Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Selection of Sources of Evidence
2.5. Data Charting Process and Data Items
2.6. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics and Results of Individual Sources of Evidence
3.3. Synthesis of Results
3.4. Types of Tissue Stem Cell Sources and Transplantation Strategies
3.4.1. Autologous Tissue Stem Cells
3.4.2. Allogeneic Tissue Stem Cells
3.5. Mechanisms of Action and Cellular Effects
3.5.1. Models of Dopaminergic Neuronal Loss
3.5.2. Effects on Tyrosine Hydroxylase
3.5.3. Anti-Apoptotic Effects
3.5.4. Neurotrophic Factors Induced by Tissue Stem Cells
3.5.5. Influence in Neuronal Differentiation
3.5.6. Influence in Dopaminergic Differentiation
3.5.7. Effects on Electrophysiological Activity
3.5.8. Results in α-Synuclein Modulation
3.6. Functional and Behavioural Outcomes in PD Models
3.6.1. General Therapeutic Benefits
3.6.2. Motor Outcomes
3.6.3. Behavioural Outcomes
3.6.4. Anti-Inflammatory Effects
3.7. Safety of MSC Transplants
4. Discussion
4.1. Ongoing Controversies and Ethical Considerations
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CENTRAL | Cochrane Central Register of Controlled Trials |
GH | Growth hormone |
IGF-1 | Insulin-like growth factor 1 |
MeSH | Medical Subject Headings |
NHLBI | National Heart, Lung, and Blood Institute |
PitNET | Pituitary neuroendocrine tumour |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PROSPERO | International Prospective Register of Systematic Reviews |
VHL | Virtual Health Library |
WHO | World Health Organization |
References
- Kalia, L.V.; Lang, A.E. Parkinson’s Disease. Lancet 2015, 386, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.S.; Lang, A.E. Pharmacological Treatment of Parkinson Disease: A Review. JAMA 2014, 311, 1670. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.; Grealish, S.; Henchcliffe, C. The Future of Stem Cell Therapies for Parkinson Disease. Nat. Rev. Neurosci. 2020, 21, 103–115. [Google Scholar] [CrossRef]
- Sonntag, K.-C.; Song, B.; Lee, N.; Jung, J.H.; Cha, Y.; Leblanc, P.; Neff, C.; Kong, S.W.; Carter, B.S.; Schweitzer, J.; et al. Pluripotent Stem Cell-Based Therapy for Parkinson’s Disease: Current Status and Future Prospects. Prog. Neurobiol. 2018, 168, 1–20. [Google Scholar] [CrossRef]
- Gage, F.H.; Temple, S. Neural Stem Cells: Generating and Regenerating the Brain. Neuron 2013, 80, 588–601. [Google Scholar] [CrossRef]
- Ahmed, L.A.; Al-Massri, K.F. Directions for Enhancement of the Therapeutic Efficacy of Mesenchymal Stem Cells in Different Neurodegenerative and Cardiovascular Diseases: Current Status and Future Perspectives. Curr. Stem Cell Res. Ther. 2021, 16, 858–876. [Google Scholar] [CrossRef]
- Khademizadeh, M.; Messripour, M.; Ghasemi, N.; Momen beik, F.; Movahedian Attar, A. Differentiation of Adult Human Mesenchymal Stem Cells into Dopaminergic Neurons. Res. Pharm. Sci. 2019, 14, 209–215. [Google Scholar] [CrossRef]
- Oh, S.H.; Kim, H.N.; Park, H.J.; Shin, J.Y.; Kim, D.Y.; Lee, P.H. The Cleavage Effect of Mesenchymal Stem Cell and Its Derived Matrix Metalloproteinase-2 on Extracellular α-Synuclein Aggregates in Parkinsonian Models. Stem Cells Transl. Med. 2017, 6, 949–961. [Google Scholar] [CrossRef]
