Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation
Abstract
1. Introduction
2. miRNAs in Acute Inflammation
3. Mechanisms of Extracellular miRNA Actions
4. Extracellular miRNAs as Diagnostic and Prognostic Markers
miRNA | Expression (Increased or Decreased) | Outcome | Reference |
---|---|---|---|
miR-15a | Decreased | Shock, vascular permeability | Goodwin et al. (2015), Wang et al. (2012A) [24,63] |
miR-16 | Decreased | Increased mortality | Wang et al. (2012A) [63] |
miR-27a | Decreased | Shock, vascular permeability | Goodwin et al. (2015) [24] |
mir-34a | Increased | Shock, endothelial dysfunction | Goodwin et al. (2015) [24] |
miR-122 | Increased | Increased mortality | Wang et al. (2012A) [63] |
miR-133 | Increased | Presence of sepsis and severity | Benz et al. (2016), Tacke et al. (2014) [20,65] |
miR-146 | Decreased | Differentiates sepsis from SIRS | Formosa et al. (2022), Xu et al. (2018), Wang et al. (2013) [12,49,66] |
miR-150 | Decreased | Presence of sepsis | Vasilescu et al. (2009) [67] |
miR-193 | Increased | Increased mortality | Wang et al. (2012A) [63] |
miR-223 | Decreased | Differentiates sepsis from SIRS and severe sepsis from mild sepsis | Wang et al. (2012A) [63] |
miR-297 | Decreased | Increased mortality | Benz et al. (2016), Wang et al. (2012B) [20,68] |
miR-483-5p | Increased | Differentiates mild and severe sepsis | Wang et al. (2012A) [63] |
miR-574-5p | Increased | Increased mortality | Benz et al. (2016), Wang et al. (2012B) [20,68] |
5. Extracellular miRNA as Therapeutic Targets
miRNA | Pathology | Mechanism of Action | Model | References |
---|---|---|---|---|
Extracellular, Intra-Vesicular | ||||
miR-17 | Sepsis | BMSC-EVs transport miRNAs to decrease expression of BDR4, reducing macrophage apoptosis and cytokine release | LPS intraperitoneal injection | Su et al. (2021) [31] |
miR-30b-3p | Sepsis-induced ALI | MSC-EVs transport miRNAs to decrease expression of SAA3, increasing KGF and reducing cytokine expression and apoptosis of AECs | LPS intratracheal injection | Lee et al. (2009) [76] |
miR-34a-5p miR-122 miR-146a | Sepsis | Inhibitors of miR-34a, miR-122, reduce signaling through TLR7/MyD88 pathway, reducing cytokine expression and neutrophil migration | CLP | Xu et al. (2018) [49] |
miR-93-5p | Sepsis-induced AKI | EPC-secreted EVs silence KDM6B expression, reducing apoptosis and TNF-α via KDM6B/H3K27 pathway | CLP | He et al. (2020) [75] |
miR-126 | Sepsis-induced ALI | EPC-derived vesicles transport miRNAs to ECs and downregulate SPRED1, promoting RAF/ERK induced proliferation and angiogenesis | LPS intratracheal injection | Wu et al. (2018) [47] |
miR-127-5p | Sepsis-induced ALI | BMSC vesicles transport miRNAs that bind to CD64, reducing its expression and NET formation | LPS intratracheal injection | Zheng et al. (2023) [34] |
miR-142-5p | Sepsis | EVs with miRNA inhibit PTEN expression, activating the PI3K/AKT signaling pathway, reducing IL-6 and TNF-α production | LPS tail vein injection | Zhu et al. (2022) [50] |
miR-146a | Sepsis | EVs with miRNAs induce inflammation through TLR7 signaling, which can be blocked by replacing all uridine with adenosine in miR-146a-5p | CLP | Huang et al. (2021), Wang et al. (2021), [33,79] |
miR-146a, miR-155, miR-223 | Sepsis | EVs with all three miRNAs induced variable expressions of cytokines | LPS intraperitoneal injection | Pottash et al. (2022) [77] |
Extracellular, Extra-vesicular | ||||
miR 27b | Sterile inflammation | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CIRP-induced inflammation (in vitro) | Gurien et al. (2020) [10] |
