Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics
Abstract
:1. Introduction
2. Melanoma Mutations of Importance (Summarized in Table 1)
2.1. NRAS
NRAS | NRAS mutation correlates with shorter disease-free survival and reduced overall survival following surgical removal of lung metastasis. NRAS mutant tumors tend to be more aggressive; have higher Breslow thickness and Clark levels of invasion and occur at higher ages. |
BRAF | BRAF mutations are prevalent in melanomas, primarily in trunk locations, and targeted therapies have shown clinical responses. |
NF1 | NF1 inactivation leads to MAPK activation, and NF1 mutations are observed in older patients, desmoplastic melanoma, and males. NF1-mutated melanomas exhibit increased sensitivity to MEK inhibitors. |
MITF | Direct inhibition of MITF is challenging, but compounds disrupting MITF dimer formation show promise. |
PTEN | PTEN expression correlates with tumor thickness and impacts patient survival rates. |
TP53 | Elevated TP53 expression is linked to lymph node metastases and reduced survival in melanoma patients. |
CDKN2A | CDKN2A status affects response to CDK4/6 inhibitors and immunotherapy. |
TERT | TERT promoter mutations are common in melanoma and are associated with aggressive tumors and worse outcomes. |
TMB | TMB is a strong predictive factor for relapse-free survival and response to immune checkpoint inhibitors in metastatic melanoma. |
EGFR | EGFR mutations activate signaling pathways associated with resistance to BRAF inhibitors and melanoma progression. |
C-KIT | KIT mutations are rare in melanoma but can be targeted with therapies like imatinib. |
2.2. BRAF
2.3. NF1
- The MATCH screening trial, assessing trametinib for treating NF1 mutant refractory solid cancers (NCT02465060);
- The MatchMel trial, which involves a group with NF1 mutant refractory tumors receiving trametinib, sorafenib, or everolimus (NCT02645149);
- The examination of RMC4630 (a potent PTPN11 inhibitor) and cobmitinib in solid tumors with NF1 mutations (NCT03634982) [21].
2.4. MITF
- HDAC inhibitors decrease MITF expression and inhibit tumor growth in the human cutaneous melanoma xenograft model;
- The HDAC trichostatin A (TSA) increases miR-137 expression, reducing MITF expression in uveal melanoma cells;
- A small molecule inhibitor of p300/CBP significantly reduces human cutaneous melanoma cells in vitro;
- Both the HDAC inhibitor ACY-1215 and a small-molecule inhibitor of the MITF pathway (ML329) decrease the proliferation of the metastatic uveal melanoma (UM) cell line in vitro [23].
2.5. PTEN
2.6. TP53
2.7. CDKN2A
2.8. TERT
3. Less Common Melanoma Mutations
3.1. TMB
3.2. EGFR
3.3. c-KIT
4. The Role of Metastectomy in Melanoma
5. Future Directions
6. Conclusions
Funding
Conflicts of Interest
References
- Tsao, H.; Atkins, M.B.; Sober, A.J. Management of Cutaneous Melanoma. N. Engl. J. Med. 2004, 351, 998–1012. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Testori, A.A.E.; Blankenstein, S.A.; van Akkooi, A.C.J. Surgery for Metastatic Melanoma: An Evolving Concept. Curr. Oncol. Rep. 2019, 21, 98. [Google Scholar] [CrossRef]
