Dynamics of Innate Immunity in SARS-CoV-2 Infections: Exploring the Impact of Natural Killer Cells, Inflammatory Responses, Viral Evasion Strategies, and Severity
Abstract
:1. Introduction
2. Methodology of the Literature Review
Selection Process
3. Results
3.1. Results of the Bibliographical Search
3.2. Main Scientific Findings from the Analyzed Literature
3.2.1. Inflammation Induced by SARS-CoV-2 Infection and COVID-19 Severity
3.2.2. Immune Cells and COVID-19
3.2.3. Role of NK Cells in the Innate Immune Response
3.2.4. Immune Response to SARS-CoV-2 in Pregnant Women
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of Immune Response During SARS-CoV-2 Infection: Lessons from the Past. Front. Immunol. 2020, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Mattoo, S.-U.; Kim, S.-J.; Ahn, D.-G.; Myoung, J. Escape and Over-Activation of Innate Immune Responses by SARS-CoV-2: Two Faces of a Coin. Viruses 2022, 14, 530. [Google Scholar] [CrossRef] [PubMed]
- Mengist, H.M.; Kombe, A.J.K.; Mekonnen, D.; Abebaw, A.; Getachew, M.; Jin, T. Mutations of SARS-CoV-2 spike protein: Implications on immune evasion and vaccine-induced immunity. Semin. Immunol. 2021, 55, 101533. [Google Scholar] [CrossRef]
- Kim, H.; Byun, J.-E.; Yoon, S.R.; Koohy, H.; Jung, H.; Choi, I. SARS-CoV-2 peptides bind to NKG2D and increase NK cell activity. Cell Immunol. 2022, 371, 104454. [Google Scholar] [CrossRef]
- Dong, G.; Yu, J.; Gao, W.; Guo, W.; Zhu, J.; Wang, T. Hemophagocytosis, hyper-inflammatory responses, and multiple organ damages in COVID-19-associated hyperferritinemia. Ann. Hematol. 2022, 101, 513–520. [Google Scholar] [CrossRef]
- Seery, V.; Raiden, S.C.; Algieri, S.C.; Grisolía, N.A.; Filippo, D.; De Carli, N.; Di Lalla, S.; Cairoli, H.; Chiolo, M.J.; Meregalli, C.N.; et al. Blood neutrophils from children with COVID-19 exhibit both inflammatory and anti-inflammatory markers. EBioMedicine 2021, 67, 103357. [Google Scholar] [CrossRef]
- Ling, L.; Chen, Z.; Lui, G.; Wong, C.K.; Wong, W.T.; Ng, R.W.Y.; Tso, E.Y.K.; Fung, K.S.C.; Chan, V.; Yeung, A.C.M.; et al. Longitudinal Cytokine Profile in Patients with Mild to Critical COVID-19. Front. Immunol. 2021, 12, 763292. [Google Scholar] [CrossRef]
- Swanson, K.; Deng, M.; Ting, J. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Inmunol. 2019, 19, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Cosar, B.; Karagulleoglu, Z.Y.; Unal, S.; Ince, A.T.; Uncuoglu, D.B.; Tuncer, G.; Kilinc, B.R.; Ozkan, Y.E.; Ozkoc, H.C.; Demir, I.N.; et al. SARS-CoV-2 Mutations and their Viral Variants. Cytokine Growth Factor. Rev. 2022, 63, 10–22. [Google Scholar] [CrossRef]
- Zulu, M.Z.; Sureshchandra, S.; Pinski, A.N.; Doratt, B.; Shen, W.; Messaoudi, I. Obesity Correlates with Pronounced Aberrant Innate Immune Responses in Hospitalized Aged COVID-19 Patients. Front. Immunol. 2021, 12, 760288. [Google Scholar] [CrossRef]
- Xu, Q.; Tang, Y.; Huang, G. Innate immune responses in RNA viral infection. Front. Med. 2021, 15, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Hekman, R.M.; Hume, A.J.; Goel, R.K.; Abo, K.M.; Huang, J.; Blum, B.C.; Werder, R.B.; Suder, E.L.; Paul, I.; Phanse, S.; et al. Actionable Cytopathogenic Host Responses of Human Alveolar Type 2 Cells to SARS-CoV-2. Mol. Cell 2020, 80, 1104–1122.e9. [Google Scholar] [CrossRef]