miR 130-3p | Sepsis | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CLP | Gurien et al. (2020) [10] |
miR 140 | Sterile inflammation | miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CIRP-induced inflammation (in vitro) | Gurien et al. (2020) [10] |
PS-Ome miR 130 | Sepsis, hepatic I/R, AKI | Modified/engineered miRNA mimic binds to eCIRP, inhibiting its interaction with TLR4 | CLP, portal vein and hepatic artery occlusion for 60 min, bilateral renal artery and vein occlusion for 30 min | Borjas et al. (2023A), Borjas et al. (2023B), Vazquez et al. (2023) [80,81,82] |
A12 | Sepsis | Modified poly(A) tail binds to eCIRP, inhibiting its interaction with TLR4 | CLP | Murao et al. (2023) [83] |
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGO | Argonaute |
AKI | Acute kidney injury |
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
AP-1 | Activator protein-1 |
ATP | Adenosine Triphosphate |
BDR4 | Bromodomain-containing protein 4 |
BMSC | Bone marrow mesenchymal stem cell |
CD64 | Cluster differentiation 64 |
DAMP | Damage-associated molecular pattern |
DGCR8 | DiGeorge Syndrome Critical Region 8 |
DNA | Deoxyribonucleic acid |
eCIRP | Extracellular cold-inducible RNA-binding protein |
ERK | Extracellular signal-regulated kinase |
ESCRT | Endosomal sorting complexes required for transport |
EV | Extracellular vesicle |
H3K27me4 | Histone 3 with trimethylation at lysine 27 |
hEXO | Human exoribonuclease |
hnRNPA2B1 | Heterogenous nuclear ribonucleoprotein |
I/R | Ischemia/reperfusion |
IL | Interleukin |
KDM6B | Lysine-specific demethylase 6B |
KGF | Keratinocyte growth factor |
KRAS-MEK | Kirsten rat sarcoma viral oncogene homolog-mitogen-activated protein kinase kinase |
LPS | Lipopolysaccharide |
mRNA | Messenger ribonucleic acid |
miRNA | Micro-ribonucleic acid |
MyD88 | Myeloid differentiation primary response 88 |
MSC | Mesenchymal stem cell |
NET | Neutrophil extracellular trap |
NF-κB | Nuclear factor κB |
nm | Nanometers |
NPM1 | Nucleophosmin 1 |
nsMase2 | Neutral sphingomyelinase 2 |
PARP-1 | Poly-adenosine diphosphate ribose polymerase 1 |
PEIs | Polyethylenimines |
pre-miRNA | Precursor miRNA |
pri-miRNA | Primary miRNA |
PI3K/AKT | Phosphoinositide 3-kinase/protein kinase B |
Poly(A) | Polyadenosine |
PS-Ome | Phosphorothioate O-methyl |
PTEN | Phosphatase and tensin homolog |
RAF | Rapidly accelerated fibrosarcoma |
RISC | RNA-silencing complex |
rmCIRP | Recombinant CIRP |
RNA | Ribonucleic acid |
RNP | Ribonucleoprotein |
SAA3 | Serum amyloid A-3 |
SOFA | Sequential organ failure assessment |
SPRED1 | Sprouty-related EVH1 domain-containing 1 |
SV40 | Simian virus 40 |
SYNCRIP | Synaptogamin-binding cytoplasmic RNA-interacting protein |
TLR | Toll-like receptor |
TNF-α | Tumor Necrosis Factor-Alpha |
US | United States |
YBX1 | Y-box protein 1 |
References
- Lee, R.C.; Feinbaum, R.L.; Ambrost, V. The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef]
- Wightman, B.; Ha, L.; Ruvkun, G. Posttranscriptional Regulation of the Heterochronic Gene Lin-14 by W-4 Mediates Temporal Pattern Formation in C. elegans. Cell 1993, 75, 855–862. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Carthew, R.W.; Sontheimer, E.J. Origins and Mechanisms of MiRNAs and SiRNAs. Cell 2009, 136, 642–655. [Google Scholar] [CrossRef]
- Das, K.; Rao, L.V.M. The Role of MicroRNAs in Inflammation. Int. J. Mol. Sci. 2022, 23, 15479. [Google Scholar] [CrossRef]