- Swetter, S.M.; Thompson, J.A.; Albertini, M.R.; Barker, C.A.; Baumgartner, J.; Boland, G.; Chmielowski, B.; DiMaio, D.; Durham, A.; Fields, R.C.; et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2021: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2021, 19, 364–376. [Google Scholar] [CrossRef]
- Ellerhorst, J.A.; Greene, V.R.; Ekmekcioglu, S.; Warneke, C.L.; Johnson, M.M.; Cooke, C.P.; Wang, L.-E.; Prieto, V.G.; Gershenwald, J.E.; Wei, Q.; et al. Clinical Correlates of NRAS and BRAF Mutations in Primary Human Melanoma. Clin. Cancer Res. 2011, 17, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Platz, A.; Egyhazi, S.; Ringborg, U.; Hansson, J. Human cutaneous melanoma: A review of NRAS and BRAF mutation frequencies in relation to histogenetic subclass and body site. Mol. Oncol. 2008, 1, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Pracht, M.; Mogha, A.; Lespagnol, A.; Fautrel, A.; Mouchet, N.; Le Gall, F.; Paumier, V.; Lefeuvre-Plesse, C.; Rioux-Leclerc, N.; Mosser, J.; et al. Prognostic and predictive values of oncogenic BRAF, NRAS, c-KIT and MITF in cutaneous and mucous melanoma. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 1530–1538. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.W.; Kim, Y.S. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: A meta-analysis: BRAF and NRAS mutations in melanoma. Br. J. Dermatol. 2011, 164, 776–784. [Google Scholar] [CrossRef]
- Heppt, M.V.; Siepmann, T.; Engel, J.; Schubert-Fritschle, G.; Eckel, R.; Mirlach, L.; Kirchner, T.; Jung, A.; Gesierich, A.; Ruzicka, T.; et al. Prognostic significance of BRAF and NRAS mutations in melanoma: A German study from routine care. BMC Cancer 2017, 17, 536. [Google Scholar] [CrossRef] [PubMed]
- Gos, A.; Jurkowska, M.; van Akkooi, A.; Robert, C.; Kosela-Paterczyk, H.; Koljenović, S.; Kamsukom, N.; Michej, W.; Jeziorski, A.; Pluta, P.; et al. Molecular Characterization and Patient Outcome of Melanoma Nodal Metastases and an Unknown Primary Site. Ann. Surg. Oncol. 2014, 21, 4317–4323. [Google Scholar] [CrossRef]
- Ulivieri, A.; Cardillo, G.; Manente, L.; Paone, G.; Mancuso, A.P.; Vigna, L.; Di Stasio, E.; Gasbarra, R.; Girlando, S.; Leone, A. Molecular characterization of a selected cohort of patients affected by pulmonary metastases of malignant melanoma: Hints from BRAF, NRAS and EGFR evaluation. Oncotarget 2015, 6, 19868–19879. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef]
- Tsao, H.; Chin, L.; Garraway, L.A.; Fisher, D.E. Melanoma: From mutations to medicine. Genes Dev. 2012, 26, 1131–1155. [Google Scholar] [CrossRef]
- Ekedahl, H.; Cirenajwis, H.; Harbst, K.; Carneiro, A.; Nielsen, K.; Olsson, H.; Lundgren, L.; Ingvar, C.; Jönsson, G. The clinical significance of BRAF and NRAS mutations in a clinic-based metastatic melanoma cohort. Br. J. Dermatol. 2013, 169, 1049–1055. [Google Scholar] [CrossRef]