- Young, B.E.; Wei, W.E.; Fong, S.-W.; Mak, T.-M.; Anderson, D.E.; Chan, Y.-H.; Pung, R.; Heng, C.S.; Ang, L.W.; Zheng, A.K.E.; et al. Association of SARS-CoV-2 clades with clinical, inflammatory and virologic outcomes: An observational study. EBioMedicine 2021, 66, 103319. [Google Scholar] [CrossRef]
- Jasim, S.A.; Mahdi, R.S.; Bokov, D.O.; Najm, M.A.A.; Sobirova, G.N.; Bafoyeva, Z.O.; Taifi, A.; Alkadir, O.K.A.; Mustafa, Y.F.; Mirzaei, R.; et al. The deciphering of the immune cells and marker signature in COVID-19 pathogenesis: An update. J. Med. Virol. 2022, 94, 5128–5148. [Google Scholar] [CrossRef]
- Fionda, C.; Ruggeri, S.; Sciumè, G.; Laffranchi, M.; Quinti, I.; Milito, C.; Palange, P.; Menichini, I.; Sozzani, S.; Frati, L.; et al. Age-dependent NK cell dysfunctions in severe COVID-19 patients. Front. Immunol. 2022, 13, 1039120. [Google Scholar] [CrossRef]
- Gayoso, I.; Sanchez-Correa, B.; Campos, C.; Alonso, C.; Pera, A.; Casado, J.G.; Morgado, S.; Tarazona, R.; Solana, R. Immunosenescence of human natural killer cells. J. Innate Immun. 2011, 3, 337–343. [Google Scholar] [CrossRef]
- Biasizzo, M.; Kopitar-Jerala, N. Interplay Between NLRP3 Inflammasome and Autophagy. Front. Immunol. 2020, 11, 591803. [Google Scholar] [CrossRef]
- Fischer, N. Infection-induced epigenetic changes and their impact on the pathogenesis of diseases. Semin. Immunopathol. 2020, 42, 127–130. [Google Scholar] [CrossRef]
- Gu, W.; Gan, H.; Ma, Y.; Xu, L.; Cheng, Z.J.; Li, B.; Zhang, X.; Jiang, W.; Sun, J.; Sun, B.; et al. The molecular mechanism of SARS-CoV-2 evading host antiviral innate immunity. Virol. J. 2022, 19, 49. [Google Scholar] [CrossRef]
- Nagaoka, K.; Kawasuji, H.; Murai, Y.; Kaneda, M.; Ueno, A.; Miyajima, Y.; Fukui, Y.; Morinaga, Y.; Yamamoto, Y. Circulating Type I Interferon Levels in the Early Phase of COVID-19 Are Associated with the Development of Respiratory Failure. Front. Immunol. 2022, 13, 844304. [Google Scholar] [CrossRef]
- Sun, X.; Gao, C.; Zhao, K.; Yang, Y.; Rassadkina, Y.; Fajnzylber, J.; Regan, J.; Li, J.Z.; Lichterfeld, M.; Yu, X.G. Immune-profiling of SARS-CoV-2 viremic patients reveals dysregulated innate immune responses. Front. Immunol. 2022, 13, 984553. [Google Scholar] [CrossRef] [PubMed]
- Della-Torre, E.; Lanzillotta, M.; Campochiaro, C.; Cavalli, G.; De Luca, G.; Tomelleri, A.; Boffini, N.; De Lorenzo, R.; Ruggeri, A.; Rovere-Querini, P.; et al. Respiratory Impairment Predicts Response to IL-1 and IL-6 Blockade in COVID-19 Patients with Severe Pneumonia and Hyper-Inflammation. Front. Immunol. 2021, 12, 675678. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ish, P.; Gupta, A.; Malhotra, N.; Caminero, J.A.; Singla, R.; Kumar, R.; Yadav, S.R.; Dev, N.; Agrawal, S.; et al. A profile of a retrospective cohort of 22 patients with COVID-19 and active/treated tuberculosis. Eur. Respir. J. 2020, 56, 2003408. [Google Scholar] [CrossRef]