- Ciebiera, M.; Włodarczyk, M.; Zgliczyński, S.; Łoziński, T.; Walczak, K.; Czekierdowski, A. The Role of MiRNA and Related Pathways in Pathophysiology of Uterine Fibroids—From Bench to Bedside. Int. J. Mol. Sci. 2020, 21, 3016. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-Mediated Transfer of MRNAs and MicroRNAs Is a Novel Mechanism of Genetic Exchange between Cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef]
- Turchinovich, A.; Weiz, L.; Langheinz, A.; Burwinkel, B. Characterization of Extracellular Circulating MicroRNA. Nucleic Acids Res. 2011, 39, 7223–7233. [Google Scholar] [CrossRef]
- Gurien, S.D.; Aziz, M.; Jin, H.; Wang, H.; He, M.; Al-Abed, Y.; Nicastro, J.M.; Coppa, G.F.; Wang, P. Extracellular Micro RNA 130b-3p Inhibits ECIRP-induced Inflammation. EMBO Rep. 2020, 21, e48075. [Google Scholar] [CrossRef]
- Williams, B.; Kozar, R.; Chao, W. Emerging Role of Extracellular RNA in Innate Immunity, Sepsis, and Trauma. Shock 2023, 59, 190–199. [Google Scholar] [CrossRef]
- Formosa, A.; Turgeon, P.; dos Santos, C.C. Role of MiRNA Dysregulation in Sepsis. Mol. Med. 2022, 28, 99. [Google Scholar] [CrossRef]
- Real, J.M.; Ferreira, L.R.P.; Esteves, G.H.; Koyama, F.C.; Dias, M.V.S.; Bezerra-Neto, J.E.; Cunha-Neto, E.; Machado, F.R.; Salomão, R.; Azevedo, L.C.P. Exosomes from Patients with Septic Shock Convey MiRNAs Related to Inflammation and Cell Cycle Regulation: New Signaling Pathways in Sepsis? Crit. Care 2018, 22, 68. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.; French, C.; Machado, F.; McIntyre, L.; Ostermann, M.; Prescott, H.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, Regional, and National Sepsis Incidence and Mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef]
- Oldenburg, W.A.; Lau, L.L.; Rodenberg, T.J.; Edmonds, H.J.; Burger, C.D. Acute Mesenteric Ischemia A Clinical Review. Arch. Intern. Med. 2004, 164, 1054–1062. [Google Scholar] [CrossRef]
- MacKenzie, E.J.; Rivara, F.P.; Jurkovich, G.J.; Nathens, A.B.; Frey, K.P.; Egleston, B.L.; Salkever, D.S.; Weir, S.; Scharfstein, D.O. The National Study on Costs and Outcomes of Trauma. J. Trauma 2007, 63, S54–S67. [Google Scholar] [CrossRef]
- Terrasini, N.; Lionetti, V. Exosomes in Critical Illness. Crit. Care Med. 2017, 45, 1054–1060. [Google Scholar] [CrossRef]
- Benz, F.; Roy, S.; Trautwein, C.; Roderburg, C.; Luedde, T. Circulating MicroRNAs as Biomarkers for Sepsis. Int. J. Mol. Sci. 2016, 17, 78. [Google Scholar] [CrossRef]
- Turchinovich, A.; Tonevitsky, A.G.; Burwinkel, B. Extracellular MiRNA: A Collision of Two Paradigms. Trends Biochem. Sci. 2016, 41, 883–892. [Google Scholar] [CrossRef]
- Aucher, A.; Rudnicka, D.; Davis, D.M. MicroRNAs Transfer from Human Macrophages to Hepato-Carcinoma Cells and Inhibit Proliferation. J. Immunol. 2013, 191, 6250–6260. [Google Scholar] [CrossRef]
- Rossi-Herring, G.; Belmonte, T.; Rivas-Urbina, A.; Benítez, S.; Rotllan, N.; Crespo, J.; Llorente-Cortés, V.; Sánchez-Quesada, J.L.; de Gonzalo-Calvo, D. Circulating Lipoprotein-Carried MiRNome Analysis Reveals Novel VLDL-Enriched MicroRNAs That Strongly Correlate with the HDL-MicroRNA Profile. Biomed. Pharmacother. 2023, 162, 114623. [Google Scholar] [CrossRef]
- Goodwin, A.J.; Guo, C.; Cook, J.A.; Wolf, B.; Halushka, P.V.; Fan, H. Plasma Levels of MicroRNA Are Altered with the Development of Shock in Human Sepsis: An Observational Study. Crit. Care 2015, 19, 440. [Google Scholar] [CrossRef]
- Bartel, D.P. Review MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef]
- Macfarlane, L.-A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Shi, Y.; Wang, S.; Xu, Y.; Li, H.; Liu, D. MiR-143-3p Impacts on Pulmonary Inflammatory Factors and Cell Apoptosis in Mice with Mycoplasmal Pneumonia by Regulating TLR4/MyD88/NF-ΚB Pathway. Biosci. Rep. 2020, 40, BSR20193419. [Google Scholar] [CrossRef]