- Postow, M.A.; Hamid, O.; Carvajal, R.D. Mucosal Melanoma: Pathogenesis, Clinical Behavior, and Management. Curr. Oncol. Rep. 2012, 14, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Ascierto, P.A.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Overall survival with first-line atezolizumab in combination with vemurafenib and cobimetinib in BRAFV600 mutation-positive advanced melanoma (IMspire150): Second interim analysis of a multicentre, randomised, phase 3 study. Lancet Oncol. 2023, 24, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Ascierto, P.A.; Nathan, P.; Robert, C.; Schadendorf, D. Rationale for Immune Checkpoint Inhibitors Plus Targeted Therapy in Metastatic Melanoma: A Review. JAMA Oncol. 2020, 6, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Schadendorf, D.; Dummer, R.; Robert, C.; Ribas, A.; Sullivan, R.J.; Panella, T.; McKean, M.; Santos, E.S.; Brill, K.; Polli, A.; et al. STARBOARD: Encorafenib + binimetinib + pembrolizumab for first-line metastatic/unresectable BRAF V600-mutant melanoma. Future Oncol. 2022, 18, 2041–2051. [Google Scholar] [CrossRef]
- Jour, G.; Illa-Bochaca, I.; Ibrahim, M.; Donnelly, D.; Zhu, K.; de Miera, E.V.S.; Vasudevaraja, V.; Mezzano, V.; Ramswami, S.; Yeh, Y.-H.; et al. Genomic and Transcriptomic Analyses of NF1-Mutant Melanoma Identify Potential Targeted Approach for Treatment. J. Investig. Dermatol. 2023, 143, 444–455.e8. [Google Scholar] [CrossRef] [PubMed]
- Khaddour, K.; Maahs, L.; Avila-Rodriguez, A.M.; Maamar, Y.; Samaan, S.; Ansstas, G. Melanoma Targeted Therapies beyond BRAF-Mutant Melanoma: Potential Druggable Mutations and Novel Treatment Approaches. Cancers 2021, 13, 5847. [Google Scholar] [CrossRef] [PubMed]
- Thielmann, C.M.; Chorti, E.; Matull, J.; Murali, R.; Zaremba, A.; Lodde, G.; Jansen, P.; Richter, L.; Kretz, J.; Möller, I.; et al. NF1-mutated melanomas reveal distinct clinical characteristics depending on tumour origin and respond favourably to immune checkpoint inhibitors. Eur. J. Cancer 2021, 159, 113–124. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, K.; Dai, J.; Xu, P.; Sun, W.; Liu, W.; Zhao, Z.; Bennett, S.P.; Li, P.; Ma, T.; et al. A unique hyperdynamic dimer interface permits small molecule perturbation of the melanoma oncoprotein MITF for melanoma therapy. Cell Res. 2023, 33, 55–70. [Google Scholar] [CrossRef]
- Nishikiori, N.; Watanabe, M.; Sato, T.; Furuhashi, M.; Okura, M.; Hida, T.; Uhara, H.; Ohguro, H. Significant and Various Effects of ML329-Induced MITF Suppression in the Melanoma Cell Line. Cancers 2024, 16, 263. [Google Scholar] [CrossRef]
- Sun, Z.; Arnouk, H. Phosphatase and Tensin Homolog (PTEN) Expression as a Surrogate Biomarker Correlated With the Depth of Invasion in Cutaneous Malignant Melanoma. Cureus 2023, 15, e45295. [Google Scholar] [CrossRef]
- Vlašić, I.; Horvat, A.; Tadijan, A.; Slade, N. p53 Family in Resistance to Targeted Therapy of Melanoma. Int. J. Mol. Sci. 2022, 24, 65. [Google Scholar] [CrossRef]
- Khan, S.U.; Ullah, Z.; Shaukat, H.; Unab, S.; Jannat, S.; Ali, W.; Ali, A.; Irfan, M.; Khan, M.F.; Cervantes-Villagrana, R.D. TP53 and its Regulatory Genes as Prognosis of Cutaneous Melanoma. Cancer Inform. 2023, 22, 11769351231177267. [Google Scholar] [CrossRef]
- Danishevich, A.; Bilyalov, A.; Nikolaev, S.; Khalikov, N.; Isaeva, D.; Levina, Y.; Makarova, M.; Nemtsova, M.; Chernevskiy, D.; Sagaydak, O.; et al. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines 2023, 11, 3343. [Google Scholar] [CrossRef] [PubMed]
- van Doorn, R. Surveillance, CDKN2A and survival of familial melanoma. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 218–219. [Google Scholar] [CrossRef] [PubMed]