- Moreno, E.L.; Hachi, S.; Hemmer, K.; Trietsch, S.J.; Baumuratov, A.S.; Hankemeier, T.; Vulto, P.; Schwamborn, J.C.; Fleming, R.M.T. Differentiation of Neuroepithelial Stem Cells into Functional Dopaminergic Neurons in 3D Microfluidic Cell Culture. Lab. Chip 2015, 15, 2419–2428. [Google Scholar] [CrossRef]
- Acquarone, M.; De Melo, T.M.; Meireles, F.; Brito-Moreira, J.; Oliveira, G.; Ferreira, S.T.; Castro, N.G.; Tovar-Moll, F.; Houzel, J.-C.; Rehen, S.K. Mitomycin-Treated Undifferentiated Embryonic Stem Cells as a Safe and Effective Therapeutic Strategy in a Mouse Model of Parkinsonâ€TMs Disease. Front. Cell. Neurosci. 2015, 9, 97. [Google Scholar] [CrossRef]
- Calice da Silva, C.; Azevedo, B.N.; Machado, D.C.; Zimmer, E.R.; Martins, L.A.M.; da Costa, J.C. Dissociation between Dopaminergic Response and Motor Behavior Following Intrastriatal, but Not Intravenous, Transplant of Bone Marrow Mononuclear Stem Cells in a Mouse Model of Parkinson’s Disease. Behav. Brain Res. 2017, 324, 30–40. [Google Scholar] [CrossRef]
- Narbute, K.; Piļipenko, V.; Pupure, J.; Dzirkale, Z.; Jonavičė, U.; Tunaitis, V.; Kriaučiūnaitė, K.; Jarmalavičiūtė, A.; Jansone, B.; Kluša, V.; et al. Intranasal Administration of Extracellular Vesicles Derived from Human Teeth Stem Cells Improves Motor Symptoms and Normalizes Tyrosine Hydroxylase Expression in the Substantia Nigra and Striatum of the 6-Hydroxydopamine-Treated Rats. Stem Cells Transl. Med. 2019, 8, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Huang, Q.; Zhong, X.; He, Z.; Liu, B.; Zeng, H.; Xu, N.; Yang, Z.; Liao, C.; Fu, Z.; et al. Pentraxin 3 Secreted by Human Adipose-derived Stem Cells Promotes Dopaminergic Neuron Repair in Parkinson’s Disease via the Inhibition of Apoptosis. FASEB J. 2021, 35, e21748. [Google Scholar] [CrossRef] [PubMed]
- Kriks, S.; Shim, J.-W.; Piao, J.; Ganat, Y.M.; Wakeman, D.R.; Xie, Z.; Carrillo-Reid, L.; Auyeung, G.; Antonacci, C.; Buch, A.; et al. Dopamine Neurons Derived from Human ES Cells Efficiently Engraft in Animal Models of Parkinson’s Disease. Nature 2011, 480, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Cerri, S.; Greco, R.; Levandis, G.; Ghezzi, C.; Mangione, A.S.; Fuzzati-Armentero, M.-T.; Bonizzi, A.; Avanzini, M.A.; Maccario, R.; Blandini, F. Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson’s Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Transl. Med. 2015, 4, 1073–1085. [Google Scholar] [CrossRef]
- Moloney, T.C.; Rooney, G.E.; Barry, F.P.; Howard, L.; Dowd, E. Potential of Rat Bone Marrow-Derived Mesenchymal Stem Cells as Vehicles for Delivery of Neurotrophins to the Parkinsonian Rat Brain. Brain Res. 2010, 1359, 33–43. [Google Scholar] [CrossRef]
- Yang, H.; Hao, D.; Liu, C.; Huang, D.; Chen, B.; Fan, H.; Liu, C.; Zhang, L.; Zhang, Q.; An, J.; et al. Generation of Functional Dopaminergic Neurons from Human Spermatogonial Stem Cells to Rescue Parkinsonian Phenotypes. Stem Cell Res. Ther. 2019, 10, 195. [Google Scholar] [CrossRef]