- Ma, S.; Liu, M.; Xu, Z.; Li, Y.; Guo, H.; Ge, Y.; Liu, Y.; Zheng, D.; Shi, J. A Double Feedback Loop Mediated by MicroRNA-23a/27a/24-2 Regulates M1 versus M2 Macrophage Polarization and Thus Regulates Cancer Progression. Oncotarget 2015, 7, 13502–13519. [Google Scholar] [CrossRef]
- Zhang, D.; Lee, H.; Wang, X.; Groot, M.; Sharma, L.; Dela Cruz, C.S.; Jin, Y. A Potential Role of Microvesicle-Containing MiR-223/142 in Lung Inflammation. Thorax 2019, 74, 865–874. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhang, T.; Zhang, C.; Ji, H.; Tong, X.; Xia, R.; Wang, W.; Ma, Z.; Shi, X. Exosomal MiR-30d-5p of Neutrophils Induces M1 Macrophage Polarization and Primes Macrophage Pyroptosis in Sepsis-Related Acute Lung Injury. Crit. Care 2021, 25, 356. [Google Scholar] [CrossRef]
- Su, Y.; Song, X.; Teng, J.; Zhou, X.; Dong, Z.; Li, P.; Sun, Y. Mesenchymal Stem Cells-Derived Extracellular Vesicles Carrying MicroRNA-17 Inhibits Macrophage Apoptosis in Lipopolysaccharide-Induced Sepsis. Int. Immunopharmacol. 2021, 95, 107408. [Google Scholar] [CrossRef]
- Suen, A.O.; Chen, F.; Wang, S.; Li, Z.; Zhu, J.; Yang, Y.; Conn, O.; Lopez, K.; Cui, P.; Wechsler, L.; et al. Extracellular RNA Sensing Mediates Inflammation and Organ Injury in a Murine Model of Polytrauma. J. Immunol. 2023, 210, 1990–2000. [Google Scholar] [CrossRef]
- Huang, H.; Zhu, J.; Gu, L.; Hu, J.; Feng, X.; Huang, W.; Wang, S.; Yang, Y.; Cui, P.; Lin, S.H.; et al. TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular MiR-146a. Am. J. Respir. Cell Mol. Biol. 2022, 67, 375–388. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, F.; Zhao, F.; Li, L.; Huang, H.; Li, L.; Yi, Y.; Yin, H.; Xu, J. Exosomal MiR-127-5p from BMSCs Alleviated Sepsis-Related Acute Lung Injury by Inhibiting Neutrophil Extracellular Trap Formation. Int. Immunopharmacol. 2023, 123, 110759. [Google Scholar] [CrossRef]
- Neudecker, V.; Brodsky, K.S.; Clambey, E.T.; Schmidt, E.P.; Packard, T.A.; Davenport, B.; Standiford, T.J.; Weng, T.; Fletcher, A.A.; Barthel, L.; et al. Neutrophil Transfer of MiR-223 to Lung Epithelial Cells Dampens Acute Lung Injury in Mice. Sci. Transl. Med. 2017, 9, eaah5360. [Google Scholar] [CrossRef]
- Ba, X.; Garg, N.J. Signaling Mechanism of Poly(ADP-Ribose) Polymerase-1 (PARP-1) in Inflammatory Diseases. Am. J. Pathol. 2011, 178, 946–955. [Google Scholar] [CrossRef]
- Labbaye, C.; Testa, U. The Emerging Role of MIR-146A in the Control of Hematopoiesis, Immune Function and Cancer. J. Hematol. Oncol. 2012, 5, 13. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G.; Labbaye, C. MiR-146 and MiR-155: Two Key Modulators of Immune Response and Tumor Development. Noncoding RNA 2017, 3, 22. [Google Scholar] [CrossRef]
- Möhnle, P.; Hirschberger, S.; Hinske, L.C.; Briegel, J.; Hübner, M.; Weis, S.; Dimopoulos, G.; Bauer, M.; Giamarellos-Bourboulis, E.J.; Kreth, S. MicroRNAs 143 and 150 in Whole Blood Enable Detection of T-Cell Immunoparalysis in Sepsis. Mol. Med. 2018, 24, 54. [Google Scholar] [CrossRef]
- Roderburg, C.; Luedde, M.; Vargas Cardenas, D.; Vucur, M.; Scholten, D.; Frey, N.; Koch, A.; Trautwein, C.; Tacke, F.; Luedde, T. Circulating MicroRNA-150 Serum Levels Predict Survival in Patients with Critical Illness and Sepsis. PLoS ONE 2013, 8, e54612. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Gong, W.; Zhao, G.; Liu, L.; Yang, L.; Hou, Y. The Toll-like Receptor 3 Ligand, Poly(I:C), Improves Immunosuppressive Function and Therapeutic Effect of Mesenchymal Stem Cells on Sepsis via Inhibiting MiR-143. Stem Cells 2014, 32, 521–533. [Google Scholar] [CrossRef]