- Kreuger, I.Z.M.; Slieker, R.C.; van Groningen, T.; van Doorn, R. Therapeutic Strategies for Targeting CDKN2A Loss in Melanoma. J. Investig. Dermatol. 2023, 143, 18–25.e1. [Google Scholar] [CrossRef] [PubMed]
- Delyon, J.; Vallet, A.; Bernard-Cacciarella, M.; Kuzniak, I.; de Moura, C.R.; Louveau, B.; Jouenne, F.; Mourah, S.; Lebbé, C.; Dumaz, N. TERT Expression Induces Resistance to BRAF and MEK Inhibitors in BRAF-Mutated Melanoma In Vitro. Cancers 2023, 15, 2888. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10251862/ (accessed on 15 February 2024). [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Eckardt, J.; Schroeder, C.; Martus, P.; Armeanu-Ebinger, S.; Kelemen, O.; Gschwind, A.; Bonzheim, I.; Eigentler, T.; Amaral, T.; Ossowski, S.; et al. TMB and BRAF mutation status are independent predictive factors in high-risk melanoma patients with adjuvant anti-PD-1 therapy. J. Cancer Res. Clin. Oncol. 2023, 149, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; et al. Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 2016, 165, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Forschner, A.; Battke, F.; Hadaschik, D.; Schulze, M.; Weißgraeber, S.; Han, C.T.; Kopp, M.; Frick, M.; Klumpp, B.; Tietze, N.; et al. Tumor mutation burden and circulating tumor DNA in combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma—Results of a prospective biomarker study. J. Immunother. Cancer 2019, 7, 180. [Google Scholar] [CrossRef]
- Dummer, R.; Brase, J.C.; Garrett, J.; Campbell, C.D.; Gasal, E.; Squires, M.; Gusenleitner, D.; Santinami, M.; Atkinson, V.; Mandalà, M.; et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAFV600-mutant, stage III melanoma (COMBI-AD): Exploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol. 2020, 21, 358–372. [Google Scholar] [CrossRef]
- Boone, B.; Jacobs, K.; Ferdinande, L.; Taildeman, J.; Lambert, J.; Peeters, M.; Bracke, M.; Pauwels, P.; Brochez, L. EGFR in melanoma: Clinical significance and potential therapeutic target. J. Cutan. Pathol. 2011, 38, 492–502. [Google Scholar] [CrossRef]
- Rákosy, Z.; Vízkeleti, L.; Ecsedi, S.; Vokó, Z.; Bégány, Á.; Barok, M.; Krekk, Z.; Gallai, M.; Szentirmay, Z.; Ádány, R.; et al. EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int. J. Cancer 2007, 121, 1729–1737. [Google Scholar] [CrossRef]
- Pietraszek-Gremplewicz, K.; Simiczyjew, A.; Dratkiewicz, E.; Podgórska, M.; Styczeń, I.; Matkowski, R.; Ziętek, M.; Nowak, D. Expression level of EGFR and MET receptors regulates invasiveness of melanoma cells. J. Cell. Mol. Med. 2019, 23, 8453–8463. [Google Scholar] [CrossRef]
- Hurks, H.M.; Metzelaar-Blok, J.A.; Barthen, E.R.; Zwinderman, A.H.; De Wolff-Rouendaal, D.; Keunen, J.E.; Jager, M.J. Expression of epidermal growth factor receptor: Risk factor in uveal melanoma. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2023–2027. [Google Scholar]