- Edwards, G.; Gamez, N.; Armijo, E.; Kramm, C.; Morales, R.; Taylor-Presse, K.; Schulz, P.E.; Soto, C.; Moreno-Gonzalez, I. Peripheral Delivery of Neural Precursor Cells Ameliorates Parkinson’s Disease-Associated Pathology. Cells 2019, 8, 1359. [Google Scholar] [CrossRef]
- Tao, Y.; Vermilyea, S.C.; Zammit, M.; Lu, J.; Olsen, M.; Metzger, J.M.; Yao, L.; Chen, Y.; Phillips, S.; Holden, J.E.; et al. Autologous Transplant Therapy Alleviates Motor and Depressive Behaviors in Parkinsonian Monkeys. Nat. Med. 2021, 27, 632–639. [Google Scholar] [CrossRef]
- Pereira, M.C.L.; Boese, A.C.; Murad, R.; Yin, J.; Hamblin, M.H.; Lee, J.-P. Reduced Dopaminergic Neuron Degeneration and Global Transcriptional Changes in Parkinson’s Disease Mouse Brains Engrafted with Human Neural Stems during the Early Disease Stage. Exp. Neurol. 2022, 352, 114042. [Google Scholar] [CrossRef]
- Kim, K.Y.; Chang, K.-A. Therapeutic Potential of Magnetic Nanoparticle-Based Human Adipose-Derived Stem Cells in a Mouse Model of Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 654. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Chang, K.-A. Therapeutic Potential of Repeated Intravenous Transplantation of Human Adipose-Derived Stem Cells in Subchronic MPTP-Induced Parkinson’s Disease Mouse Model. Int. J. Mol. Sci. 2020, 21, 8129. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Lai, P.-L.; Chien, Y.; Lee, P.-H.; Lai, Y.-H.; Ma, H.-I.; Shiau, C.-Y.; Wang, K.-C. Improvement of Impaired Motor Functions by Human Dental Exfoliated Deciduous Teeth Stem Cell-Derived Factors in a Rat Model of Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 3807. [Google Scholar] [CrossRef] [PubMed]
- Lara-Rodarte, R.; Cortés, D.; Soriano, K.; Carmona, F.; Rocha, L.; Estudillo, E.; López-Ornelas, A.; Velasco, I. Mouse Embryonic Stem Cells Expressing GDNF Show Enhanced Dopaminergic Differentiation and Promote Behavioral Recovery After Grafting in Parkinsonian Rats. Front. Cell Dev. Biol. 2021, 9, 661656. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Hung, S.-C.; Weng, C.-F.; Fan, S.-F.; Liou, D.-Y.; Huang, W.-C.; Liu, K.-D.; Cheng, H. Stem Cell Transplantation and/or Adenoviral Glial Cell Line-Derived Neurotrophic Factor Promote Functional Recovery in Hemiparkinsonian Rats. World J. Stem Cells 2021, 13, 78–90. [Google Scholar] [CrossRef]
- Sun, Z.; Gu, P.; Xu, H.; Zhao, W.; Zhou, Y.; Zhou, L.; Zhang, Z.; Wang, W.; Han, R.; Chai, X.; et al. Human Umbilical Cord Mesenchymal Stem Cells Improve Locomotor Function in Parkinson’s Disease Mouse Model Through Regulating Intestinal Microorganisms. Front. Cell Dev. Biol. 2022, 9, 808905. [Google Scholar] [CrossRef]
- Salama, M.; Sobh, M.; Emam, M.; Abdalla, A.; Sabry, D.; El-Gamal, M.; Lotfy, A.; El-Husseiny, M.; Sobh, M.; Shalash, A.; et al. Effect of Intranasal Stem Cell Administration on the Nigrostriatal System in a Mouse Model of Parkinson’s Disease. Exp. Ther. Med. 2017, 13, 976–982. [Google Scholar] [CrossRef]
- Qi, L.; Tang, Y.; He, W.; Pan, H.; Jiang, W.; Wang, L.; Deng, W. Lithium Chloride Promotes Neuronal Differentiation of Rat Neural Stem Cells and Enhances Neural Regeneration in Parkinson’s Disease Model. Cytotechnology 2017, 69, 277–287. [Google Scholar] [CrossRef]