- Vassiliou, A.G.; Keskinidou, C.; Jahaj, E.; Gallos, P.; Dimopoulou, I.; Kotanidou, A.; Orfanos, S.E. ICU admission levels of endothelial biomarkers as predictors of mortality in critically ill COVID-19 patients. Cells 2021, 10, 186. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, L.; Cheng, G. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol. Ther. 2022, 30, 1869–1884. [Google Scholar] [CrossRef]
- Cayford, J.; Eccleston, M.; Berman, B.; Serneo, F.; Kelly, T.; Retter, A.; Zukas, K. Understanding Netosis Priming and Induction through Nucleosome Changes and Real-Time Monitoring in Isolated Neutrophils and in an Ex-Vivo Model. Blood 2023, 142, 2542. [Google Scholar] [CrossRef]
- Huang, K.Y.; Lin, M.S.; Kuo, T.C.; Chen, C.L.; Lin, C.C.; Chou, Y.C.; Chao, T.L.; Pang, Y.H.; Kao, H.C.; Huang, R.S.; et al. Humanized COVID-19 decoy antibody effectively blocks viral entry and prevents SARS-CoV-2 infection. EMBO Mol. Med. 2021, 13, e12828. [Google Scholar] [CrossRef]
- Latreille, E.; Lee, W.L. Interactions of Influenza and SARS-CoV-2 with the Lung Endothelium: Similarities, Differences, and Implications for Therapy. Viruses 2021, 13, 161. [Google Scholar] [CrossRef]
- Jakobs, K.; Reinshagen, L.; Puccini, M.; Friebel, J.; Wilde, A.-C.B.; Alsheik, A.; Rroku, A.; Landmesser, U.; Haghikia, A.; Kränkel, N.; et al. Disease Severity in Moderate-to-Severe COVID-19 Is Associated with Platelet Hyperreactivity and Innate Immune Activation. Front. Immunol. 2022, 13, 844701. [Google Scholar] [CrossRef]
- Kang, Y.; Lu, S.; Zhong, R.; You, J.; Chen, J.; Li, L.; Huang, R.; Xie, Y.; Chen, F.; Chen, J.; et al. The immune inflammation factors associated with disease severity and poor prognosis in patients with COVID-19: A retrospective cohort study. Heliyon 2024, 10, e23583. [Google Scholar] [CrossRef]
- Nasrollahi, H.; Talepoor, A.G.; Saleh, Z.; Vakili, M.E.; Heydarinezhad, P.; Karami, N.; Noroozi, M.; Meri, S.; Kalantar, K. Immune responses in mildly versus critically ill COVID-19 patients. Front. Immunol. 2023, 14, 1077236. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.; She, F.; Zhang, W.; Liu, H.; Zhao, X. Effects of Neutrophil-to-Lymphocyte Ratio Combined with Interleukin-6 in Predicting 28-Day Mortality in Patients with Sepsis. Front. Immunol. 2021, 12, 639735. [Google Scholar] [CrossRef]
- Bao, F.; Shi, W.L.; Hu, J.; Zhang, D.; Gao, D.H.; Xia, Y.X.; Jing, H.M.; Ke, X.Y.; Ge, Q.G.; Shen, N. Analysis of the correlation between lymphocyte subsets and severity of corona virus disease 19. J. Peking Univ. (Health Sci.) 2020, 52, 1075–1081. [Google Scholar] [CrossRef]
- Hutcheon, C.; Paulvannan, P.; Subramanian, N. Cytoplasmic Sensing in Innate Immunity. In Encyclopedia of Cell Biology; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 710–726. [Google Scholar]
- Dutta, D.; Liu, J.; Xiong, H. NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 138–160. [Google Scholar]
- Kuśnierz-Cabala, B.; Maziarz, B.; Dumnicka, P.; Dembiński, M.; Kapusta, M.; Bociąga-Jasik, M.; Winiarski, M.; Garlicki, A.; Grodzicki, T.; Kukla, M. Diagnostic Significance of Serum Galectin-3 in Hospitalized Patients with COVID-19-A Preliminary Study. Biomolecules 2021, 11, 1136. [Google Scholar] [CrossRef]