- Schartl, M.; Wilde, B.; Laisney, J.A.G.C.; Taniguchi, Y.; Takeda, S.; Meierjohann, S. A Mutated EGFR Is Sufficient to Induce Malignant Melanoma with Genetic Background-Dependent Histopathologies. J. Investig. Dermatol. 2010, 130, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Akca, H.; Tani, M.; Hishida, T.; Matsumoto, S.; Yokota, J. Activation of the AKT and STAT3 pathways and prolonged survival by a mutant EGFR in human lung cancer cells. Lung Cancer 2006, 54, 25–33. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Zhao, G.; Zhang, X.; Hao, M.; Hassan, S.; Zhang, M.; Zheng, H.; Yang, D.; Liu, L.; et al. IGFBP2 regulates PD-L1 expression by activating the EGFR-STAT3 signaling pathway in malignant melanoma. Cancer Lett. 2020, 477, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Girotti, M.R.; Pedersen, M.; Sanchez-Laorden, B.; Viros, A.; Turajlic, S.; Niculescu-Duvaz, D.; Zambon, A.; Sinclair, J.; Hayes, A.; Gore, M.; et al. Inhibiting EGF Receptor or SRC Family Kinase Signaling Overcomes BRAF Inhibitor Resistance in Melanoma. Cancer Discov. 2013, 3, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Kwan, Y.P.; Teo, M.H.Y.; Lim, J.C.W.; Tan, M.S.; Rosellinny, G.; Wahli, W.; Wang, X. LRG1 Promotes Metastatic Dissemination of Melanoma through Regulating EGFR/STAT3 Signalling. Cancers 2021, 13, 3279. [Google Scholar] [CrossRef] [PubMed]
- Ueda, Y.; Richmond, A. NF-κB activation in melanoma. Pigment Cell Res. 2006, 19, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Monroe, J.D.; Basheer, F.; Gibert, Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- KIT. KIT Proto-Oncogene, Receptor Tyrosine Kinase [Homo Sapiens (Human)]—Gene—NCBI [Internet]. Available online: https://www.ncbi.nlm.nih.gov/gene/3815 (accessed on 2 October 2023).
- Postow, M.A.; Carvajal, R.D. Therapeutic Implications of KIT in Melanoma. Cancer J. 2012, 18, 137. [Google Scholar] [CrossRef] [PubMed]
- Meng, D.; Carvajal, R.D. KIT as an Oncogenic Driver in Melanoma: An Update on Clinical Development. Am. J. Clin. Dermatol. 2019, 20, 315–323. [Google Scholar] [CrossRef]
- Omholt, K.; Platz, A.; Kanter, L.; Ringborg, U.; Hansson, J. NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. Clin. Cancer Res. 2003, 9, 6483–6488. [Google Scholar]
- Colombino, M.; Capone, M.; Lissia, A.; Cossu, A.; Rubino, C.; De Giorgi, V.; Massi, D.; Fonsatti, E.; Staibano, S.; Nappi, O.; et al. BRAF/NRAS Mutation Frequencies Among Primary Tumors and Metastases in Patients With Melanoma. J. Clin. Oncol. 2012, 30, 2522–2529. [Google Scholar] [CrossRef]
- Spagnolo, F.; Queirolo, P. Upcoming strategies for the treatment of metastatic melanoma. Arch. Dermatol. Res. 2012, 304, 177–184. [Google Scholar] [CrossRef]
- Meacci, E.; Nachira, D.; Congedo, M.T.; Ibrahim, M.; Pariscenti, G.; Petrella, F.; Casiraghi, M.; De Stefani, A.; del Regno, L.; Peris, K.; et al. Surgical Resection of Pulmonary Metastases from Melanoma in Oligometastatic Patients: Results from a Multicentric Study in the Era of Immunoncology and Targeted Therapy. Cancers 2023, 15, 2462. [Google Scholar] [CrossRef] [PubMed]
- Janka, E.A.; Ványai, B.; Szabó, I.L.; Toka-Farkas, T.; Várvölgyi, T.; Kapitány, A.; Szegedi, A.; Emri, G. Primary tumour category, site of metastasis, and baseline serum S100B and LDH are independent prognostic factors for survival in metastatic melanoma patients treated with anti-PD-1. Front. Oncol. 2023, 13, 1237643. [Google Scholar] [CrossRef]