- Precious, S.V.; Smith, G.A.; Heuer, A.; Jaeger, I.; Lane, E.L.; Dunnett, S.B.; Li, M.; Kelly, C.M.; Rosser, A.E. Dopaminergic Progenitors Derived From Epiblast Stem Cells Function Similarly to Primary VM-Derived Progenitors When Transplanted Into a Parkinson’s Disease Model. Front. Neurosci. 2020, 14, 312. [Google Scholar] [CrossRef]
- Nesti, C.; Pardini, C.; Barachini, S.; D’Alessandro, D.; Siciliano, G.; Murri, L.; Petrini, M.; Vaglini, F. Human Dental Pulp Stem Cells Protect Mouse Dopaminergic Neurons against MPP+ or Rotenone. Brain Res. 2011, 1367, 94–102. [Google Scholar] [CrossRef]
- Terraf, P.; Babaloo, H.; Kouhsari, S.M. Directed Differentiation of Dopamine-Secreting Cells from Nurr1/GPX1 Expressing Murine Embryonic Stem Cells Cultured on Matrigel-Coated PCL Scaffolds. Mol. Neurobiol. 2017, 54, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Hoban, D.B.; Shrigley, S.; Mattsson, B.; Breger, L.S.; Jarl, U.; Cardoso, T.; Nelander Wahlestedt, J.; Luk, K.C.; Björklund, A.; Parmar, M. Impact of α-Synuclein Pathology on Transplanted hESC-Derived Dopaminergic Neurons in a Humanized α-Synuclein Rat Model of PD. Proc. Natl. Acad. Sci. USA 2020, 117, 15209–15220. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Ishikawa, H.; Tanaka, A. Regenerative Medicine for Parkinson’s Disease Using Differentiated Nerve Cells Derived from Human Buccal Fat Pad Stem Cells. Hum. Cell 2017, 30, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.-C.; Li, Y.; Xiao, B.-G.; Wang, J.; Xi, J.-Y.; Yu, W.-B. Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson’s Disease Mouse Model. Mol. Neurobiol. 2023, 60, 1826–1835. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Bigdeli, M.R.; Mostafavi, H.; Nadri, S.; Eskandari, M. Therapeutic Potentials of Human Microfluidic Encapsulated Conjunctival Mesenchymal Stem Cells on the Rat Model of Parkinson’s Disease. Exp. Mol. Pathol. 2021, 123, 104703. [Google Scholar] [CrossRef]
- Shroff, G.; Hopf-Seidel, P. Use of Human Embryonic Stem Cells in the Treatment of Parkinsons Disease: A Case Report. Int. J. Emerg. Ment. Health Hum. Resil. 1970, 17, 1–4. [Google Scholar] [CrossRef]
- Venkataramana, N.K.; Pal, R.; Rao, S.A.V.; Naik, A.L.; Jan, M.; Nair, R.; Sanjeev, C.C.; Kamble, R.B.; Murthy, D.P.; Chaitanya, K. Bilateral Transplantation of Allogenic Adult Human Bone Marrow-Derived Mesenchymal Stem Cells into the Subventricular Zone of Parkinson’s Disease: A Pilot Clinical Study. Stem Cells Int. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- Schiess, M.; Suescun, J.; Doursout, M.-F.; Adams, C.; Green, C.; Saltarrelli, J.G.; Savitz, S.; Ellmore, T.M. Allogeneic Bone Marrow-Derived Mesenchymal Stem Cell Safety in Idiopathic Parkinson’s Disease. Mov. Disord. 2021, 36, 1825–1834. [Google Scholar] [CrossRef]
- Shigematsu, K.; Komori, N.; Tahara, K.; Yamagishi, H. Repeated Infusion of Autologous Adipose Tissue-derived Stem Cells for Parkinson’s Disease. Acta Neuro Scand. 2022, 145, 119–122. [Google Scholar] [CrossRef]