- Lécuyer, D.; Nardacci, R.; Tannous, D.; Gutierrez-Mateyron, E.; Nathan, A.D.; Subra, F.; Di Primio, C.; Quaranta, P.; Petit, V.; Richetta, C.; et al. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable host factors required for SARS-CoV-2 infection. Front. Immunol. 2023, 14, 1270081. [Google Scholar] [CrossRef]
- Lee, J.H.; Sergi, C.; Kast, R.E.; Kanwar, B.A.; Bourbeau, J.; Oh, S.; Sohn, M.G.; Lee, C.J.; Coleman, M.D. Aggravating mechanisms from COVID-19. Virol. J. 2024, 21, 228. [Google Scholar] [CrossRef]
- Ulrich, C.; Wildgrube, S.; Fiedler, R.; Seibert, E.; Kneser, L.; Fick, S.; Schäfer, C.; Markau, S.; Trojanowicz, B.; Girndt, M. NLRP3 Inflammasome Activation in Hemodialysis and Hypertensive Patients with Intact Kidney Function. Toxins 2020, 12, 675. [Google Scholar] [CrossRef]
- Chemarin, M.; Dufies, O.; Mazet, A.; Mellan, E.; Coudereau, R.; Py, B.F.; Boyer, L.; Venet, F. Role of inflammasome NLRP3 in the pathophysiology of viral infections: A focus on SARS-CoV-2 infection. Med. Sci. 2022, 38, 545–552. [Google Scholar]
- Petrey, A.C.; Qeadan, F.; Middleton, A.E.; Pinchuk, I.V.; Campbell, A.R.; Beswick, E.J. Cytokine release syndrome in COVID-19: Innate immune, vascular, and platelet pathogenic factors differ in severity of disease and sex. J. Leukoc. Biol. 2021, 109, 55–66. [Google Scholar] [CrossRef]
- Afrin, S.; Sharmin, S. Role of Interleukin-6 as a Predictor in Assessing Severity of COVID-19 Patients: A Hospital Based Cross-Sectional Study. Int. J. Sci. Healthc. Res. 2024, 9, 167–182. [Google Scholar] [CrossRef]
- Li, L.; Li, J.; Gao, M.; Fan, H.; Wang, Y.; Xu, X.; Chen, C.; Liu, J.; Kim, J.; Aliyari, R.; et al. Interleukin-8 as a Biomarker for Disease Prognosis of Coronavirus Disease-2019 Patients. Front. Immunol. 2021, 11, 602395. [Google Scholar] [CrossRef] [PubMed]
- Al Rushood, M.; Al-Eisa, A.; Al-Attiyah, R. Serum and urine interleukin-6 and interleukin-8 levels do not differentiate acute pyelonephritis from lower urinary tract infections in children. J. Inflamm. Res. 2020, 13, 789–797. [Google Scholar] [CrossRef]
- Yehya, N.; Booth, T.J.; Ardhanari, G.D.; Thompson, J.M.; Lam, L.M.; Till, J.E.; Mai, M.V.; Keim, G.; McKeone, D.J.; Halstead, E.S.; et al. Inflammatory and tissue injury marker dynamics in pediatric acute respiratory distress syndrome. J. Clin. Investig. 2024, 134, e177896. [Google Scholar] [CrossRef]
- Basu, S.; Kayal, T.; Patro, P.P.; Patnaik, A. JN.1: Ongoing considerations of the shifting landscape of SARS-CoV-2 variants. Future Microbiol. 2024, 19, 559–562. [Google Scholar] [CrossRef]
- Zaripov, B.; Akhmedova, G.; Kakhorov, B.; Shodiev, B. ANALYSIS OF IMMUNE CELLS AND IMMUNOLOGICAL PROCESSES IN COVID-19. Int. J. Med. Sci. Clin. Res. 2024, 4, 70–77. [Google Scholar] [CrossRef]
- Kempaiah, P.; Libertin, C.R.; Chitale, R.A.; Naeyma, I.; Pleqi, V.; Sheele, J.M.; Iandiorio, M.J.; Hoogesteijn, A.L.; Caulfield, T.R.; Rivas, A.L. Decoding Immuno-Competence: A Novel Analysis of Complete Blood Cell Count Data in COVID-19 Outcomes. Biomedicines 2024, 12, 871. [Google Scholar] [CrossRef]
