 352–361. [Google Scholar]
- Wang, Y.; Zhou, J.; Chen, K.; Yu, X.; Dong, Z.; Liu, Y.; Meng, X. Electrical Stimulation Induced Pre-Vascularization of Engineered Dental Pulp Tissue. Regen. Ther. 2024, 26, 354–365. [Google Scholar] [CrossRef]
- Spadari, G.S.; Zaniboni, E.; Vedovello, S.A.S.; Santamaria, M.P.; do Amaral, M.E.C.; dos Santos, G.M.T.; Esquisatto, M.A.M.; Mendonca, F.A.S.; Santamaria-Jr, M. Electrical Stimulation Enhances Tissue Reorganization during Orthodontic Tooth Movement in Rats. Clin. Oral Investig. 2017, 21, 111–120. [Google Scholar] [CrossRef]
OMSC Type | In Vitro Multipotency | Proliferation Capacity Comparison | Expressed Cell Surface Markers | Dental/Periodontal Therapeutic Application | Reference |
---|---|---|---|---|---|
ABMSCs | Osteogenic, adipogenic, chondrogenic | Lower than DFPCs and PDLSCs | CD105, CD90, CD73, STRO-1 | Defects in bone, regeneration of periodontal tissue | [33,38,39,40,41] |
DFPCs | Osteogenic, adipogenic, chondrogenic, neurogenic, hepatogenic, cementogenic | Higher than DPSCs, ABMSCs, and SHED | CD13, CD29, CD44, CD56, CD73, CD90, CD105, CD146, CD271, STRO-1, NESTIN, NOTCH-1, HLA-ABC, HLA-I | Defects in bone, regeneration of tooth roots, regeneration of periodontal tissue | [32,42,43,44,45,46,47,48,49,50,51,52] |
DPSCs | Osteo/odontogenic, adipogenic, chondrogenic, neurogenic, myogenic, cardiogenic, hepatogenic, and melanocyte differentiation | Lower than SHED, DFPCs, GMSCs, and SCAP | CD29, CD44, CD73, CD90, CD105, CD106, CD146, STRO-1 | Defects in bone, repair of dentin–pulp | [30,34,41,43,44,48,53,54,55,56,57,58,59,60,61,62] |
GMSCs | Osteogenic, adipogenic, chondrogenic, neurogenic, endoderm differentiation | Higher than DPSCs; lower than PDLSCs | CD13, CD29, CD44, CD73, CD90, CD105, CD146, STRO-1 | Regeneration of periodontal tissue | [36,53,62,63,64,65,66,67,68,69] |
PDLSCs | Osteo/odontogenic, adipogenic, chondrogenic, neurogenic, myogenic | Higher than ABMSCs and GMSCs | CD44, CD73, CD90, CD105, STRO-1 | Regeneration of tooth roots, regeneration of periodontal tissue | [31,41,42,62,70,71,72,73,74,75] |
SCAP | Osteo/odontogenic, adipogenic, neurogenic, hepatogenic | Higher than PDLSCs and DPSCs | CD13, CD24, CD29, CD44, CD49, CD51, CD56, CD61, CD73, CD90, CD105, CD106, CD146, CD166, STRO-1 | Regeneration of bone, regeneration of tooth root, repair of dentin–pulp, regeneration of periodontal tissue | [34,48,57,76,77,78,79,80,81] |
SHED | Osteo/odontogenic, adipogenic, chondrogenic, neurogenic, myogenic, angiogenic, hepatogenic | Higher than DPSCs; lower than DFPCs | CD29, CD44, CD73, CD90, CD105, CD146, CD166, STRO-1 | Regeneration of tooth roots, repair of dentin–pulp | [43,45,47,60,63,76,82,83,84,85,86,87,88,89,90,91] |
TGPCs | Osteo/odontogenic, adipogenic, chondrogenic, neurogenic, angiogenic, hepatogenic | DPSCs from tooth germs (TGPCs, at crown-completed stage) have a higher capacity than DPSCs from adults (at later stages of tooth development); higher than DFPCs | CD29, CD73, CD90, CD105, CD166 | Regeneration of bone | [35,43,92,93,94,95,96,97,98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, R.S.; Santos, M.S.; Miguel, F.; da Silva, C.L.; Silva, J.C. Electrical Stimulation of Oral Tissue-Derived Stem Cells: Unlocking New Potential for Dental and Periodontal Regeneration. Cells 2025, 14, 840. https://doi.org/10.3390/cells14110840
Pires RS, Santos MS, Miguel F, da Silva CL, Silva JC. Electrical Stimulation of Oral Tissue-Derived Stem Cells: Unlocking New Potential for Dental and Periodontal Regeneration. Cells. 2025; 14(11):840. https://doi.org/10.3390/cells14110840
Chicago/Turabian StylePires, Rúben S., Mafalda S. Santos, Filipe Miguel, Cláudia L. da Silva, and João Carlos Silva. 2025. "Electrical Stimulation of Oral Tissue-Derived Stem Cells: Unlocking New Potential for Dental and Periodontal Regeneration" Cells 14, no. 11: 840. https://doi.org/10.3390/cells14110840
APA StylePires, R. S., Santos, M. S., Miguel, F., da Silva, C. L., & Silva, J. C. (2025). Electrical Stimulation of Oral Tissue-Derived Stem Cells: Unlocking New Potential for Dental and Periodontal Regeneration. Cells, 14(11), 840. https://doi.org/10.3390/cells14110840