- Madrazo, I.; Kopyov, O.; Ávila-Rodríguez, M.A.; Ostrosky, F.; Carrasco, H.; Kopyov, A.; Avendaño-Estrada, A.; Jiménez, F.; Magallón, E.; Zamorano, C.; et al. Transplantation of Human Neural Progenitor Cells (NPC) into Putamina of Parkinsonian Patients: A Case Series Study, Safety and Efficacy Four Years after Surgery. Cell Transplant. 2019, 28, 269–285. [Google Scholar] [CrossRef]
- Zakerinia, M.; Kamgarpour, A.; Nemati, H.; Zare, H.R.; Ghasemfar, M.; Rezvani, A.R.; Karimi, M.; Nourani Khojasteh, H.; Dehghani, M.; Vojdani, R.; et al. Intrathecal Autologous Bone Marrow-Derived Hematopoietic Stem Cell Therapy in Neurological Diseases. Int. J. Organ. Transplant. Med. 2018, 9, 157–167. [Google Scholar] [PubMed]
- Sun, H.; You, Z.; Jia, L.; Wang, F. Autism Spectrum Disorder Is Associated with Gut Microbiota Disorder in Children. BMC Pediatr. 2019, 19, 516. [Google Scholar] [CrossRef] [PubMed]
Reference | Country | Year | Study Design | Type of Subject | Source of Tissue Stem Cell |
---|---|---|---|---|---|
Oh, Se Hee [8] | South Korea | 2016 | Experimental | In vitro and male C57BL/8 mice | Humans |
Acquarone, Mariana [10] | Brazil | 2015 | Experimental | Mouse | Mouse’s mESCS |
Calice, Caroline [11] | Brazil | 2017 | Experimental | Mice | Bone marrow mononuclear cells (BMMCs) |
Narbute, Karīna [12] | Lithuania | 2019 | Experimental | Male Wistar rats | Human exfoliated deciduous teeth of a child |
Lian, Changlin [13] | China | 2021 | Experimental | Male mice | Human sterile adipose tissue obtained from the fat of the inner left thigh |
Kriks, Sonja [14] | United States | 2011 | Experimental | Adult rodent + two adult rhesus monkeys | Human engraftable midbrain dopaminergic neurons |
Cerri, Silvia [15] | Italy | 2015 | Experimental | Male Wistar rats | MSCs isolated from bone marrow stromal cells collected from femurs and tibias of male Wistar rats 6–8 weeks old |
Moloney, Teresa [16] | Ireland | 2010 | Experimental | Rats | Bone marrow-derived mesenchymal tissue stem cells |
Yang, Hao [17] | China | 2019 | Experimental | Male Balc/c mice | Testicular tissues from obstructive azoospermia patients at the age of 25–45 years |
Edwards, George [18] | United States | 2019 | Experimental | MPTP-treated mice | Mouse embryonic tissue stem cells and mesenchymal stem cells |
Tao, Yunlong [19] | United States | 2021 | Experimental | Rhesus monkeys | 5 rhesus iPSC (RhiPSC) lines from monkeys |
Pereira, Marcia [20] | United States | 2022 | Experimental | C57BL/6 J male mice (20–22 weeks old) | hNSCs derived from the ventricular zone in the telencephalon of late first-trimester human foetal cadavers |
Kim, Ka Young [21] | South Korea | 2021 | Experimental | Four mouse groups | Human adipose-derived stem cells (hASCs) using magnetic nanoparticles |
Park, Hyunjun [22] | South Korea | 2020 | Experimental | Three groups of mice | Human adipose-derived stem cells (hASC) |
Chen, Yong-Ren [23] | Taiwan | 2020 | Experimental | Rats | Stem cells derived from human exfoliated deciduous teeth |
Lara-Rodarte, Rolando [24] | Mexico | 2021 | Experimental | Female Wistar rats | R1 mouse embryonic stem cells (mESCs) |