- Lionetto, L.; Ulivieri, M.; Capi, M.; De Bernardini, D.; Fazio, F.; Petrucca, A.; Pomes, L.M.; De Luca, O.; Gentile, G.; Casolla, B.; et al. Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: An observational cohort study. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166042. [Google Scholar] [CrossRef]
- Mudd, P.A.; Crawford, J.C.; Turner, J.S.; Souquette, A.; Reynolds, D.; Bender, D.; Bosanquet, J.P.; Anand, N.J.; Striker, D.A.; Martin, R.S.; et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci. Adv. 2020, 6, eabe3024. [Google Scholar] [CrossRef]
- Topyildiz, E.; Karaca, N.; Taşkin, R.B.; Aygün, A.; Bal, Z.Ş.; Saz, E.U.; Kurugöl, N.Z.; Kütükçüler, N.; Aksu, G. Alterations in B and NK cells highly correlate with disease severity in children with COVID-19. Turk. J. Med. Sci. 2023, 53, 1205–1213. [Google Scholar] [CrossRef]
- Park, B.K.; Kim, D.; Park, S.; Maharjan, S.; Kim, J.; Choi, J.-K.; Akauliya, M.; Lee, Y.; Kwon, H.-J. Differential signaling and virus production in Calu-3 cells and vero cells upon SARS-CoV-2 infection. Biomol. Ther. 2021, 29, 273. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Dean, L.S.; Jiyarom, B.; Gangcuangco, L.M.; Shah, P.; Awamura, T.; Ching, L.L.; Nerurkar, V.R.; Chow, D.C.; Igno, F.; et al. Elevated circulating monocytes and monocyte activation in COVID-19 convalescent individuals. Front. Immunol. 2023, 14, 1151780. [Google Scholar] [CrossRef]
- Fanelli, M.; Petrone, V.; Maracchioni, C.; Chirico, R.; Cipriani, C.; Coppola, L.; Malagnino, V.; Teti, E.; Sorace, C.; Zordan, M.; et al. Persistence of circulating CD169+monocytes and HLA-DR downregulation underline the immune response impairment in PASC individuals: The potential contribution of different COVID-19 pandemic waves. Curr. Res. Microb. Sci. 2024, 6, 100215. [Google Scholar] [CrossRef]
- Alzaid, F.; Julla, J.B.; Diedisheim, M.; Potier, C.; Potier, L.; Velho, G.; Gaborit, B.; Manivet, P.; Germain, S.; Vidal-Trecan, T.; et al. Monocytopenia, monocyte morphological anomalies and hyperinflammation characterise severe COVID-19 in type 2 diabetes. EMBO Mol. Med. 2020, 12, e13038. [Google Scholar] [CrossRef]
- Kennedy, A.E.; Cook, L.; Breznik, J.A.; Cowbrough, B.; Wallace, J.G.; Huynh, A.; Smith, J.W.; Son, K.; Stacey, H.; Ang, J.; et al. Lasting changes to circulating leukocytes in people with mild SARS-CoV-2 infections. Viruses 2021, 13, 2239. [Google Scholar] [CrossRef]
- Morrison, A.R.; Johnson, J.M.; Griebe, K.M.; Jones, M.C.; Stine, J.J.; Hencken, L.N.; To, L.; Bianchini, M.L.; Vahia, A.T.; Swiderek, J.; et al. Clinical characteristics and predictors of survival in adults with coronavirus disease 2019 receiving tocilizumab. J. Autoimmun. 2020, 114, 102512. [Google Scholar] [CrossRef]
- Chen, X.; Huang, J.; Chen, J.; Huang, Y.; Jiang, X.; Shi, Y. Characteristics of immune cells and cytokines in patients with coronavirus disease 2019 in Guangzhou, China. Hum. Immunol. 2020, 81, 702–708. [Google Scholar] [CrossRef]
- Moin, A.S.M.; Sathyapalan, T.; Diboun, I.; Atkin, S.L.; Butler, A.E. Identification of macrophage activation-related biomarkers in obese type 2 diabetes that may be indicative of enhanced respiratory risk in COVID-19. Sci. Rep. 2021, 11, 6428. [Google Scholar] [CrossRef]