- Bucheit, A.D.; Syklawer, E.; Jakob, J.A.; Bassett Jr, R.L.; Curry, J.L.; Gershenwald, J.E.; Kim, K.B.; Hwu, P.; Lazar, A.J.; Davies, M.A. Clinical characteristics and outcomes with specific BRAF and NRAS mutations in patients with metastatic melanoma. Cancer 2013, 119, 3821–3829. [Google Scholar] [CrossRef] [PubMed]
- Carlino, M.S.; Haydu, L.E.; Kakavand, H.; Menzies, A.M.; Hamilton, A.L.; Yu, B.; Ng, C.C.; Cooper, W.A.; Thompson, J.F.; Kefford, R.F.; et al. Correlation of BRAF and NRAS mutation status with outcome, site of distant metastasis and response to chemotherapy in metastatic melanoma. Br. J. Cancer 2014, 111, 292–299. [Google Scholar] [CrossRef]
- Menzies, A.M.; Haydu, L.E.; Visintin, L.; Carlino, M.S.; Howle, J.R.; Thompson, J.F.; Kefford, R.F.; Scolyer, R.A.; Long, G.V. Distinguishing Clinicopathologic Features of Patients with V600E and V600K BRAF-Mutant Metastatic Melanoma. Clin. Cancer Res. 2012, 18, 3242–3249. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Dudley, J.; Tseng, L.H.; Smith, K.; Gurda, G.T.; Gocke, C.D.; Eshleman, J.R.; Lin, M.-T. Lymph node metastases of melanoma: Challenges for BRAF mutation detection. Hum. Pathol. 2015, 46, 113–119. [Google Scholar] [CrossRef]
- Jakob, J.A.; Bassett, R.L.; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. NRAS Mutation Status is an Independent Prognostic Factor in Metastatic Melanoma. Cancer 2012, 118, 4014–4023. [Google Scholar] [CrossRef]
- Doma, V.; Kárpáthy, S.; Rásó, E.; Barbai, T.; Tímár, J. Dynamic and unpredictable changes in mutant allele fractions of BRAF and NRAS during visceral progression of cutaneous malignant melanoma. BMC Cancer 2019, 19, 786. [Google Scholar]
- Schwantes, I.R.; Sutton, T.; Behrens, S.; Fowler, G.; Han, G.; Vetto, J.T.; Han, D. Metastasectomy for metastatic melanoma in the era of effective systemic therapy. Am. J. Surg. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Lasithiotakis, K.; Zoras, O. Metastasectomy in cutaneous melanoma. Eur. J. Surg. Oncol. 2017, 43, 572–580. [Google Scholar] [CrossRef]
- Blecker, D.; Abraham, S.; Furth, E.E.; Kochman, M.L. Melanoma in the gastrointestinal tract. Am. J. Gastroenterol. 1999, 94, 3427–3433. [Google Scholar] [CrossRef]
- Ihde, J.K.; Coit, D.G. Melanoma metastatic to stomach, small bowel, or colon. Am. J. Surg. 1991, 162, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Rose, D.M.; Essner, R.; Hughes, T.M.D.; Tang, P.C.Y.; Bilchik, A.; Wanek, L.A.; Thompson, J.F.; Morton, D.L. Surgical Resection for Metastatic Melanoma to the Liver: The John Wayne Cancer Institute and Sydney Melanoma Unit Experience. Arch. Surg. 2001, 136, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Mariani, P.; Piperno-Neumann, S.; Servois, V.; Berry, M.G.; Dorval, T.; Plancher, C.; Couturier, J.; Levy-Gabriel, C.; Rouic, L.L.-L.; Desjardins, L.; et al. Surgical management of liver metastases from uveal melanoma: 16 years’ experience at the Institut Curie. Eur. J. Surg. Oncol. 2009, 35, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Bafaloukos, D.; Gogas, H. The treatment of brain metastases in melanoma patients. Cancer Treat. Rev. 2004, 30, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, S.; Thida, A.M.; Yadlapati, S.; Koya, S. Metastatic Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470358/ (accessed on 4 October 2023).