- Vincent, J.L.; De Mendonca, A.; Cantraine, F.; Moreno, R.; Takala, J.; Suter, P.M.; Sprung, C.L.; Colardyn, F.; Blecher, S. Use of the SOFA Score to Assess the Incidence of Organ Dysfunction/Failure in Intensive Care Units: Results of a Multicenter, Prospective Study. Crit. Care Med. 1998, 26, 1793–1800. [Google Scholar] [CrossRef]
- de Grooth, H.J.; Geenen, I.L.; Girbes, A.R.; Vincent, J.L.; Parienti, J.J.; Oudemans-van Straaten, H.M. SOFA and Mortality Endpoints in Randomized Controlled Trials: A Systematic Review and Meta-Regression Analysis. Crit. Care 2017, 21, 38. [Google Scholar] [CrossRef]
- Bersten, A.D.; Edibam, C.; Hunt, T.; Moran, J.; Australian, T.; Zealand, N. Incidence and Mortality of Acute Lung Injury and the Acute Respiratory Distress Syndrome in Three Australian States. Am. J. Respir. Crit. Care Med. 2002, 165, 443–448. [Google Scholar] [CrossRef]
- Wang, J.; Huang, R.; Xu, Q.; Zheng, G.; Qiu, G.; Ge, M.; Shu, Q.; Xu, J. Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of MiR-27a-3p. Crit. Care Med. 2020, 48, E599–E610. [Google Scholar] [CrossRef]
- Yi, X.; Wei, X.; Lv, H.; An, Y.; Li, L.; Lu, P.; Yang, Y.; Zhang, Q.; Yi, H.; Chen, G. Exosomes Derived from MicroRNA-30b-3p-Overexpressing Mesenchymal Stem Cells Protect against Lipopolysaccharide-Induced Acute Lung Injury by Inhibiting SAA3. Exp. Cell Res. 2019, 383, 111454. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Z.; Hu, L.; Gu, W.; Zhu, L. Exosomes Derived from Endothelial Progenitor Cells Ameliorate Acute Lung Injury by Transferring MiR-126. Exp. Cell Res. 2018, 370, 13–23. [Google Scholar] [CrossRef]
- Reithmair, M.; Buschmann, D.; Märte, M.; Kirchner, B.; Hagl, D.; Kaufmann, I.; Pfob, M.; Chouker, A.; Steinlein, O.K.; Pfaffl, M.W.; et al. Cellular and Extracellular MiRNAs Are Blood-Compartment-Specific Diagnostic Targets in Sepsis. J. Cell. Mol. Med. 2017, 21, 2403–2411. [Google Scholar] [CrossRef]
- Xu, J.; Feng, Y.; Jeyaram, A.; Jay, S.M.; Zou, L.; Chao, W. Circulating Plasma Extracellular Vesicles from Septic Mice Induce Inflammation via MicroRNA- and TLR7-Dependent Mechanisms. J. Immunol. 2018, 201, 3392–3400. [Google Scholar] [CrossRef]
- Zhu, W.; Huang, X.; Qiu, S.; Feng, L.; Wu, Y.; Shao, H. MiR-142-5p Encapsulated by Serum-Derived Extracellular Vesicles Protects against Acute Lung Injury in Septic Rats Following Remote Ischemic Preconditioning via the PTEN/PI3K/Akt Axis. J. Innate Immun. 2022, 14, 532–542. [Google Scholar] [CrossRef]
- Mittelbrunn, M.; Gutiérrez-Vázquez, C.; Villarroya-Beltri, C.; González, S.; Sánchez-Cabo, F.; González, M.Á.; Bernad, A.; Sánchez-Madrid, F. Unidirectional Transfer of MicroRNA-Loaded Exosomes from T Cells to Antigen-Presenting Cells. Nat. Commun. 2011, 2, 282. [Google Scholar] [CrossRef]
- Villarroya-Beltri, C.; Gutiérrez-Vázquez, C.; Sánchez-Cabo, F.; Pérez-Hernández, D.; Vázquez, J.; Martin-Cofreces, N.; Martinez-Herrera, D.J.; Pascual-Montano, A.; Mittelbrunn, M.; Sánchez-Madrid, F. Sumoylated HnRNPA2B1 Controls the Sorting of MiRNAs into Exosomes through Binding to Specific Motifs. Nat. Commun. 2013, 4, 2980. [Google Scholar] [CrossRef]
- McKenzie, A.J.; Hoshino, D.; Hong, N.H.; Cha, D.J.; Franklin, J.L.; Coffey, R.J.; Patton, J.G.; Weaver, A.M. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016, 15, 978–987. [Google Scholar] [CrossRef]
- Cha, D.J.; Franklin, J.L.; Dou, Y.; Liu, Q.; Higginbotham, J.N.; Demory Beckler, M.; Weaver, A.M.; Vickers, K.; Prasad, N.; Levy, S.; et al. KRAS-Dependent Sorting of MiRNA to Exosomes. eLife 2015, 4, e07197. [Google Scholar] [CrossRef]