- Cunningham, L.; Kimber, I.; Basketter, D.; Simmonds, P.; McSweeney, S.; Tziotzios, C.; McFadden, J.P. Perforin, COVID-19 and a possible pathogenic auto-inflammatory feedback loop. Scand. J. Immunol. 2021, 94, e13102. [Google Scholar] [CrossRef]
- Sonnweber, T.; Boehm, A.; Sahanic, S.; Pizzini, A.; Aichner, M.; Sonnweber, B.; Kurz, K.; Koppelstätter, S.; Haschka, D.; Petzer, V.; et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: A prospective observational cohort study. Respir. Res. 2020, 21, 276. [Google Scholar] [CrossRef]
- Bao, C.; Tao, X.; Cui, W.; Hao, Y.; Zheng, S.; Yi, B.; Pan, T.; Young, K.H.; Qian, W. Natural killer cells associated with SARS-CoV-2 viral RNA shedding, antibody response and mortality in COVID-19 patients. Exp. Hematol. Oncol. 2021, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, S.; Tran, M.T.; Jennings, T.S.K.; Soliman, M.M.H.; Heo, S.; Sasson, B.; Rahmatpanah, F.; Agrawal, A. Changes in the innate immune response to SARS-CoV-2 with advancing age in humans. Immun. Ageing 2024, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Liu, X.; Le, W.; Xie, L.; Li, H.; Wen, W.; Wang, S.; Ma, S.; Huang, Z.; Ye, J.; et al. A human circulating immune cell landscape in aging and COVID-19. Protein Cell 2020, 11, 740–770. [Google Scholar] [CrossRef]
- Lee, M.J.; Blish, C.A. Defining the role of natural killer cells in COVID-19. Nat. Immunol. 2023, 24, 1628–1638. [Google Scholar] [CrossRef]
- Hammer, Q.; Cuapio, A.; Bister, J.; Björkström, N.K.; Ljunggren, H.-G. NK cells in COVID-19-from disease to vaccination. J. Leukoc. Biol. 2023, 114, 507–512. [Google Scholar] [CrossRef]
- Krämer, B.; Knoll, R.; Bonaguro, L.; ToVinh, M.; Raabe, J.; Astaburuaga-García, R.; Schulte-Schrepping, J.; Kaiser, K.M.; Rieke, G.J.; Bischoff, J.; et al. Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity 2021, 54, 2650–2669.e14. [Google Scholar] [CrossRef]
- Chen, D.G.; Xie, J.; Choi, J.; Ng, R.H.; Zhang, R.; Li, S.; Edmark, R.; Zheng, H.; Solomon, B.; Campbell, K.M.; et al. Integrative systems biology reveals NKG2A-biased immune responses correlate with protection in infectious disease, autoimmune disease, and cancer. Cell Rep. 2024, 43, 113872. [Google Scholar] [CrossRef]
- Njiomegnie, G.F.; Read, S.A.; Fewings, N.; George, J.; McKay, F.; Ahlenstiel, G. Immunomodulation of the natural killer cell phenotype and response during HCV infection. J. Clin. Med. 2020, 9, 1030. [Google Scholar] [CrossRef]
- Hoste, L.; Roels, L.; Naesens, L.; Bosteels, V.; Vanhee, S.; Dupont, S.; Bosteels, C.; Browaeys, R.; Vandamme, N.; Verstaen, K.; et al. TIM3+ TRBV11-2 T cells and IFNγ signature in patrolling monocytes and CD16+ NK cells delineate MIS-C. J. Exp. Med. 2021, 219, e20211381. [Google Scholar] [CrossRef]
- Lee, P.Y.; Day-Lewis, M.; Henderson, L.A.; Friedman, K.G.; Lo, J.; Roberts, J.E.; Lo, M.S.; Platt, C.D.; Chou, J.; Hoyt, K.J.; et al. Distinct clinical and immunological features of SARS–CoV-2–induced multisystem inflammatory syndrome in children. J. Clin. Investig. 2020, 130, 5942–5950. [Google Scholar] [CrossRef]