Tsai, May-Jywan [25] | Taiwan | 2021 | Experimental | Rats | Human MSCs from bone marrow of normal donor |
Sun, Zhengqin [26] | China | 2022 | Experimental | Mice | Fresh umbilical cord samples were obtained from normal spontaneous full-term delivery mothers |
Salama, Mohamed [27] | Egypt | 2017 | Experimental | 30 B57BL/6 mice | MSCs from mononuclear cell fraction of pooled bone marrow from healthy C57BL/6 mice. |
Qi, Li [28] | China | 2017 | Experimental | Sprague–Dawley rats | Neural stem cells were derived from neonatal SD rats. |
Precious, Sophie [29] | United Kingdom | 2020 | Experimental | Adult male mice C57/Bl6 | Cells derived from primary foetal mouse tissue |
Nesti, Claudia [30] | Italy | 2010 | Experimental | Pregnant CD1 mice | Cells derived from human dental pulps |
Terraf, Panieh [31] | Iran | 2015 | Experimental | Mouse | Undifferentiated R1 [Passage 9, (P9)] feeder-dependent mouse ES cells |
Hoban, Deidre [32] | United States | 2020 | Experimental | Rats | Human embryonic stem cells (hESCs) |
Takahashi, Haruka [33] | Japan | 2017 | Experimental | Rats | Nerve cells derived from human buccal fat pad stem cells |
Yan, Yu-Chen [34] | China | 2023 | Experimental | Mouse | Bone marrow-derived neuronal stem cells |
Forouzandeh, Meysam [35] | Iran | 2021 | Experimental | Rats | MSCs isolated from human conjunctiva (CJ-MSCs) |
Shroff, Geeta [36] | India | 2015 | Experimental | Human | hESCs derived from 2-cell staged fertilised spare ovum |
Venkataramana, N.K. [37] | India | 2012 | Experimental | Human | BM-MSCs isolated from healthy donors (ages of 18–30) |
Schiess, Mya [38] | United States | 2021 | Experimental | Human | Allogeneic bone marrow-derived mesenchymal stem cells |
Shigematsu, Kazuo [39] | Japan | 2022 | Experimental | Human | Adipose tissue-derived mesenchymal stem cells (ADSCs) |
Madrazo, I [40] | Mexico | 2019 | Experimental | Human | Human neural progenitor cells (NPCs) derived from foetal brain tissue |
Zakerinia, M [41] | Iran | 2018 | Experimental | Human | Haematopoietic stem cell derived from bone marrow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cueva, E.; Wiesheu, A.; Sordo, Z.; González, J.; Falconi, S.; Rodas, J.A.; Leon-Rojas, J.E. Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes. Cells 2025, 14, 822. https://doi.org/10.3390/cells14110822
Cueva E, Wiesheu A, Sordo Z, González J, Falconi S, Rodas JA, Leon-Rojas JE. Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes. Cells. 2025; 14(11):822. https://doi.org/10.3390/cells14110822
Chicago/Turabian StyleCueva, Emily, Andrea Wiesheu, Zaira Sordo, Jailene González, Sabine Falconi, Jose A. Rodas, and Jose E. Leon-Rojas. 2025. "Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes" Cells 14, no. 11: 822. https://doi.org/10.3390/cells14110822
APA StyleCueva, E., Wiesheu, A., Sordo, Z., González, J., Falconi, S., Rodas, J. A., & Leon-Rojas, J. E. (2025). Tissue Stem Cell-Based Therapies in Parkinson’s Disease: A Scoping Review of Therapeutic Mechanisms and Translational Outcomes. Cells, 14(11), 822. https://doi.org/10.3390/cells14110822