- Santangelo, L.; Giurato, G.; Cicchini, C.; Montaldo, C.; Mancone, C.; Tarallo, R.; Battistelli, C.; Alonzi, T.; Weisz, A.; Tripodi, M. The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Rep. 2016, 17, 799–808. [Google Scholar] [CrossRef]
- Shurtleff, M.J.; Temoche-Diaz, M.M.; Karfilis, K.V.; Ri, S.; Schekman, R. Y-Box Protein 1 Is Required to Sort into Exosomes in Cells and in a Cell-Free Reaction. eLife 2016, 5, e19276. [Google Scholar] [CrossRef]
- Squadrito, M.L.; Baer, C.; Burdet, F.; Maderna, C.; Gilfillan, G.D.; Lyle, R.; Ibberson, M.; De Palma, M. Endogenous RNAs Modulate MicroRNA Sorting to Exosomes and Transfer to Acceptor Cells. Cell Rep. 2014, 8, 1432–1446. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of MicroRNAs and MicroRNA-Protective Protein by Mammalian Cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef]
- Kosaka, N.; Iguchi, H.; Yoshioka, Y.; Takeshita, F.; Matsuki, Y.; Ochiya, T. Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells. J. Biol. Chem. 2010, 285, 17442–17452. [Google Scholar] [CrossRef]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 Complexes Carry a Population of Circulating MicroRNAs Independent of Vesicles in Human Plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef]
- Murao, A.; Aziz, M.; Wang, H.; Brenner, M.; Wang, P. Release Mechanisms of Major DAMPs. Apoptosis 2021, 26, 152–162. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and Septic Shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, P.; Chen, W.; Feng, D.; Jia, Y.; Xie, L. Serum MicroRNA Signatures Identified by Solexa Sequencing Predict Sepsis Patients’ Mortality: A Prospective Observational Study. PLoS ONE 2012, 7, e38885. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.C.; Chen, C.; Zeng, J.; Wang, Q.; Zheng, L.; Yu, H.D. Differential Expression of Plasma MiR-146a in Sepsis Patients Compared with Non-Sepsis-SIRS Patients. Exp. Ther. Med. 2013, 5, 1101–1104. [Google Scholar] [CrossRef]
- Tacke, F.; Roderburg, C.; Benz, F.; Cardenas, D.V.; Luedde, M.; Hippe, H.J.; Frey, N.; Vucur, M.; Gautheron, J.; Koch, A.; et al. Levels of Circulating Mir-133a Are Elevated in Sepsis and Predict Mortality in Critically Ill Patients. Crit. Care Med. 2014, 42, 1096–1104. [Google Scholar] [CrossRef]
- Wang, H.-J.; Zhang, P.-J.; Chen, W.-J.; Jie, D.; Dan, F.; Jia, Y.-H.; Xie, L.-X. Characterization and Identification of Novel Serum MicroRNAs in Sepsis Patients with Different Outcomes. Shock 2013, 39, 480–487. [Google Scholar] [CrossRef]
- Vasilescu, C.; Rossi, S.; Shimizu, M.; Tudor, S.; Veronese, A.; Ferracin, M.; Nicoloso, M.S.; Barbarotto, E.; Popa, M.; Stanciulea, O.; et al. MicroRNA Fingerprints Identify MiR-150 as a Plasma Prognostic Marker in Patients with Sepsis. PLoS ONE 2009, 4, e7405. [Google Scholar] [CrossRef]
- Wang, H.; Meng, K.; Chen, W.J.; Feng, D.; Jia, Y.; Xie, L. Serum MiR-574-5p: A Prognostic Predictor of Sepsis Patients. Shock 2012, 37, 263–267. [Google Scholar] [CrossRef]
- Ma, Y.; Vilanova, D.; Atalar, K.; Delfour, O.; Edgeworth, J.; Ostermann, M.; Hernandez-Fuentes, M.; Razafimahatratra, S.; Michot, B.; Persing, D.H.; et al. Genome-Wide Sequencing of Cellular MicroRNAs Identifies a Combinatorial Expression Signature Diagnostic of Sepsis. PLoS ONE 2013, 8, e75918. [Google Scholar] [CrossRef]
- Huang, J.; Sun, Z.; Yan, W.; Zhu, Y.; Lin, Y.; Chen, J.; Shen, B.; Wang, J. Identification of MicroRNA as Sepsis Biomarker Based on MiRNAs Regulatory Network Analysis. BioMed Res. Int. 2014, 2014, 594350. [Google Scholar] [CrossRef]