- Borgel, D.; Chocron, R.; Grimaud, M.; Philippe, A.; Chareyre, J.; Brakta, C.; Lasne, D.; Bonnet, D.; Toubiana, J.; Angoulvant, F.; et al. Endothelial Dysfunction as a Component of Severe Acute Respiratory Syndrome Coronavirus 2-Related Multisystem Inflammatory Syndrome in Children with Shock. Crit. Care Med. 2021, 49, e1151–e1156. [Google Scholar] [CrossRef] [PubMed]
- Casado, J.L.; Moraga, E.; Vizcarra, P.; Velasco, H.; Martín-Hondarza, A.; Haemmerle, J.; Gómez, S.; Quereda, C.; Vallejo, A. Expansion of cd56dim cd16neg nk cell subset and increased inhibitory kirs in hospitalized COVID-19 patients. Viruses 2022, 14, 46. [Google Scholar] [CrossRef]
- Masselli, E.; Vaccarezza, M.; Carubbi, C.; Pozzi, G.; Presta, V.; Mirandola, P.; Vitale, M. NK cells: A double edge sword against SARS-CoV-2. Adv. Biol. Regul. 2020, 77, 100737. [Google Scholar] [CrossRef]
- Zandi, M.; Shafaati, M.; Kalantar-Neyestanaki, D.; Pourghadamyari, H.; Fani, M.; Soltani, S.; Kaleji, H.; Abbasi, S. The role of SARS-CoV-2 accessory proteins in immune evasion. Biomed. Pharmacother. 2022, 156, 113889. [Google Scholar] [CrossRef]
- Arshad, N.; Laurent-Rolle, M.; Ahmed, W.S.; Hsu, J.C.-C.; Mitchell, S.M.; Pawlak, J.; Sengupta, D.; Biswas, K.H.; Cresswell, P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proc. Natl. Acad. Sci. USA 2023, 120, e2208525120. [Google Scholar] [CrossRef]
- Zhang, J.; Hom, K.; Zhang, C.; Nasr, M.; Gerzanich, V.; Zhang, Y.; Tang, Q.; Xue, F.; Simard, J.M.; Zhao, R.Y. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024, 13, 75. [Google Scholar] [CrossRef]
- Hussain, I.; Pervaiz, N.; Khan, A.; Saleem, S.; Shireen, H.; Wei, D.-Q.; Labrie, V.; Bao, Y.; Abbasi, A.A. Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity. Genes Immun. 2020, 21, 409–419. [Google Scholar] [CrossRef]
- Low, Z.Y.; Zabidi, N.Z.; Yip, A.J.W.; Puniyamurti, A.; Chow, V.T.K.; Lal, S.K. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022, 14, 1991. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zhang, Y.; Ai, J.; Yang, B.; Cui, M.; Liao, Q.; Chen, H.; Bai, H.; Shang, D.; et al. Differential immune responses in pregnant patients recovered from COVID-19. Signal Transduct. Target. Ther. 2021, 6, 289. [Google Scholar] [CrossRef]
- Lu-Culligan, A.; Chavan, A.R.; Vijayakumar, P.; Irshaid, L.; Courchaine, E.M.; Milano, K.M.; Tang, Z.; Pope, S.D.; Song, E.; Vogels, C.B.; et al. Maternal respiratory SARS-CoV-2 infection in pregnancy is associated with a robust inflammatory response at the maternal-fetal interface. Med 2021, 2, 591–610.e10. [Google Scholar] [CrossRef]
- Farias-Jofre, M.; Romero, R.; Xu, Y.; Levenson, D.; Tao, L.; Kanninen, T.; Galaz, J.; Arenas-Hernandez, M.; Liu, Z.; Miller, D.; et al. Differential immunophenotype of circulating monocytes from pregnant women in response to viral ligands. BMC Pregnancy Childbirth 2023, 23, 323. [Google Scholar] [CrossRef] [PubMed]
- Andrievskaya, I.A.; Lyazgiyan, K.S.; Zhukovets, I.V.; Ustinov, E.M. Effect of COVID-19 infection in the third trimester of pregnancy on innate immunity parameters, association with obstetric and perinatal outcomes. Bull. Sib. Med. 2024, 23, 5–13. [Google Scholar] [CrossRef]