- Leo, F.; Cagini, L.; Rocmans, P.; Cappello, M.; Geel, A.N.V.; Maggi, G.; Goldstraw, P.; Pastorino, U. Lung metastases from melanoma: When is surgical treatment warranted? Br. J. Cancer 2000, 83, 569–572. [Google Scholar] [CrossRef]
- Deutsch, G.B.; Flaherty, D.C.; Kirchoff, D.D.; Bailey, M.; Vitug, S.; Foshag, L.J.; Faries, M.B.; Bilchik, A.J. Association of Surgical Treatment, Systemic Therapy, and Survival in Patients With Abdominal Visceral Melanoma Metastases, 1965–2014. JAMA Surg. 2017, 152, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Faries, M.B.; Lowe, M. Metastasectomy in Stage IV Melanoma: How and When Should We Employ It? Ann. Surg. Oncol. 2023, 30, 5312–5313. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.L.; Behbahani, S.; Maddukuri, S.; John, A.M.; Schwartz, R.A.; Lambert, W.C. Prolonged overall survival following metastasectomy in stage IV melanoma. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1719–1725. [Google Scholar] [CrossRef]
- He, M.; Lovell, J.; Ng, B.L.; Spillane, J.; Speakman, D.; Henderson, M.A.; Shackleton, M.; Gyorki, D.E. Post-operative survival following metastasectomy for patients receiving BRAF inhibitor therapy is associated with duration of pre-operative treatment and elective indication. J. Surg. Oncol. 2015, 111, 980–984. [Google Scholar] [CrossRef]
- Bong, C.Y.; Smithers, B.M.; Chua, T.C. Pulmonary metastasectomy in the era of targeted therapy and immunotherapy. J. Thorac. Dis. 2021, 13, 2618–2627. [Google Scholar] [CrossRef] [PubMed]
- Mor, E.; Laks, S.; Assaf, D.; Asher, N.; Ben-Betzalel, G.; Grynberg, S.; Stoff, R.; Adileh, M.; Steinberg-Silman, Y.; Shapira-Frommer, R.; et al. The increasing role of abdominal metastesectomy for malignant melanoma in the era of modern therapeutics. Surg. Oncol. 2022, 44, 101808. [Google Scholar] [CrossRef] [PubMed]
- Liatsou, E.; Tsilimigras, D.I.; Malandrakis, P.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I. Current status and novel insights into the role of metastasectomy in the era of immunotherapy. Expert Rev. Anticancer Ther. 2023, 23, 57–66. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.H.; McMasters, K.M.; Egger, M.E. Role of Surgery in Stage IV Melanoma. Surg. Oncol. Clin. N. Am. 2020, 29, 485–495. [Google Scholar] [CrossRef]
- Joyce, K.M. Surgical Management of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017. Available online: http://www.ncbi.nlm.nih.gov/books/NBK481850/ (accessed on 19 September 2023).
- Li, A.T.; Vakharia, K.; Lo, S.N.; Varey, A.H.R.; Carlino, M.S.; Saw, R.P.M.; Shannon, K.F.; Howle, J.R.; Pennington, T.E.; Stretch, J.R.; et al. Survival Outcomes of Salvage Metastasectomy After Failure of Modern-Era Systemic Therapy for Melanoma. Ann. Surg. Oncol. 2021, 28, 6109–6123. [Google Scholar] [CrossRef]
- Wankhede, D.; Grover, S. Outcomes after Curative Metastasectomy for Patients with Malignant Melanoma: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol 2022, 29, 3709–3723. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukniam, K.; Manaise, H.K.; Popp, K.; Popp, R.; Gabriel, E. Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics. Cells 2024, 13, 465. https://doi.org/10.3390/cells13060465
Sukniam K, Manaise HK, Popp K, Popp R, Gabriel E. Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics. Cells. 2024; 13(6):465. https://doi.org/10.3390/cells13060465
Chicago/Turabian StyleSukniam, Kulkaew, Harsheen K. Manaise, Kyle Popp, Reed Popp, and Emmanuel Gabriel. 2024. "Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics" Cells 13, no. 6: 465. https://doi.org/10.3390/cells13060465
APA StyleSukniam, K., Manaise, H. K., Popp, K., Popp, R., & Gabriel, E. (2024). Role of Surgery in Metastatic Melanoma and Review of Melanoma Molecular Characteristics. Cells, 13(6), 465. https://doi.org/10.3390/cells13060465