- Makarova, J.A.; Shkurnikov, M.U.; Wicklein, D.; Lange, T.; Samatov, T.R.; Turchinovich, A.A.; Tonevitsky, A.G. Intracellular and Extracellular MicroRNA: An Update on Localization and Biological Role. Prog. Histochem. Cytochem. 2016, 51, 33–49. [Google Scholar] [CrossRef]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. MicroRNAs Bind to Toll-like Receptors to Induce Prometastatic Inflammatory Response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Goodwin, A.J.; Cook, J.A.; Halushka, P.V.; Chang, E.; Fan, H. Exosomes from Endothelial Progenitor Cells Improve the Outcome of a Murine Model of Sepsis. Mol. Ther. 2018, 26, 1375–1384. [Google Scholar] [CrossRef]
- Zou, L.; Feng, Y.; Xu, G.; Jian, W.; Chao, W. Splenic RNA and MicroRNA Mimics Promote Complement Factor B Production and Alternative Pathway Activation via Innate Immune Signaling. J. Immunol. 2016, 196, 2788–2798. [Google Scholar] [CrossRef]
- He, Z.; Wang, H.; Yue, L. Endothelial Progenitor Cells-Secreted Extracellular Vesicles Containing MicroRNA-93-5p Confer Protection against Sepsis-Induced Acute Kidney Injury via the KDM6B/H3K27me3/TNF-α Axis. Exp. Cell Res. 2020, 395, 112173. [Google Scholar] [CrossRef]
- Lee, J.W.; Fang, X.; Gupta, N.; Serikov, V.; Matthay, M.A. Allogeneic Human Mesenchymal Stem Cells for Treatment of E. Coli Endotoxin-Induced Acute Lung Injury in the Ex Vivo Perfused Human Lung. Proc. Natl. Acad. Sci. USA 2009, 106, 16357–16362. [Google Scholar] [CrossRef]
- Pottash, A.E.; Levy, D.; Jeyaram, A.; Kuo, L.; Kronstadt, S.M.; Chao, W.; Jay, S.M. Combinatorial MicroRNA Loading into Extracellular Vesicles for Increased Anti-Inflammatory Efficacy. Noncoding RNA 2022, 8, 71. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Su, J.; Chen, W.-S.; Wang, X.-W.; Bai, S.-X.; Zhang, J.-Z.; Yu, S.-Q. Macrophage Micro-RNA-155 Promotes Lipopolysaccharide-Induced Acute Lung Injury in Mice and Rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 311, 494–506. [Google Scholar] [CrossRef]
- Wang, S.; Yang, Y.; Suen, A.; Zhu, J.; Williams, B.; Hu, J.; Chen, F.; Kozar, R.; Shen, S.; Li, Z.; et al. Role of Extracellular MicroRNA-146a-5p in Host Innate Immunity and Bacterial Sepsis. iScience 2021, 24, 103441. [Google Scholar] [CrossRef]
- Borjas, T.; Jacob, A.; Kobritz, M.; Ma, G.; Tan, C.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. An Engineered MiRNA PS-OMe MiR130 Inhibits Acute Lung Injury by Targeting eCIRP in Sepsis. Mol. Med. 2023, 29, 21. [Google Scholar] [CrossRef]
- Borjas, T.; Jacob, A.; Kobritz, M.; Patel, V.; Coppa, G.F.; Aziz, M.; Wang, P. A Novel MiRNA Mimic Attenuates Organ Injury after Hepatic Ischemia/Reperfusion. J. Trauma Acute Care Surg. 2023, 94, 702–709. [Google Scholar] [CrossRef]
- Vazquez, G.; Sfakianos, M.; Coppa, G.; Jacob, A.; Wang, P. Novel PS-OMe MiRNA 130b-3p Reduces Inflammation and Injury and Improves Survival after Renal Ischemia-Reperfusion Injury. Shock 2023, 60, 613–620. [Google Scholar] [CrossRef]
- Murao, A.; Jha, A.; Ma, G.; Chaung, W.; Aziz, M.; Wang, P. A Synthetic Poly(A) Tail Targeting Extracellular CIRP Inhibits Sepsis. J. Immunol. 2023, 211, 1144–1153. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Huang, Z. Recent Progress in Microrna-Based Delivery Systems for the Treatment of Human Disease. ExRNA 2019, 1, 24. [Google Scholar] [CrossRef]
- Ha, D.; Yang, N.; Nadithe, V. Exosomes as Therapeutic Drug Carriers and Delivery Vehicles across Biological Membranes: Current Perspectives and Future Challenges. Acta Pharm. Sin. B 2016, 6, 287–296. [Google Scholar] [CrossRef]
- Dasgupta, I.; Chatterjee, A. Recent Advances in MiRNA Delivery Systems. Methods Protoc. 2021, 4, 10. [Google Scholar] [CrossRef]