- Bernier, E.; Brien, M.E.; Girard, S. Pregnant individuals with uncomplicated pregnancies display pro-inflammatory immune changes when exposed to the COVID-19 pandemic. Am. J. Reprod. Immunol. 2024, 91, e13828. [Google Scholar] [CrossRef]
- Chambers, C.D.; Song, J.; Antunes, R.d.S.; Sette, A.; Franco, A. T Cell Responses in Pregnant Women Who Received mRNA-Based Vaccination to Prevent COVID-19 Revealed Unknown Exposure to the Natural Infection and Numerous SARS-CoV-2-Specific CD4- CD8- Double Negative T Cells and Regulatory T Cells. Int. J. Mol. Sci. 2024, 25, 2031. [Google Scholar] [CrossRef]
- Aziz, N.H.A.; Salker, M.S.; Lankapalli, A.K.; Shafiee, M.N.; Kocak, E.; Sekhar Pal, S.; Khalid, O.; Kasim, N.M.; Kalok, A.; Fuad, N.A.; et al. Single-cell RNA sequencing highlights a reduced function of natural killer and cytotoxic T cell in recovered COVID-19 pregnant women. bioRxiv 2022. [Google Scholar] [CrossRef]
Eligibility Criteria | Description |
---|---|
Year of Publication | Articles published between 2020 and 2024. |
Language | Only articles in English. |
Open Access | Only articles with full-text open access and free availability. |
Type of Publication | Only original research articles (excluding reviews or editorials). |
Focus on Humans | Studies focused on human populations (men, women, children, and adults). |
Topic Relevance | Focused on critical mechanisms and fundamental processes related to the topic. |
Viral Protein | Effect on NK Cell | Impact on Cytokines | Consequence |
---|---|---|---|
Spike | ↓ MICA/B (inhibits activation) | ↑ IL-6, ↓ IFN-γ | Phenotypic exhaustion of NK cells. |
ORF3a | ↑ PD-1/TIM-3 (exhaustion) | ↑ TGF-β (immunosuppression) | Loss of cytotoxic function of NK cells. |
NSP1 | ↓ CD69 (activation) | Alteration of type I IFN pathways | Poor antiviral response (less immune cell activation, including NK cells). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, J.C.; DeAntonio, R.; López-Vergès, S. Dynamics of Innate Immunity in SARS-CoV-2 Infections: Exploring the Impact of Natural Killer Cells, Inflammatory Responses, Viral Evasion Strategies, and Severity. Cells 2025, 14, 763. https://doi.org/10.3390/cells14110763
Batista JC, DeAntonio R, López-Vergès S. Dynamics of Innate Immunity in SARS-CoV-2 Infections: Exploring the Impact of Natural Killer Cells, Inflammatory Responses, Viral Evasion Strategies, and Severity. Cells. 2025; 14(11):763. https://doi.org/10.3390/cells14110763
Chicago/Turabian StyleBatista, Juan C., Rodrigo DeAntonio, and Sandra López-Vergès. 2025. "Dynamics of Innate Immunity in SARS-CoV-2 Infections: Exploring the Impact of Natural Killer Cells, Inflammatory Responses, Viral Evasion Strategies, and Severity" Cells 14, no. 11: 763. https://doi.org/10.3390/cells14110763
APA StyleBatista, J. C., DeAntonio, R., & López-Vergès, S. (2025). Dynamics of Innate Immunity in SARS-CoV-2 Infections: Exploring the Impact of Natural Killer Cells, Inflammatory Responses, Viral Evasion Strategies, and Severity. Cells, 14(11), 763. https://doi.org/10.3390/cells14110763