- Douglas, J.T. Adenoviral Vectors for Gene Therapy. Mol. Biotechnol. 2007, 36, 71–80. [Google Scholar] [CrossRef]
- Höbel, S.; Aigner, A. Polyethylenimines for SiRNA and MiRNA Delivery in Vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 484–501. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Wei, M.; Chen, X.; Zhang, Y.; Cao, L.; Yuan, P.; Wang, F.; Yang, G.; Ma, J. Gold Nanoparticle-Based MiR155 Antagonist Macrophage Delivery Restores the Cardiac Function in Ovariectomized Diabetic Mouse Model. Int. J. Nanomed. 2017, 12, 4963–4979. [Google Scholar] [CrossRef]
- Pedroso De Lima, M.C.; Simoes, S.; Pires, P.; Faneca, H.; Nejat, D. Cationic Lipid-DNA Complexes in Gene Delivery: From Biophysics to Biological Applications. Adv. Drug Deliv. Rev. 2001, 47, 277–294. [Google Scholar] [CrossRef]
- Tabet, F.; Vickers, K.C.; Cuesta Torres, L.F.; Wiese, C.B.; Shoucri, B.M.; Lambert, G.; Catherinet, C.; Prado-Lourenco, L.; Levin, M.G.; Thacker, S.; et al. HDL-Transferred MicroRNA-223 Regulates ICAM-1 Expression in Endothelial Cells. Nat. Commun. 2014, 5, 3292. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.S.; Brenner, A.J.; Sachdev, J.; Borad, M.; Kang, Y.K.; Stoudemire, J.; Smith, S.; Bader, A.G.; Kim, S.; Hong, D.S. Phase I Study of MRX34, a Liposomal MiR-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Investig. New Drugs 2017, 35, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Seyhan, A.A. Trials and Tribulations of MicroRNA Therapeutics. Int. J. Mol. Sci. 2024, 25, 1469. [Google Scholar] [CrossRef] [PubMed]
- Behlke, M.A. Chemical Modification of SiRNAs for in Vivo Use. Oligonucleotides 2008, 18, 305–319. [Google Scholar] [CrossRef] [PubMed]
- Khvorova, A.; Watts, J.K. The Chemical Evolution of Oligonucleotide Therapies of Clinical Utility. Nat. Biotechnol. 2017, 35, 238–248. [Google Scholar] [CrossRef]
- Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; et al. Phase 1 Study of MRX34, a Liposomal MiR-34a Mimic, in Patients with Advanced Solid Tumours. Br. J. Cancer 2020, 122, 1630–1637. [Google Scholar] [CrossRef]
- Kim, T.; Croce, C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023, 55, 1314–1321. [Google Scholar] [CrossRef] [PubMed]
- Hermann, S.; Brandes, F.; Kirchner, B.; Buschmann, D.; Borrmann, M.; Klein, M.; Kotschote, S.; Bonin, M.; Reithmair, M.; Kaufmann, I.; et al. Diagnostic Potential of Circulating Cell-Free MicroRNAs for Community-Acquired Pneumonia and Pneumonia-Related Sepsis. J. Cell Mol. Med. 2020, 24, 12054–12064. [Google Scholar] [CrossRef]
- Essandoh, K.; Fan, G.C. Role of Extracellular and Intracellular MicroRNAs in Sepsis. Biochim. Biophys. Acta 2014, 1842, 2155–2162. [Google Scholar] [CrossRef]
- Krützfeldt, J.; Rajewsky, N.; Braich, R.; Rajeev, K.G.; Tuschl, T.; Manoharan, M.; Stoffel, M. Silencing of MicroRNAs in Vivo with “Antagomirs”. Nature 2005, 438, 685–689. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollis, R.; Aziz, M.; Jacob, A.; Wang, P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells 2024, 13, 545. https://doi.org/10.3390/cells13060545
Hollis R, Aziz M, Jacob A, Wang P. Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells. 2024; 13(6):545. https://doi.org/10.3390/cells13060545
Chicago/Turabian StyleHollis, Russell, Monowar Aziz, Asha Jacob, and Ping Wang. 2024. "Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation" Cells 13, no. 6: 545. https://doi.org/10.3390/cells13060545
APA StyleHollis, R., Aziz, M., Jacob, A., & Wang, P. (2024). Harnessing Extracellular microRNAs for Diagnostics and Therapeutics in Acute Systemic Inflammation. Cells, 13(6), 545. https://doi.org/10.3390/cells13060545